
Making Uniqueness Typing Less Unique
Thesis submitted for the degree of Doctor in Philosophy

December 14, 2008
Edsko Jacob Jelle de Vries

Declaration

This thesis has not been submitted as an exercise for a degree at
this or any other university. It is entirely the candidate’s own work.
The candidate agrees that the Library may lend or copy the thesis
upon request. This permission covers only single copies made for
study purposes, subject to normal conditions of acknowledgement.

Edsko de Vries

i

ii

Voor mijn ouders

Voor het helpen met de GW-Basic programma’s uit de Weet-Ik!,

en het herstellen van autoexec.bat.

iii

iv

Summary

Computer science distinguishes between two major programming paradigms: imperative and Chapter , p. 

functional programming. Central to imperative programming is the notion of some form of
state (or memory) together with a list of instructions that inspect and modify that state. The
canonical example of this paradigm is the Turing machine. Functional programming on the
other hand is centred around a mathematical language with a notion of evaluation of expressions in
this language. The notion of state—the core concept in imperative programming—is completely
absent. The canonical example of the functional paradigm is the lambda calculus.

Although neither Turing machines nor the lambda calculus support a notion of interaction,
it is not difficult to see how interaction can be added to a Turing machine: it suffices to allow
external entities to modify the machine state. Adding interaction to the lambda calculus is a much
more difficult problem, and there are many solutions proposed in the literature.

One option is to regard an interactive program as a function from the world state to a new
world state. For example, we might have a function getChar that, given a world object, reads
a character from the console and produces a new world object; and a function putChar that,
given a character and a world object, echos the character to the console and produces a new
world object. We can then define a program that reads a character from the console and echoes
it back to the user as follows:

λworld. putChar (getChar world)

The main problem with this approach is the potential duplication of the world state. For example,
we can easily define a function that returns a pair of world states, one in which the character ’a’
has been printed and one in which the character ’b’ has been printed:

λworld. (putChar (’a’, world), putChar (’b’, world))

Since such a program has no semantic interpretation, we have two options: we can dismiss this
approach, or we can impose a type system which analyses the programs written by the user and
rejects those without a semantic interpretation. Uniqueness typing is such a type system: it can
be used to ensure that objects such as the world state are used in a single-threaded manner.

Uniqueness typing was developed for a language based on graph rewriting rather than the
lambda calculus. This is unfortunate as it means that recent advances in type systems in the
wider functional programming community cannot readily be incorporated in uniqueness typing.
The main thesis we will defend in this dissertation is that the graph rewriting background is
inessential to uniqueness typing. We claim that it is possible to define a uniqueness type system
that is sufficiently similar to conventional type systems for lambda calculus based functional
programming languages that techniques developed for such languages can be applied without
major difficulties. In short, we propose to make uniqueness typing less unique.

v

Two main themes have been interwoven in this thesis. In the first, we show how to define a
uniqueness type system for the lambda calculus. This system is initially strongly based on the
original uniqueness type system, but through a series of simplifications we show how to make it
simpler and more like a conventional lambda calculus type system. In the second theme we offer
evidence of the effectiveness of these simplifications by taking advantage of them to incorporate
type system extensions originally developed for languages without uniqueness typing.

The original uniqueness type system distinguishes between objects that are non-unique (mayChapter , p. 

freely be duplicated), unique now (have not been duplicated) but that may become non-unique
later, and objects that are necessarily unique (unique now and must forever remain unique). The
first simplification we propose is that it is sufficient to distinguish only between non-unique
and unique objects (without a notion of “necessarily unique”), and we develop a lambda calculus
type system based on this idea. We then show how to extend this type system with arbitrary
rank types, based on work by Peyton Jones, Vytiniotis, Weirich, and Shields (2007).

Uniqueness types often involve inequality constraints between uniqueness attributes (“thisChapter , p. 

object must be unique if that other object is”). The second simplification we propose is to remove
these constraints by supporting arbitrary boolean expressions as uniqueness attributes, sim-
plifying both the type system and its implementation. We show again how to incorporate higher
rank types, and briefly discuss how to support generalized algebraic data types based on work
by Peyton Jones, Vytiniotis, Weirich, and Washburn (2006).

As mentioned, the original uniqueness type system distinguishes between non-unique, uniqueChapter , p. 

and necessarily unique objects. We suggested that this may be simplified by distinguishing only
between non-unique and unique objects, but a disadvantage of this approach is that it relies on
a form of closure typing. This makes types difficult to read and understand, and so in the final
system we suggest that it may be better to distinguish only between non-unique and necessarily
unique objects (and no longer support a notion of “unique now, but may become non-unique later).
This removes the need for closure typing, without sacrificing expressiveness provided that we are
careful in the types we assign to library functions and take advantage of polymorphism. As a
further simplification, we propose to regard uniqueness attributes and types as one syntactic
category (and distinguish using a kind system). This makes the presentation and formalization of
the type system more uniform, and gives us additional expressive power for free. We show how to
support higher rank types, impredicativity and records and variants based on work by Leijen
(2008a) and Gaster and Jones (1996).

We then give a formalization of this (core) type system using the proof assistant Coq. AfterChapter , p. 

proving numerous technical lemmas, we provide a number of lemmas about the type system such
as well-kindedness, weakening and exchange, followed by the main soundness theorem (progress

and type preservation or subject reduction) based on the call-by-need lambda calculus.
Finally, we discuss some of the design choices we have made, potential alternatives, and theChapter , p. 

relation between our work and related work, and identity future work. We conclude that indeed
we have made uniqueness typing less unique: the system we have developed is simple, easy
to understand and recent type system extensions are readily incorporated. The only exception
appears to be that our system allows less impredicative instantiation than the type system on which
it is based. We explain why and discuss some ways in which we might solve this problem.

vi

Acknowledgements

Choosing a PhD thesis topic is a difficult and time consuming task (Cham, 1998), and when I
eventually settled on one I wanted to make sure that an expert in the field thought the project
worthwhile. At the time, our university was organizing IFL05 and one of the participants was Prof.
Rinus Plasmeijer, head of the Software Technology Research Group in Nijmegen—the team that
develops the language Clean; I took advantage and asked him for his opinion. He thought that it
was a good proposal, but told me that another PhD student in Hungary was working on the exact
same problem. This was a bit of a set-back, but Rinus and I got talking—first during a lovely walk
in Glendalough, Wicklow and later in a small Italian restaurant just off O’Connell Street in the
heart of Dublin—and it turned out that Rinus had a huge list of open problems and would only be
too happy if I started working on one of them. A few days later this was followed up with an email
listing some of these projects. Many of them were detailed funding proposals for PhD positions,
but somewhere in the middle was a throw-away remark that the relation between uniqueness
typing and polytypic programming needed clarification. This sounded like an interesting problem
and it was not too far off from my original thesis topic, so I suggested that I begin work on this. It
soon emerged that to be able to fully answer the question, we needed a uniqueness type system
with support for higher rank types and the result is the thesis that you are currently reading. As
well as suggesting the original research problem, Rinus has been very helpful throughout my PhD:
he gave feedback on my papers, was enthusiastic about my ideas and provided encouragement
when needed. Rinus, your involvement was greatly appreciated!

Further motivation and feedback was given by my colleagues in the Foundations and Methods
Group, especially Arthur Hughes, Andrew Butterfield, Hugh Gibbons, Glenn Strong and Shane Ó
Conchúir. I am indebted to David Gregg, who got me an invitation for the Verifying Optimizing
Compilers seminar in Dagstuhl. A huge thank-you also to my office mate of four years and fellow
student of eight, John Gilbert. Although our thesis topics are not at all related, I enjoyed the many
discussions and our mutual interest in exotic teas; moreover, John proofread all my papers and
most of this thesis.

The larger functional programming community has generally been very supportive, and this
thesis has benefited from many discussions with people in conferences, summer schools, and in
emails. There are far too many names to list here, but I would like so single out a few people.
Dimitri Vytiniotis, Bastiaan Heeren, Stefan Holdermans, Fenrong Liu and Amr Sabry have been
very helpful discussing various aspects of their papers. Additionally, Bastiaan provided feedback
on my first paper and invited me to present my work in Utrecht, which was appreciated, and
Stefan has provided very valuable feedback on sections of this thesis. My understanding of the
single-threaded polymorphic lambda calculus was much improved by discussions with Adam
Megacz, who also assisted with some aspects of my formal soundness proof. Thanks!

vii

I do not know whether I could have completed that soundness proof without the guidance
of Arthur Charguéraud, one of the authors of the Engineering Formal Metatheory paper. His
generous help in getting the foundations of the proof right was invaluable. Likewise, I could not
have done the proof without the aid of the people on the Coq-club mailing list, whose kind and
helpful replies to many questions were greatly appreciated.

A thank-you also to Daan Leijen, who invited me to do an internship with him in Microsoft
Research, Redmond. Although my work in Microsoft was not immediately related to my thesis, I
learned a great deal and it is likely I would not have had the ideas which became the final chapter
if not for my work with Daan. Moreover, I remember my time there very fondly; it was a great
summer!

I thank my supervisor, Dr David M Abrahamson, and my funding agency, the Irish Research
Council for Science, Engineering and Technology (IRCSET) for supporting my research, and the
two examiners of the thesis, Prof. Matthew Hennessy and Dr Sven-Bodo Scholz.

Finally, where would I be without my better half, Wendy Verbruggen? As well as proof-
reading everything I have written (and few errors escape her careful eyes!), sharing my life with
her makes it infinitely more enjoyable.

Edsko de Vries, Dublin, December 14, 2008

viii

Contents

Chapters that have been published or presented prior to this thesis are marked with a star (∗).
Details can be found on the first page of each chapter.

Contents 1

List of Figures 7

1 Introduction 11
1.1 Computability . 11
1.2 Type systems . 12
1.3 Interaction . 13
1.4 Purity . 14
1.5 Overview of this dissertation . 15

2 Background 17
2.1 Logic . 17

2.1.1 On constructive logic . 17
2.1.2 Natural deduction . 20
2.1.3 Sequent calculus . 22

2.2 Universal Algebra . 22
2.2.1 Basic Definitions . 23
2.2.2 Unification . 23
2.2.3 Syntactic unification . 24
2.2.4 Boolean Unification . 25

2.3 Explicitly typed lambda calculus . 29
2.3.1 Explicit versus implicit typing . 31
2.3.2 Hierarchy of types . 31
2.3.3 Dependency . 32
2.3.4 The expression language . 33
2.3.5 Calculus of Constructions . 34

2.4 System FA . 35
2.4.1 System F . 36
2.4.2 Algebraic data types . 37
2.4.3 System FA . 37
2.4.4 Fragments of System F . 38

2.5 Implicitly typed lambda calculus . 39
2.5.1 Let polymorphism . 41

1

Contents

2.5.2 Odersky/Läufer . 45
2.5.3 Practical type inference for arbitrary rank types 46
2.5.4 HMF . 51

2.6 Substructural logics . 52
2.7 Operational semantics and soundness . 54

2.7.1 Call-by-value . 56
2.7.2 Call-by-name . 56
2.7.3 Call-by-need . 57
2.7.4 Soundness . 58
2.7.5 On small-step semantics . 58

2.8 Side effects . 59
2.8.1 Referential transparency . 59
2.8.2 Leibniz’ Law, extensionality, definiteness and unfoldability 60
2.8.3 Purity . 62
2.8.4 Substructural logics . 62
2.8.5 Laziness . 64
2.8.6 Monads . 65
2.8.7 Uniqueness typing versus Monads . 66

2.9 Language extensions . 70
2.9.1 Recursion . 70
2.9.2 Qualified types . 72

2.10 Category theory . 73
2.10.1 Fundamental concepts . 73
2.10.2 Products, exponentials and currying . 75
2.10.3 Monads . 75

3 Related Work 77
3.1 An aside on syntax . 77
3.2 Uniqueness typing . 78

3.2.1 Introduction . 78
3.2.2 Subtyping . 80
3.2.3 Uniqueness propagation and polymorphism 81
3.2.4 Partial application . 82
3.2.5 Recursion . 83
3.2.6 Read-only access . 83
3.2.7 Reference count analysis . 84
3.2.8 Uniqueness typing and sharing analysis 86

3.3 Linear logic . 87
3.3.1 Linear logic versus uniqueness typing 88
3.3.2 Wadler’s type systems . 89
3.3.3 Observable linear types . 90

3.4 Uniqueness logic . 91
3.4.1 Affinity . 91
3.4.2 Partial application . 92
3.4.3 Exponentials in a non-unique context 93

2

Contents

3.5 Single-threaded polymorphic lambda calculus 95
3.5.1 Intuition . 95
3.5.2 Typing rules . 97
3.5.3 Strict application . 100
3.5.4 Polymorphic liabilities . 101
3.5.5 “How to make destructive updates less destructive” 102
3.5.6 Relevance of linearity . 102

3.6 Other related work . 105
3.6.1 LFPL . 105
3.6.2 SAC . 106
3.6.3 Mercury . 108
3.6.4 Bunched Implications . 112
3.6.5 Separation logic . 112
3.6.6 Type and effect systems . 112

4 Scaling Uniqueness Typing to Arbitrary Rank Types∗ 115
4.1 Rank-1 typing rules . 115

4.1.1 The Language . 115
4.1.2 Integers . 116
4.1.3 Variables . 116
4.1.4 Abstractions . 117
4.1.5 Application . 118

4.2 Arbitrary Rank Types . 118
4.2.1 Variables . 121
4.2.2 Abstraction . 121
4.2.3 Application . 121
4.2.4 Annotated Lambda Abstractions . 122
4.2.5 Subsumption . 122

4.3 Examples . 123
4.4 Type Inference . 125
4.5 Comparison with Clean . 126
4.6 Notes . 128

5 Removing Inequality Constraints∗ 129
5.1 Typing the core λ−calculus . 129

5.1.1 Variables . 130
5.1.2 Abstraction . 130
5.1.3 Application . 131
5.1.4 Examples . 132
5.1.5 Reflection on the core system . 132
5.1.6 Type inference . 134

5.2 Arbitrary Rank Types . 135
5.2.1 Arbitrary rank types . 135
5.2.2 Modifications to deal with uniqueness 136
5.2.3 Polymorphic uniqueness and closure typing 137

3

Contents

5.2.4 Complications due to inequalities . 138
5.3 Generalized algebraic data types . 140
5.4 Notes . 142

6 Simplifying the Type System∗ 143
6.1 Attributes Are Types . 143
6.2 The core system . 145

6.2.1 Variables . 145
6.2.2 Partial Application . 146
6.2.3 Abstraction and Application . 147

6.3 On Subtyping . 147
6.4 Implementation in Morrow . 149

6.4.1 Modifying the type system . 149
6.4.2 Supporting records and variants . 151
6.4.3 Multiple field accesses . 153

6.5 Soundness . 154
6.6 Metatheoretical musings . 156
6.7 Notes . 158

7 Formalization∗ 159
7.1 Note on the proofs . 159
7.2 Equivalence . 160

7.2.1 Lambda terms . 161
7.2.2 Environments . 163
7.2.3 Boolean expressions . 164

7.3 Inversion . 165
7.3.1 Domain subtraction . 165
7.3.2 Type equivalence . 166
7.3.3 Evaluation contexts . 167

7.4 Definitions . 169
7.4.1 Types . 169
7.4.2 Kinding relation . 169
7.4.3 Environment . 170
7.4.4 Operations on the typing context . 171
7.4.5 Typing relation . 172
7.4.6 Semantics . 173

7.5 Preliminaries . 174
7.5.1 Some additional lemmas about ok and binds 174
7.5.2 Renaming Lemmas . 175
7.5.3 Term opening . 176
7.5.4 Domain subtraction . 177
7.5.5 Kinding properties . 178
7.5.6 Well-formedness of environments . 178
7.5.7 Regularity . 179
7.5.8 Well-founded induction on subterms . 180

4

Contents

7.5.9 Iterated domain subtraction . 181
7.5.10 Context split . 182
7.5.11 Type equivalence . 186
7.5.12 Non-unique types . 187
7.5.13 Equivalence of environments. 188
7.5.14 Range . 190

7.6 Properties of the typing relation . 191
7.6.1 Kinding properties . 191
7.6.2 Free variables . 191
7.6.3 Consistency of E and fvars . 191
7.6.4 Weakening . 192
7.6.5 Exchange . 193
7.6.6 Inversion lemmas . 193

7.7 Soundness . 195
7.7.1 Progress . 195
7.7.2 Preservation . 195

8 Conclusions and Future Work 199
8.1 An exploration of the design space . 199

8.1.1 Boolean attributes versus inequality constraints 199
8.1.2 Subtyping . 201
8.1.3 Attributes as types . 203
8.1.4 Uniqueness propagation in constructors or destructors 204
8.1.5 Number of aspects considered . 205

8.2 Future work . 206
8.2.1 Simplifying the type language . 206
8.2.2 Simplifying types . 207
8.2.3 Improving Impredicativity . 208
8.2.4 Syntactic sugar . 211
8.2.5 Integration in Clean . 214
8.2.6 Embedding affine logic . 217
8.2.7 Formalization . 218
8.2.8 Purity . 219
8.2.9 Observer types . 219
8.2.10 Improving error messages . 220
8.2.11 Dependent types . 221

8.3 Coda . 221

A Boolean algebra 223
A.1 Boolean algebra . 223

A.1.1 Abstraction over the structure of terms 223
A.1.2 Huntington’s postulates . 223
A.1.3 Setup for Coq setoids . 224
A.1.4 Derived Properties . 224
A.1.5 “Non-standard” properties (not proven in Goodstein) 225

5

Contents

A.1.6 Conditional . 225

Bibliography 227

Index 246

6

List of Figures

2.1 Natural deduction . 21
2.2 Sequent Calculus . 22
2.3 Equational logic . 24
2.4 Huntington’s postulates . 25
2.5 Boolean unification . 29
2.6 The type systems of the Barendregt cube . 30
2.7 System F . 36
2.8 Type assignment system for System F (System F2) 39
2.9 The Hindley/Milner type system . 42
2.10 Syntax directed presentation of the Hindley/Milner type system 44
2.11 AlgorithmW . 45
2.12 Odersky/Läufer type system . 47
2.13 Syntax directed presentation of the Odersky/Läufer type system 47
2.14 PTI . 48
2.15 HMF . 50
2.16 Structural presentation of the simply typed lambda calculus 52
2.17 Operational semantics . 55
2.18 System F with qualified types . 72

3.1 Uniqueness typing rules (Barendsen and Smetsers, 1996) (see comments in text) . 79
3.2 Typing rules from (Wadler, 1990) . 89
3.3 Typing rules from (Wadler, 1991, Section 3) . 89
3.4 “Steadfast” typing rules from (Wadler, 1991, Section 7) 90
3.5 Uniqueness Logic (Harrington, 2001) . 92
3.6 Lattice of R, S and F and the domain of abstract uses (Guzmán, 1993) 96
3.7 Typing rules in the STPLC . 98
3.8 Derivation for dup, sneakyDup and strictDup 99
3.9 Abstract use domain from (Odersky, 1991) . 104
3.10 Duplication of unique objects in Mercury . 111

4.1 Uniqueness Typing Rules . 120

5.1 Expression and type language for the core system 130
5.2 Arbitrary rank typing rules . 136

6.1 The kind language and some type constructors with their kinds 144

7

List of Figures

6.2 Expression and type language for the core system 145
6.3 Typing rules for the core lambda calculus . 145
6.4 Call-by-Need Semantics . 155

8

Notational Conventions

For consistency, we make the (arbitrary) decision to use “expression” to refer to programs and
“term” to refer to either expressions or types. In a language where no distinction is made between
programs and types, “expression” and “term” are synonymous.

We will use a monospaced font for code listings (concrete syntax) and an italic font for
mathematical formulae. Operator names appearing in mathematical formulae, such as fv(e), or
abstract syntax, such as (let x = e in e′), will be typeset in a roman font.

We will use the following notational conventions throughout this dissertation.

Shorthand
a a0, a1, . . . , an (where it is assumed that n is clear from the context)
[a := τ] [a1 := τ1, a2 := τ2, . . . , an := τn]
∀a1a2 . . . an · τ ∀a1 · ∀a2 · . . . · ∀an · τ

Meta-level variables
Meta-level variables can be superscripted (T′) or subscripted (T1) to distinguish different

instances of the variable. We will generally use superscripts if the number of occurrences is

fixed, and subscripts if the number is variable (as in T1, . . . , Tn).

T term
Γ typing environment
σ type (possibly involving universal quantifiers)
ρ type without top-level quantifiers
τ monotype (type not involving universal quantifiers)
ν uniqueness attribute (type of kind U)
κ kind
e expression
a, b, c, u, v skolem constants
S substitution
C context
E evaluation context

Object-level variables
x, y, z expression or term variable (we will not use x for a type variable in a

context where there is a distinction between types and expressions)
a, b, c type variable (of arbitrary kind, though generally not of kind T or U)
t, s, r type variable (of kind T , i.e., requiring an attribute)
u, v, w uniqueness variable (type variable of kind U)

9

Notational Conventions

Types and uniqueness attributes
N natural numbers
Z integers
B booleans
• unique
× non-unique
∀(a : κ) · σ Universal quantification (in an implicitly typed language)
Π(a : κ) · σ Universal quantification (in an explicitly typed language)
τν Type τ with attribute ν

σ
ν−→ σ′ Shorthand for (σ→ σ′)ν

σ
ν f−→
νc

σ′ Shorthand for (σ −→
νc

σ′)ν f ; νc is the closure attribute of the function

Kinds
? Kind of value-types
T Kind of “base” types (types without a uniqueness attributes)
U Kind of uniqueness attributes (when considered as types)

Universal algebra
fv(t) the free variables in t; if it is not clear from the context, we may use fev

for the free expression variables, ftv for the free type variables and fuv
for the free uniqueness variables

t[x := t′] substitution: replace x by t′ in t
S2 ◦ S1 composition
t1 ≈ t2 identity (in the sense of equational logic)

t1
?≈ t2 a (unification) equation (which may or may not have a solution)

C[e] Substitution of e for the “hole” in context C

Terms and their types
Γ ` e : σ e has type σ in environment Γ
e :: σ user-supplied type annotation on e

Relations between types
u ≤ v Implication between uniqueness attributes (if v is unique, u must be

unique)
σ � σ′ Subsumption (σ is more general than σ′)

10

Introduction

1.1 Computability

At the heart of computer science is the notion of computability. Although there is no universally
agreed definition of computability, there is a well-known and widely accepted hypothesis, known
as the Church-Turing thesis, which states that a function is computable if and only if it can be
expressed as a Turing machine or (equivalently) as an expression in the lambda calculus.

These two models of computation, Turing machines and the lambda calculus, are quite different
and they form the basis of two fundamentally different programming paradigms: imperative

programming and functional programming. The fact that both models are nevertheless equivalent
is quite astounding, and one of the most fundamental results in computer science.

A Turing machine (Turing, 1937) can read from and write to an infinite tape containing
symbols chosen from some finite alphabet. At any point in time, the machine is in a particular
state (chosen from a finite set of states) and can read exactly one symbol from the tape. The
machine contains a finite state machine (known as its transition function) which tells it, given the
current state of the machine and the current symbol on the tape, which symbol to write to the tape,
in which direction to move the tape—left or right—and what next state to go to.

The behaviour of the Turing machine is completely determined by the symbol alphabet, the
set of states, and the transition function. An important class of such configurations are known
as Universal Turing Machines. A universal Turing machine is one which can simulate all others.
Effectively, it runs an interpreter or virtual machine which can read the definition of another
Turing machine from the tape and then behave like that other machine.

Turing machines are a model for imperative programming languages, which include virtually
all mainstream languages from Visual Basic to C++. Programs in these languages are essentially
lists of instructions which are executed one by one and have access to some form of memory (the
“tape”) usually modelled by variables which can be read from or written to.

In the lambda calculus (Church, 1932) on the other hand this notion of “state” is completely
absent. A program in the lambda calculus is an expression, which is built up as follows:

1. A variable (x) is an expression

2. If e is an expression, then the abstraction (λx · e) is an expression

3. If e and e′ are expressions, then the application (e e′) is an expression

An abstraction should be thought of as an (anonymous) function definition. For example, λx · x is
the identity function (the function that returns its argument unchanged). Mathematicians might
write that function as x 7→ x. It is also related to the notation f (x) = x, but note that in the
lambda calculus function definitions do not get a name (f).

11

Chapter 1. Introduction

“Running” a lambda expression means simplifying (evaluating) it. For example, the application
of the identity function (λx · x) to an argument y, (λx · x) y, can be simplified to just y. Common
programming constructs such as numbers, booleans, conditionals (“if-statements”) or recursion
(looping constructs) can be elegantly encoded in the pure lambda calculus. Some of these
encodings are rather ingenious, and the interested reader is urged to consult a text book on this
topic such as (Hankin, 1994, especially Chapter 6, Computability). Pragmatically inclined readers
will be happy to learn that these encodings have practical applications too (Jansen et al., 2007).

The lambda calculus is a model for pure functional programming languages such as Clean or
Haskell which do not have a notion of global state. Although the concept of a variable arises in
both programming paradigms, they are quite different: like variables in mathematics, variables in
pure functional languages do not actually vary. There is no assignment statement!

1.2 Type systems

Both the Turing machine and the lambda calculus model have the property that they cannot get
“stuck”. It is impossible to write a program (a transition function or a lambda expression) which
cannot be executed in the model. This property however does not scale to programming languages
derived from these basic computational models.

For example, suppose we extend the core lambda calculus with the constants tt, ff, if, rec,
kn (for all natural numbers n), inc, dec and zero, denoting the booleans true and false, the
conditional, recursion, constants for each natural number, functions to increment and decrement a
natural number, and a check for zero, respectively. This language is another classic called PCF
(Plotkin, 1977).

As for the core lambda calculus, executing a program in PCF means evaluating or simplifying
it, but now there are ill-formed terms such as inc tt; it does not make sense to increment a
boolean constant, and evaluation will get stuck when presented with such a program.1

To solve this problem, we introduce a type system which weeds out the invalid from the valid
programs. Unfortunately, it is impossible to give a (decidable) algorithm which accepts only the
valid programs and rejects only the invalid programs, and so type systems must be approximations:
some programs will be rejected even when they would not get stuck when evaluated.

Naturally, we would like to minimize the number of valid programs that get rejected. However,
if a valid program does get rejected, it is equally important that a programmer understands why.
There is therefore a trade-off between accuracy and clarity of type systems, and a large part of
computer science including this dissertation is dedicated to the search for good locations in this
design space.

We started with program evaluation and described a type system as a device to separate the
good from the bad so that evaluation does not get stuck. Alternatively, we can approach it from
the other side and start with the definition of a type system and treat evaluation as secondary.
This leads to a second fundamental result in computer science, known as the Curry-Howard

isomorphism2: the typed lambda calculus (that is, the lambda calculus together with a type
system) corresponds directly to a logic.

1We consider reduction to be defined for closed terms only, and consider constants such as inc to be bound.
2It is hard to pinpoint the exact origin of the isomorphism. As Sørensen and Urzyczyn put it, “Surprisingly, the

ancient Greeks probably did not know about the Curry-Howard isomorphism. But some authors trace the roots of the idea
back to Schönfinkel, Brouwer, Heyting, or even Frege and Peano”. See (Sørensen and Urzyczyn, 2006, Section 4.8) for a
historical account.

12

1.3. Interaction

From this perspective, the type of a term is a logical proposition (such as “for all natural
numbers n, n + 0 = n”) and the term itself is a proof of the proposition. The particular type
system determines the logic (or, equivalently, the logic determines the type system). The Curry-
Howard isomorphism is an amazing result which brings logic firmly within the realm of computer
science, and the proofs in this dissertation (Chapter 7) are in fact programs in a lambda calculus p. 

known as the Calculus of Inductive Constructions.

1.3 Interaction

We mentioned before that the behaviour of a Turing machine is completely specified by its
transition function. In his original paper, Turing distinguishes between two kinds of machines:

‘‘If at each stage the motion of a machine is completely determined by the configuration,
we shall call the machine an “automatic machine” (or a–machine). For some purposes
we might use machines (choice machines or c–machines) whose motion is only
partially determined by the configuration [...] In this paper I deal only with automatic
machines.

(Turing, 1937, emphasis in original)

“Turing machines” are what Turing himself would have called a–machines. Some people have
cited this as evidence that the Church-Turing thesis is wrong (Wegner, 1997; Goldin and Wegner,
2005) because Turing machines cannot be interactive: the input to the machine must be fully
determined when the machine is started, and the machine cannot communicate with the rest of the
world during the computation.

An “automatic” machine becomes a “choice” machine as soon as we allow the machine’s tape
to be modified by external entities: the tape itself becomes a means of communication. This is
essentially what happens in “real” computers (memory-mapped I/O); for example, we can write
to the computer’s screen by modifying one particular area of memory1, or find out which key was
pressed on the computer’s keyboard by reading another.

It is less obvious how to add interaction to the lambda calculus. Indeed, for a long time this
was seen as one of the major obstacles for functional programming. The issues are now better
understood, and two workable solutions have emerged (uniqueness typing and monadic I/O).
Nevertheless, the last word on this issue has not yet been said.

There are two main approaches to adding interaction to functional programming languages,
known as stream based I/O and environment based I/O (Achten and Plasmeijer, 1995). In the
stream based approach, a program converts a stream of input data into a stream of output data.
The input stream is explicitly allowed to depend on the output stream; that is, the input stream
does not need to be fully constructed before the program is run (it is created lazily). Stream based
I/O can also be defined in terms of continuations, but the two approaches turn out to be equivalent
(Hudak and Sundaresh, 1988) so we will not discuss the details here.

Although stream based I/O has fallen out of favour with functional programmers (Hudak et al.,
2007; Peyton Jones, 2001), interestingly it has recently seen a come back in imperative models of
computation: Persistent Turing Machines are an extension of Turing machines which have two
additional tapes, one of which is used for input and one of which is used for output (Goldin, 2000).
It is claimed that PTMs are a better model for interactive computation than plain Turing machines.

1Segment 0xB800 for the old assembly hackers amongst us!

13

Chapter 1. Introduction

In environment based I/O, the state of the world is represented by some token object world.
A program becomes a function that given a world produces a new world. For example, we
might have a function getChar that, given a world object, reads a character from the console
and produces a new world object, and a function putChar that, given a character and a world
object, echos the character to the console and produces a new world object. We can then define
a program that reads a character from the console and echoes it back to the user as follows:

λworld. putChar (getChar world)

I/O models that rely on uniqueness typing, such as the one used in Clean, and I/O models that
rely on monads, such as the one used in Haskell, both fall into the class of environment based I/O.
The difference between the two approaches will become clear in the next section.

1.4 Purity

The absence of state in pure functional programming languages has various consequences, one
of which is definiteness: the same expression used twice must evaluate to the same result.1 For
example, the value returned by a function must only depend on the arguments provided. In
imperative languages this is not true. For example, consider the following C fragment:

x = getc(stdin) + getc(stdin);

This program reads two characters from the keyboard and adds them together. It seems obvious
that the calls to getc will (potentially) return two different values; after all, the user can enter
two different characters. Nevertheless, this is a violation of definiteness: the value returned by
getc does not just depend on its argument (stdin).

One of the most important advantages of the absence of state is that reasoning about and
proving properties of programs becomes easier. For example, it justifies making use of basic laws
from arithmetic such as “for all natural numbers n, n + n = 2× n”. In imperative languages,
these laws cannot be applied; the C program above is certainly not equivalent to the following
program:

x = 2 * getc(stdin);

Some imperative languages such as Eiffel advocate the Command-Query Principle (Meyer, 1997,
Chapter 23), which splits the language into procedures (commands) which can have side effects
but cannot return a value, and functions (queries) which return a value but cannot have a side
effect. For example, the Eiffel equivalent to the second C program is

io.read_integer

x := 2 * io.last_integer

The Command-Query principle improves the situation for reasoning, because this program is in
fact equivalent to

io.read_integer

x := io.last_integer + io.last_integer

However, reasoning is still quite limited because such identities only hold in between commands.
For example, the Eiffel program that corresponds to the first C program is

1Section 2.8 contains a more detailed discussion of these issues.

14

1.5. Overview of this dissertation

io.read_integer ; a := io.last_integer

io.read_integer ; b := io.last_integer

x := a + b

Although a and b are both the result from a call to io.last integer, they (potentially) have
different values. Hence, the value of a function call is not solely determined by its arguments.

Side-effecting functions in a functional programming language manipulate a token world
object. For example, we can define a function to read two integers and add them as

λworld. let (a, world’) = freadi world

(b, world’’) = freadi world’

in (a + b, world’’)

This program is similar to the C program, except that freadi returns a new world object (as
well as an integer). This new world’ is then used in the second call to freadi. Of course, the
world does not actually represent the entire state of the world; nevertheless, it makes clear that
the second call to freadi happens in a “different world” and thus may return a different result.

Since the world object does not actually represent the world but is a token object only, one
may wonder what would happen if we define

λworld. let (a, world’) = freadi world

(b, world’’) = freadi world

in (a + b, world’’)

Now both calls to freadi get passed the same world state, so by definiteness they should return
the same result. Since we cannot guarantee this, we must outlaw this definition. The difference
between the monadic approach and the approach based on uniqueness typing is the mechanism
used to forbid definitions such as the one above.

In the monadic approach, the programmer never directly manipulates world objects. Instead,
a number of primitive functions from world to world are defined, and the programmer is
provided a way to string these together (the monadic interface). Thus it becomes impossible to
even define the function above, and programs are “correct by construction”.

In uniqueness typing, the programmer does directly manipulate world objects, but a special-
ized type system guarantees that every world object is used at most once (that is, the object must
be unique). Since the same world object is used twice in the example above, the type checker
will reject the program. A more detailed comparison can be found in Section 2.8.7. p. 

1.5 Overview of this dissertation

The pure functional programming language Clean (Plasmeijer and van Eekelen, 2002) is based
on uniqueness typing. Unfortunately, like the type system of Haskell 98 (Peyton Jones, 2002),
Clean’s uniqueness type system only supports rank-1 types (the rank of a type will be defined in
the next chapter). While this suffices for a large class of programs, it does not suffice for all and
the use of higher rank types is becoming more widespread. For Clean, the need for higher rank
types has become particularly acute due to the extensive use of data-type generic (or polytypic)
programming (Alimarine, 2005; Schreur and Plasmeijer, 2004; Plasmeijer and Achten, 2005;
van Weelden et al., 2005; Koopman and Plasmeijer, 2007; Smetsers et al., 2008), which relies
essentially on support for higher rank types (Hinze, 2000, especially Section 3.1.3, Specializing

generic values).

15

Chapter 1. Introduction

There are various proposals for extending Haskell’s type system to support higher rank types
(Vytiniotis et al., 2006; Peyton Jones et al., 2007; Leijen, 2008a). Unfortunately, uniqueness
typing as used in Clean is too far removed from Haskell’s type system for these proposals to
carry over easily. This is caused in part by Clean’s background of graph rewriting (Section 3.2)p. 

rather than the lambda calculus. We will argue that the difference is inessential and propose a
new uniqueness type system which is similar enough to the standard type systems for functional
languages that techniques for Haskell or ML can be applied without major modifications in the
context of Clean: we propose to make uniqueness typing less unique.

The dissertation is structured as follows. The technical background is given in Chapter 2. This
chapter is long but important: as well as providing context and listing the theory that we will
assume known in the remainder, this chapter supports our thesis that uniqueness typing can be
firmly grounded on the theory for traditional functional type systems.

This is followed by an overview of related work in Chapter 3. We interpret “related work” as
alternative proposals for substructural type systems with the purpose of maintaining referential
transparency when adding side effects to a purely functional language. Of all systems considered,
however, only the type system by Hage, Holdermans, and Middelkoop (2007)—which cites our
first paper on the topic (de Vries et al., 2007b)—supports higher rank types (Section 3.2.8), andp. 

even they present an inference algorithm only for the rank-1 fragment.
Chapter 4, based on (de Vries et al., 2007b), redefines uniqueness typing for the lambda

calculus instead of for graph rewriting and presents our first attempt at scaling Clean’s uniqueness
type system to higher rank types. While this chapter achieves what we set out to do—define
a uniqueness type system that supports higher rank types—the resulting type system is rather
complex. In particular, the types (as used by and presented to the user) can be daunting.

Chapters 5 and 6, based on (de Vries et al., 2008), propose various simplifications to the core

type system (supporting only rank-0 types). The simplified core system is an improvement over
Clean’s uniqueness type system even when not using higher rank types, as the system is simpler
and yet more expressive. Moreover, the system becomes so similar to Haskell’s type system that
integrating proposals for Haskell, such as (Peyton Jones et al., 2007) or (Leijen, 2008a), becomes
entirely straightforward.

We formalize the core type system in Chapter 7 and prove that the type system is sound
(progress and type preservation). That is, we prove that if the type system accepts a program, then
that program will not get stuck when evaluated.

Finally, we present our conclusions and identify future work in Chapter 8.

16

Background

This chapter provides the technical background that we will need in the remainder and establishes
terminology. Most sections in this chapter constitute large topics in their own right, and we can
give but a brief overview here. An accessible introduction to type systems is given in (Pierce,
2002); a more theoretical but highly recommended textbook is (Sørensen and Urzyczyn, 2006).
For substructural type systems we refer to (Walker, 2005) or (Wadler, 1993) (the latter deals with
linear logic only). Finally, an excellent tutorial on type inference is (Peyton Jones et al., 2007).
We delay an explanation of uniqueness typing itself until Chapter 3 on related work. p. 

Although this chapter is long, it will set the context for the following chapters and it is an
important part of our thesis that uniqueness typing can be firmly based on the standard functional
type theory. Moreover, although every section is tailored to the specific requirements of our work,
we have tried to include references to related work wherever possible to provide the reader with
follow-up material. Finally, various sections contain discussions of a less technical nature in
which we discuss some design choices in the foundations of our work.

2.1 Logic

As mentioned in the introduction, type systems can be viewed as logics. For the type systems
we consider in this dissertation, however, the corresponding logics are all constructive: the law
of the excluded middle does not hold. Since this is a contentious issue, Section 2.1.1 presents a
slightly tongue-in-cheek introduction to and justification for constructive logic. The remaining
two subsections introduce two different styles of presenting proofs in logic: natural deduction
style and sequent style.

2.1.1 On constructive logic

In the Western world, logic is generally traced back to Aristotle. In the fourth book of the
Metaphysica, Aristotle gives what he considers two fundamental laws:

‘‘ TÕ g¦r aÙtÕ ¥ma Øp£rcein te kaˆ m¾ Øp£rcein ¢dÚnaton tù aÙtù ka… kat£

tÕ aÙtÒ (...) 'All¦ m¾n oÙd� metaxÝ ¢ntif£sewj ™ndšcetai e�nai oÙqšn, ¢ll'

¢n£gkh À f£nai À ¢pof£nai �n kaq' ˜nÕs Ðtioàn.
1

Aristotle, Metaphysica, Γ.3 and Γ.7 (ca. 330 BC)

1It is impossible for the same attribute at once to belong and not to belong to the same thing and in the same relation
(...) Nor indeed can there be any intermediate between contrary statements, but of one thing we must either assert or deny
one thing, whatever it may be. (Tredennick, 1933)

17

Chapter 2. Background

Less well-known are the texts written by members of the Mohist school founded by a teacher
called Mozi (¨P) in ancient China (these texts are themselves also collectively known as the
¨P). There are many parallels between these texts and the ancient Western texts. In particular,
the same two laws are stated:

‘‘Furthermore, the Mohist Canons propose basic principles regulating disputations.
The first says that of two contradictory propositions, one must be false: they cannot
be true at the same time: “/
ñS�
ñSÅ�
S�" This is exactly the Law
of Non-Contradiction! Secondly, the texts say that two contradictory propositions
cannot be both false, one of them must be true: “�©àÜ�Å
S�ô(©�"
This, of course, is the Law of Excluded Middle.

(Zhang and Liu, 2007, Some Thoughts on Mohist Logic)

Today, few people object to the law of non-contradiction, but the law of the excluded middle is
not (quite) so widely accepted. One reason for rejecting it is the existence of logical paradoxes.
Interestingly, both the ancient Greek and the Chinese were aware of these paradoxes. A famous
paradox is attributed to the Cretan philosopher who claimed that KrÁtej ¢e… yeÚstai, “Cretans
are always liars”1. In the¨P we findå�:=���, “To claim that all saying contradicts
itself is self-contradictory”. Consider the following paradox:

This statement is false.

(This statement asserts something about itself.) By the law of the excluded middle, that statement
must either be true or false. If it is true, then it must be false (since that is what it asserts):
contradiction. But if it is false, then it must be false that it is false (again, since that is what it
asserts), and thus (by another application of the same law) it must be true: contradiction again.
Hence, this can be considered as a counter-example to the law of the excluded middle.

While this may seem like linguistic curiosity, this kind of self-reference forms the basis for
many of the most fundamental results in mathematics in the twentieth century (see Hofstadter,
1999, for an engaging exposition). The most famous of these is probably Russell’s paradox (van
Heijenoort, 1967), which upset the foundations of set theory. Consider the set R of all sets that
are not members of themselves; is R a member of R? Again, by the law of the excluded middle,
the answer must be yes or no; but both answers lead to contradiction.

Russell’s paradox led him to invent type theory (see Kamareddine et al., 2004, for a historical
overview) which ensured that sets such as R cannot be defined. This disqualifies our counter-
example, and the law of the excluded middle is still accepted.

But there are other, perhaps more serious, objections to the law of the excluded middle. The
most important is that logic or mathematics should not attempt to define “truth” (a metaphysical
notion), but define provability instead:

‘‘If “to exist” does not mean “to be constructed”, it must have some metaphysical
meaning. It cannot be the task of mathematics to investigate this meaning or to
decide whether it is tenable or not. We have no objection against a mathematician
privately admitting any metaphysical theory he likes, but [...] we study mathematics
as something simpler, more immediate than metaphysics.

(Heyting, 1966, Intuitionism: An Introduction)
1And mean and fat, too: “Even one of their own men, a prophet from Crete, has said about them, ‘The people of

Crete are all liars, cruel animals, and lazy gluttons.’ ” (Titus 1:12, New Living Translation).

18

2.1. Logic

This philosophical stance is usually traced back to the Dutch mathematician Brouwer, and was
developed into a formal logic by another Dutch mathematician, and student of Brouwer’s, Arend
Heyting (“Hey” is pronounced /HEi/, not like the English “hey”, /HeI/) and the Russian Andrey
Kolmogorov (Kuiper, 2004, Chapter 7). Incidentally, Brouwer himself did not agree with this
development:

‘‘We willen tonen, dat de wiskunde onafhankelijk is van de zogenaamde logische
wetten, (wetten van redenering of van menselijk denken). Dit schijnt paradox, want
wiskunde wordt gewoonlijk gesproken en geschreven als bewijsvoering, afleiding
van eigenschappen, en in de vorm van een aaneenschakeling van syllogismen.1

(Brouwer, 1907, Over the Grondslagen der Wiskunde)

A proof of a property σ in constructive logic can be viewed as an algorithm (a program) that
constructs a proof of σ. This makes it extremely suited as the “logic of computer science”, and
we will see various other aspects of this view later in this chapter. A common interpretation
of constructive logic defines very concretely what is accepted as a proof of a compound state-
ment; this is known as the Brouwer-Heyting-Kolmogorov or BHK interpretation (Troelstra and
Schwichtenberg, 1996, Section 2.5.1):

• A proof of σ ∧ σ′ is a pair of proofs (e, e′) such that e proves σ and e′ proves σ′

• A proof of σ ∨ σ′ is either a proof of σ or a proof of σ′

• A proof of σ→ σ′ is an function transforming a proof of σ into a proof of σ′

• ⊥ (false) does not have any proofs

• A proof of ∀x ∈ σ.σ′ is a function that returns a proof of σ′[x := e] for any e in σ (this is a
generalization of proofs of σ→ σ′)

• A proof of ∃x ∈ σ.σ′ is a pair (e, p) of an element e in σ together with a proof p of
σ′[x := e] (this is a generalization of proofs of σ ∧ σ′)

Lest the reader got the impression that the case of the law of the excluded middle has been settled,
let me assure you that this is not the case. Consider the following puzzle.

‘‘Three gods A, B, and C are called, in some order, “True”, “False”, and “Random”.
True always speaks truly, False always speaks falsely, but whether Random speaks
truly or falsely is a completely random matter. Your task is to determine the identities
of A, B, and C by asking three yes-no questions; each question must be put to exactly
one god. The gods understand English, but will answer all questions in their own
language, in which the words for “yes” and “no” are “da” and “ja”, in some order.
You do not know which word means which.

(Boolos, 1996, The Hardest Logic Puzzle Ever)

The exact solution is not important (it is given in Boolos’s paper) but Boolos makes the following
observation:

1We want to show, that mathematics is independent of the so called logical laws, (laws of reasoning or of human
thought). This seems paradoxical, for usually mathematics is expressed, orally or in writing, in the form of argumentation,
deduction of properties, by means of a chain of syllogisms. (Kuiper, 2004)

19

Chapter 2. Background

‘‘Mathematicians and philosophers have occasionally attacked the idea that excluded
middle is a logically valid law. We can’t hope to settle the debate here, but [...] it
is clear from The Hardest Logic Puzzle Ever [...] that our ability to reason about
alternative possibilities, even in everyday life, would be almost completely paralysed
were we to be denied the use of the law of excluded middle.

Needless to say, I cannot conclude this section on that quote. Instead, I will leave the reader with
the following observation from Rabern and Rabern (2008): what happens when we ask each god:

Are you going to answer “ja” to this question?

2.1.2 Natural deduction

The idea of a mathematical proof is as old as mathematics, but the study of the structure of proofs
(structural proof theory) as a separate subject is a relatively recent development. It is generally
traced back to Gentzen (Negri and Plato, 2001), who developed two different styles of presenting
proofs: natural deduction style and sequent style. We will almost exclusively use natural deduction
style in this dissertation; however, we will briefly present sequent style in the next section because
we will need it in the discussion of related work.

A judgement in natural deduction takes the form Γ ` σ (read as “Γ proves σ”), where Γ is a
list1 of assumptions and σ is a proposition that is supposed to follow from those assumptions. The
specific logic dictates what is considered to be a valid judgement. Figure 2.1 shows propositionalp. 

logic in natural deduction style.
For every logical connective (implication →, conjunction ∧ and disjunction ∨) there are

introduction rules and elimination rules. The rules all have the shape

premises
Rule name

conclusion

Such a rule states that the conclusion can be derived using rule name if you can find a proof for the
premises of the rule. If a rule has no premises, the conclusion can trivially be derived and the rule
is known as an axiom. An introduction rule for a connective � tells us how to prove a judgement
σ � σ′; an elimination rule tells us what follows from an assumption σ � σ′. For example, to prove
σ ∧ σ′ (σ and σ′), we need to prove both σ and σ′ (rule ∧I), but from an assumption σ ∧ σ′ we
can conclude both σ and σ′ (rules ∧E1 and ∧E2).

A typing judgement for a program e takes the form Γ ` e : σ, and a typing derivation is a proof
that e has type σ. In this context, Γ is a list of assumptions about the types of the free variables in
e; throughout this dissertation we will implicitly assume an invariant that every variable occurs at
most once inside an environment.2 Of course, this is a change in syntax only; a logic is a type
system, a typing judgement is a logical judgement and a typing derivation is a logical derivation.
To be completely explicit about it, Figure 2.1 also shows the simply typed lambda calculus, which
is the Curry-Howard mirror image of propositional logic. The two systems are near identical; the
simply typed lambda calculus can be seen as a syntax for encoding proofs in propositional logic
(as well as a typed programming language).

1Although we will not get back to this point until Section 2.6, it is important to note that we do not use a set of
assumptions but a list of assumptions.

2Strictly speaking, this will make some programs (such as λx · λx · x) untypeable. This can be resolved informally
by referring to the “Barendregt convention”, but we will not worry about such technicalities until our formal proofs in
Chapter 7, where we will discuss this issue at some length in Section 7.2.

20

2.1. Logic

Propositional logic

σ ∈ Γ
AX

Γ ` σ

Γ, σ ` σ′
→I

Γ ` σ→ σ′
Γ ` σ→ σ′ Γ ` σ

→E
Γ ` σ′

Γ ` σ Γ ` σ′
∧I

Γ ` σ ∧ σ′
Γ ` σ ∧ σ′

∧E1
Γ ` σ

Γ ` σ ∧ σ′
∧E2

Γ ` σ′

Γ ` σ
∨I1

Γ ` σ ∨ σ′
Γ ` σ′

∨I2
Γ ` σ ∨ σ′

Γ ` σ ∨ σ′ Γ, σ ` C Γ, σ′ ` C
∨E

Γ ` C
Simply-typed lambda calculus

x : σ ∈ Γ
VAR

Γ ` x : σ

Γ, x : σ ` e : σ′
ABS

Γ ` λx · e : σ→ σ′
Γ ` e : σ→ σ′ Γ ` e′ : σ

APP
Γ ` e e′ : σ′

Γ ` e : σ Γ ` e′ : σ′
PAIR

Γ ` (e, e′) : σ ∧ σ′
Γ ` e : σ ∧ σ′

FST
Γ ` fst e : σ

Γ ` e : σ ∧ σ′
SND

Γ ` snd e : σ′

Γ ` e : σ
LEFT

Γ ` Left e : σ ∨ σ′
Γ ` e : σ′

RIGHT
Γ ` Right e : σ ∨ σ′

Γ ` e : σ ∨ σ′ Γ, x : σ ` e : C Γ, x : σ′ ` e′ : C
CASE

Γ ` case e of {Left x → e; Right x → e′} : C

Figure 2.1: Natural deduction

21

Chapter 2. Background

x : σ ∈ Γ
AX

Γ ` x : σ

Γ ` e′ : σ Γ, x : σ′ ` e : σ′′
→LEFT

Γ, y : σ→ σ′ ` e[x := y e′] : σ′′
Γ, x : σ ` e : σ′

→RIGHT
Γ ` λx · e : σ→ σ′

Γ ` e′ : σ Γ, x : σ ` e : σ′
CUT

Γ ` e[x := e′] : σ′

Figure 2.2: Sequent Calculus

2.1.3 Sequent calculus

Judgements in the sequent calculus take the same form as judgements in natural deduction1, but
the logic is presented differently. Instead of an introduction rule and elimination rule for each
connective, there is a “left” introduction rule which introduces the connective as an assumption
and a “right” introduction rule which introduces the connective as a conclusion. Figure 2.2 showsp. 

the sequent calculus for the implicational fragment of propositional logic (that is, considering
implication as the only connective).

It is not immediately obvious how function application can be typed in the sequent calculus,
since there is no explicit application rule. However, we can derive a rule for application as follows
(adopted from Barendregt and Ghilezan, 2000, Section 4).

Γ ` e : σ→ σ′

Γ ` e′ : σ

x : σ′ ∈ Γ, x : σ′
AX

Γ, x : σ′ ` x : σ′
→LEFT

Γ, y : σ→ σ′ ` x[x := y e′] : σ′
=

Γ, y : σ→ σ′ ` y e′ : σ′
CUT

Γ ` (y e′)[y := e] : σ′
=

Γ ` e e′ : σ′

(2.1)

Sequent calculi are important for proving proof-theoretic properties, but are less intuitive to work
with and we will not make use of them except in the discussion of the work of Dana Harrington in
Section 3.4.p. 

2.2 Universal Algebra

Before we will start introducing type systems in Section 2.3, we will first introduce a number ofp. 

results from universal algebra. Universal algebra is the study of the syntax and semantics of terms
and related operations; we will only need a few results from universal algebra, and we will not
need them until sections 2.5 and 2.8, but introducing them here avoids interrupting the flow laterp. , p. 

in this chapter.
Most of the definitions in this section are taken from (Baader and Nipkow, 1998).

1For classical logic, the judgements take a slightly different form: there can be an arbitrary number of conclusions
after the turnstile. However, for constructive logic the number of conclusions is limited to one, as in natural deduction.

22

2.2. Universal Algebra

2.2.1 Basic Definitions

Terms are built up from (uninterpreted) function symbols and variables. For example, if f is a
binary function and x and y are variables, then f (x, y) is a term. A signature Σ defines the arity
of each function. For example, the signature of the types in the simply typed lambda calculus
with natural numbers is {(→) 7→ 2, N 7→ 0} with a binary operator (→) (the function space
constructor) and a constant (nullary) operator for the type of natural numbers.

We can be explicit about which variables we want to allow by considering the set of terms
T(Σ, X) over a signature Σ and set of variables X. We always assume that dom(Σ) ∩ X = ∅,
that is, no symbol can be both a variable and a function symbol. A ground term is a term which is
built-up from function symbols only (contains no variables).

A substitution is a function S : X → T(Σ, X). The set of variables for which S is not the
identity is called the domain of the substitution (note that X ⊂ T(Σ, X)). A substitution can
be extended to a function Ŝ over terms in the obvious way. The composition S2 ◦ S1 of two
substitutions S2 and S1 is defined as (S2 ◦ S1)(x) = Ŝ2(S1(x)).

A substitution S is more general than a substitution S′ if there is a substitution S′′ such that
S′ = S′′ ◦ S; S′ is said to be an instance of S.

An identity T ≈ T′ is a pair of terms (possibly containing variables). For example, we can
assert that a binary function f is associative by giving the identity f (x, f (y, z)) ≈ f (f (x, y), z).
A set of identities E leads to equational logic, shown in Figure 2.3. p. 

2.2.2 Unification

Given a set of identities E and two terms T and T′, the problem of finding a substitution or unifier

S such that
E ` ST ≈ ST′

known as equational unification. We will often use the notation

E ` T
?≈ T′

for denoting a unification problem. We will sometimes omit the set of identities (E) if this is clear

from the context, simply writing T
?≈ T′.

A unifier S is most general if is more general than any other unifier: that is, if for all other
unifiers S′ there exists a unifier S′′ such that S′ = S′′ ◦ S.1 Most general unifiers are useful in the
context of type inference, where they allow us to infer most general types (Section 2.5.1). p. 

A unifier S is reproductive if for all other unifiers S′, S′ ◦ S = S′. It is not hard to see
that a reproductive unifier must be most general (take S′′ = S′). Although for our purposes a
reproductive unifier is not more useful than a most general unifier, it is sometimes easier to prove
that a unifier is reproductive than to prove that it is most general.

General equational unification is undecidable, but we will consider two special cases in
the remainder of this section, both of which are decidable: syntactic unification or simply
unification (unification under the empty set of identities) and boolean unification (unification
under Huntington’s set of postulates).

1We identify substitutions which map equivalent terms to equivalent terms.

23

Chapter 2. Background

(T ≈ T′) ∈ E
ASSUMP

E ` T ≈ T′

REFL
E ` T ≈ T

E ` T′ ≈ T
SYM

E ` T ≈ T′
E ` T ≈ T′ E ` T′ ≈ T′′

TRANS
E ` T ≈ T′′

E ` T ≈ T′
SUBST

E ` ST ≈ ST′
E ` T1 ≈ T′1 . . . E ` Tn ≈ T′n

CLOSURE
E ` f (T1, . . . , Tn) ≈ f (T′1, . . . , T′n)

Figure 2.3: Equational logic

2.2.3 Syntactic unification

Syntactic unification (often simply “unification”) is the problem of finding a substitution S such
that ∅ ` ST ≈ ST′ or, equivalently, such that ST = ST′. Syntactic unification was invented by
Robinson (1965), but the (slightly more general) description we give here is based on a well-known
paper by Martelli and Montanari (1982). To unify two terms T and T′, start with the singleton set
of equations {T ≈ T′} and repeatedly apply any of the following transformations.

1. Select any equation of the form
T ≈ x

where T is not a variable and x is a variable, and rewrite it as x ≈ T.

2. Select any equation of the form
x ≈ x

where x is a variable and erase it.

3. Select any equation of the form

f (T1, T2, . . . , Tn) ≈ g(T′1, T′2, . . . , T′m)

If f 6= g stop with failure. Otherwise we must have n = m; replace the equation by

T1 ≈ T′1
T2 ≈ T′2

...

Tn ≈ T′n

4. Select any equation of the form
x ≈ T

where x is a variable which occurs somewhere else in the set of equations and where T 6= x.
If x occurs in T, stop with failure (this is known as the “occurs check”). Otherwise, apply
the substitution [x := T] to all other equations (without erasing the equation x ≈ T).

If no transformation applies, the result will be of the form {x1 = T1, x2 = T2, . . . , xn = Tn},
which is the substitution (or unifier) S that we are looking for. Moreover, this unifier will be a
most general unifier (mgu): it will be more general than any other unifier (Martelli and Montanari,
1982, Section 2).

24

2.2. Universal Algebra

Commutativity
x ∨ y ≈ y ∨ x
x ∧ y ≈ y ∧ x

Distributivity
x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)

Unit elements
x ∨ 0 ≈ x
x ∧ 1 ≈ x

Complements
x ∨ ¬x ≈ 1
x ∧ ¬x ≈ 0

Figure 2.4: Huntington’s postulates

The algorithm as described here is non-deterministic and inefficient; we refer the reader to the
Martelli and Montanari paper for suggestions for improvement. For efficiency reasons, the occurs
check is often omitted in the implementation of logic programming languages (Overton, 2003,
p. 31); however, an implementation of unification for the purposes of type inference (Section 2.5.1)
must include the occurs check since it is easily violated; for example, the type error in

self_apply f = f f

is detected by the occurs check.

2.2.4 Boolean Unification

Although Boolean Algebra is often attributed to Boole, this is not entirely accurate. The algebra
proposed by Boole (1854) is not the same algebra as Boolean Algebra (Hailperin, 1981; Burris,
2001): the operations in Boole’s algebra do not line up with the operations in Boolean algebra1,
and as Hailperin (1981) writes:

‘‘If we look carefully [..], we find [Boole] carrying out operations, procedures, and
processes of an algebraic character, often inadequately described by present-day
standards and, at times, making no sense to a modern mathematician.

Boolean Algebra in its current form was developed by a contemporary of Boole, the logician
William Jevons (see Styazhkin, 1969, for a historical perspective). Its most common presentation
as the series of independent axioms shown in Figure 2.4 is due to Huntington (1904).

Boolean unification is the problem of finding a substitution S such that B ` ST ≈ ST′, where
B is the set of Huntington’s postulates. There are two algorithms for boolean unification known
as Löwenheim’s formula and successive variable elimination. However, before we can describe
these methods, we will need some preliminary results first.

We define the following convenient derived operator, which acts as a conditional; read as “if b
then P else Q”:

PC bBQ ≡ (b ∧ P) ∨ (¬b ∧Q)

One reason that this operator is a convenient abstraction is that the other boolean operators
distribute nicely over the conditional (we will prove these results in Section A.1.6): p. 

B ` (PC bBQ) ∨ R ≈ P ∨ RC bBQ ∨ R (2.2)

B ` (PC bBQ) ∧ R ≈ P ∧ RC bBQ ∧ R (2.3)

B ` ¬(PC bBQ) ≈ ¬PC bB¬Q (2.4)

1Nor with the operations in a Boolean ring.

25

Chapter 2. Background

We will also need the following special case of (2.2):

B ` PC bBQ ≈ (PC bBQ) ∨ (P ∧Q) (2.5)

Since B ` T ≈ T′ if and only if B ` ¬T′ C TB T′ ≈ 0, it suffices to find a method to find a
substitution S such that B ` ST′′ ≈ 0 for some term T′′. Like syntactic unification, boolean
unification has the property that if there exists a unifier S such that B ` ST ≈ ST′, then there will
exist a most general unifier; indeed, there will be a reproductive unifier. We will prove this shortly

by giving an algorithm to produce a reproductive unifier for a unification equation B ` T
?≈ T′.

As long as we are doing unification over the algebra (Σ = {∧,∨,¬, 0, 1}, X), finding some

unifier such that B ` ST ≈ ST′ is straight-forward, since we can reduce any ground expression
in this algebra (that is, any term without variables) to either 0 or 1. Hence, we can simply try all
substitutions [x := 0] or [x := 1] for all variables x ∈ fv(T) ∪ fv(T′), evaluate both sides, and

compare for (syntactic) equality. For example, to unify B ` x
?≈ y, we can try the substitutions[

x := 0
y := 0

] [
x := 0
y := 1

] [
x := 1
y := 0

] [
x := 1
y := 1

]

to find two unifiers, [x := 0, y := 0] and [x := 1, y := 1]. Similarly, to unify B ` x ∧ y
?≈ x we

try the same set of unifiers to find [x := 0, y := 0], [x := 0, y := 1] and [x := 1, y := 1].
Although none of the unifiers we found are most general, we can translate any unifier into a

most general unifier using a method known as Löwenheim’s formula. If S is a unifier such that
B ` ST ≈ 0, then we can calculate a most general unifier S′ using1

S′(x) := SxC TB x

(see Baader and Nipkow, 1998, Section 10.4.3.) For example, consider trying to unify B ` x
?≈ y.

I.e., we are trying to find a unifier S such that B ` S(¬yC xB y) ≈ 0. Based on the unifier
[x := 0, y := 0] we would find the following most general unifier:

[
x := 0C (¬yC xB y)B x
y := 0C (¬yC xB y)B y

]
≈
[

x := ¬(¬yC xB y) ∧ x
y := ¬(¬yC xB y) ∧ y

]

≈
[

x := (yC xB¬y) ∧ x
y := (yC xB¬y) ∧ y

]
≈
[

x := x ∧ y
y := x ∧ y

]

It is easy to verify that this unifier is indeed more general than all other unifiers we have seen so
far; it is also more general than the most obvious unifier [x := y] (with “more general” strictly in
the sense of Section 2.2.1).p. 

When we introduce uninterpreted constants into the algebra, however, we can no longer guess
a unifier by instantiating all variables to either 0 or 1. For reasons that will become clear in
Section 2.5.3, we will refer to such constants as skolem constants. Suppose x is a variable and up. 

and v are skolem constants (uninterpreted function symbol of arity 0); then B ` x
?≈ u∨ v has a

trivial unifier [x := u∨ v], but we can no longer guess this unifier in the manner just outlined.

1The formula given by Baader and Nipkow (1998) uses an exclusive disjunction > instead of an inclusive disjunction,
but B ` (¬x ∧ y) > (x ∧ z) ≈ (¬x ∧ y) ∨ (x ∧ z).

26

2.2. Universal Algebra

Fortunately, there is another method for boolean unification. It is known as successive variable

elimination and was already described by Boole (1854, Chapter VII, On Elimination). Our
explanation here is based on a combination of the method described in Brown (2003, Chapter 7,
Solutions of Boolean Equations) and the method described in Baader and Nipkow (1998, Section
10.4.5, Successive variable elimination). It is however slightly different from both; the version
we give transfers easily to an implementation in a functional language (the algorithms given in
the books are a specification more than an implementation), and uses the operations in a boolean
algebra rather than in a boolean ring (that is, we use inclusive rather than exclusive disjunction).
Since it is therefore slightly non-standard, we provide a proof that the method is correct. The
structure of this proof closely follows the proof given by Baader and Nipkow.

We are looking for a unifier S such that B ` ST ≈ 0. If T is a ground term (contains no
variables), then ST = T for any substitution S. Hence, if T is ground, then either B ` T ≈ 0 and
the empty substitution will be a suitable “unifier” (which is trivially reproductive), or B 0 t ≈ 0
and the unification equation has no solutions. The output of the successive variable elimination
therefore is a substitution S and a consistency condition. The consistency condition cc is a ground
term and we must have that B ` cc ≈ 0 (this can easily be verified because any ground term can
be reduced to 0 or 1). If B 0 cc ≈ 0, the unification equation has no solutions.

If T is not ground, we choose a variable x ∈ fv(T). We eliminate x from T (in a manner to
be described shortly) to obtain a term T′. We then recursively try to find a unifier S′ such that
B ` S′T′ ≈ 0, and then use S′ to construct S. Since the number of free variables in t is finite and
decreases on every recursion, this process must terminate.

Theorem 1 (Successive variable elimination) Let T be a term with at least one free variable x,

and let Ts be T[x := s]. Observe that B ` Tx ≈ T1 C xB T0. We eliminate x from T by defining

e = T1 ∧ T0. Then,

1. Every unifier of Tx
?≈ 0 is a unifier of e

?≈ 0.

2. If Se is a reproductive unifier of e
?≈ 0 and x /∈ dom(Se), then

St := Se ◦ [x := T0 ∨ (x ∧ ¬T1)]

is a reproductive unifier of Tx
?≈ 0.

Proof (1). Let S be a unifier of Tx
?≈ 0, i.e. B ` STx ≈ S(T1 C xB T0) ≈ 0. We need to show

that B ` Se = S(T1 ∧ T0) ≈ 0.

S(T1 C xB T0) ≈ 0
{ by (2.5) }

⇒ S
(
(T1 C xB T0) ∨ (T1 ∧ T0)

)
≈ 0

{ distribute S }
⇒ S(T1 C xB T0) ∨ S(T1 ∧ T0) ≈ 0

{ a ∨ b = 0⇒ a = 0 and b = 0 }
⇒ S(T1 ∧ T0) ≈ 0 �

Proof (2). Let Se be a reproductive unifier of B ` e = T1 ∧ T0
?≈ 0. First we show that St is a

unifier of B ` Tx ≈ 0:

27

Chapter 2. Background

StTx

{ expand Tx and distribute S }
= StT1 C StxB StT0

{ expand Stx }

= StT1 C Se

(
T0 ∨ (x ∧ ¬T1)

)
B StT0

{ StT1 = SeT1 since x /∈ fv(T1); similarly for T0 }

= SeT1 C Se

(
T0 ∨ (x ∧ ¬T1)

)
B SeT0

{ extract Se }

= Se

(
T1 C T0 ∨ (x ∧ ¬T1)B T0

)
{ Definition of PC bBQ }

= Se

(((
T0 ∨ (x ∧ ¬T1)

)
∧ T1

)
∨
(
¬
(
T0 ∨ (x ∧ ¬T1)

)
∧ T0

))
{ Distributivity }

≈ Se

(((
T0 ∧ T1

)
∨
(
(x ∧ ¬T1) ∧ T1

))
∨
(
¬
(
T0 ∨ (x ∧ ¬T1)

)
∧ T0

))
{ Complements; zero element for conjunction }

≈ Se

((
T0 ∧ T1

)
∨
(
¬
(
T0 ∨ (x ∧ ¬T1)

)
∧ T0

))
{ De Morgan }

≈ Se

((
T0 ∧ T1

)
∨
((
¬T0 ∧ ¬(x ∧ ¬T1)

)
∧ T0

))
{ Complements; zero element for conjunction }

≈ Se(T0 ∧ T1)
{ By assumption }

≈ 0 �

Finally, we need to prove that St is reproductive, i.e., for all unifiers S′, S′ ◦ St = S′. For y 6= x
we have

S′(Sty)
{y 6= x}

= S′(Sey)
{ by assumption, Se is reproductive}

≈ S′y �

The tricky part of the proof is the case for x. By assumption, S′ is a unifier of B ` Tx ≈
T1 C x B T0 = (x ∧ T1) ∨ (¬x ∧ T0) ≈ 0. But that means that B ` S′(x ∧ T1) ≈ 0 and
B ` S′(¬x ∧ T0) ≈ 0. We will need these two results in the final part of the proof:

S′(Stx)
{ expand Stx }

= S′(Se(T0 ∨ (x ∧ ¬T1)))
{ Se is reproductive }

≈ S′(T0 ∨ (x ∧ ¬T1))
{ distribute S′ }

= S′T0 ∨ (S′x ∧ ¬S′T1)

28

2.3. Explicitly typed lambda calculus

unify0 :: BooleanAlgebra a => a -> [Var] -> (Subst a, a)
unify0 t [] = ([], t)
unify0 t (x : xs) = (se ◦ [x := t0 ∨ (x ∧ ¬t1)], cc)
where

(se, cc) = unify0 e xs
e = t1 ∧ t0
t0 = t [x := 0]
t1 = t [x := 1]

Figure 2.5: Boolean unification

(continued from the previous page)

{S′x ∧ ¬S′x ≈ 0}
≈

(
S′T0 ∨ (S′x ∧ ¬S′T1)

)
∨
(

S′x ∧ ¬S′x
)

{ Associativity }

≈ S′T0 ∨
(
(S′x ∧ ¬S′T1) ∨ (S′x ∧ ¬S′x)

)
{(a ∧ b) ∨ (a ∧ c) ≈ a ∧ (b ∨ c)}

≈ S′T0 ∨
(

S′x ∧ (¬S′T1 ∨ ¬S′x)
)

{De Morgan}

≈ S′T0 ∨
(

S′x ∧ ¬S′(T1 ∧ x)
)

{S′(x ∧ T1) ≈ 0 (see above)}
≈ S′T0 ∨ S′x

{S′x ∨ ¬S′x ≈ 1}
≈

(
S′T0 ∨ S′x

)
∧
(

S′x ∨ ¬S′x
)

{(a ∨ b) ∧ (a ∨ c) ≈ a ∨ (b ∧ c)}
≈ S′x ∨ (S′T0 ∧ ¬S′x)

{S′(¬x ∧ T0) ≈ 0 (see above)}
≈ S′x �

The algorithm is implemented by unify0, shown in Figure 2.5, which takes a term T in a boolean
algebra a and the list of free variables in T as input, and returns a substitution and the “consistency
condition”, which will be zero if unification succeeded.

2.3 Explicitly typed lambda calculus

The untyped lambda calculus was introduced in Chapter 1. We saw that every term in the core p. 

lambda calculus can be evaluated, and that this is no longer true when we introduce constants. For
example, when we add natural numbers and booleans with associated operations, we can write
nonsensical terms such as the logical conjunction of two natural numbers. The purpose of a type
system is to reject programs that contain these nonsensical terms. There are many type systems
for the lambda calculus; in this section, we will introduce various important calculi, guided by a
taxonomy known as the Barendregt cube (Barendregt, 1991).

29

Chapter 2. Background

The Barendregt cube and its mirror-image under Curry-Howard

λ→ λP

λ2 λP2

λω λPω

λω λC

PROP PRED

PROP2 PRED2

PROPω PREDω

PROPω PREDω

Term language
e ::= expression

x variable
c constant
e e application
λx : e · e abstraction
Πx : e · e cartesian product

General typing rules
Let s range over {∗,�}.

AXIOM
` ∗ : �

x : e ∈ Γ Γ ` e : s
VAR

Γ ` x : e

Γ ` e : e′ Γ ` e′′ : s
WEAK

Γ, x : e′′ ` e : e′

Γ ` e : Πx : e′′ · e′′′ Γ ` e′ : e′′
APP

Γ ` e e′ : e′′′[x := e′]

Γ ` e : e′ Γ ` e′′ : s e′ =β e′′
CONV

Γ ` e : e′′

Specific rules
The specific rules are parametrized by two sorts s1 and s2. The permissible instantiations of s1
and s2 define the individual systems of the taxonomy and are listed at the bottom of this figure.

Γ ` e : s1 Γ, x : e ` e′ : s2
FORALL

Γ ` (Πx : e · e′) : s2

Γ ` e : s1 Γ, x : e ` e′ : e′′ Γ, x : e ` e′′ : s2
ABS

Γ ` (λx : e · e′) : (Πx : e · e′′)

Rule pairs per system
λ→ (∗, ∗)
λ2 (∗, ∗) (�, ∗)
λω (∗, ∗) (�,�)
λω (∗, ∗) (�, ∗) (�,�)
λP (∗, ∗) (∗,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λPω (∗, ∗) (�,�) (∗,�)
λC (∗, ∗) (�, ∗) (�,�) (∗,�)

with (∗, ∗) Terms depending on terms
(�, ∗) Terms depending on types
(∗,�) Types depending on terms
(�,�) Types depending on types

Figure 2.6: The type systems of the Barendregt cube

30

2.3. Explicitly typed lambda calculus

2.3.1 Explicit versus implicit typing

There are two main styles of lambda calculus type systems: implicit and explicit. In an explicit
type system (“Church-style”), every variable binder is annotated with a type. For example, the
identity function on natural numbers is defined as

λ(x : N) · x

In an implicit type system (“Curry-style”), the types are not written down but are “implied”. The
identity function on natural numbers is now simply written as

λx · x

Of course, this term can equally be interpreted as the identity function on booleans or on any other
type. This does not (necessarily) mean that it has more than one type, only that there is more than
one type interpretation. To make this point clear, consider

(λ f · (f 1, f True)) (λx · x)

Since f is applied to both a natural number and a boolean, this program is rejected whether we
choose to interpret the identity function as the identity function on natural numbers or on booleans.
It is possible to assign a polymorphic type to the identity function, but we will delay a discussion
of that possibility until Section 2.5 on implicit type systems. In the next section, we will consider p. 

how this problem can be solved in an explicit type system.

2.3.2 Hierarchy of types

In the previous section we saw how to define the identity function on natural numbers. We can
define an identity function that can be applied to any type as follows:

λ(a : ∗) · λ(x : a) · x

Now the identity takes two arguments: a type a and then an element x of type a. We can rewrite
the example from the previous section as1

(λ f · (f N 1, f B True)) (λ(a : ∗) · λ(x : a) · x)

The type annotation on a (a : ∗) deserves an explanation. To denote that “5 is a natural number”,
we write 5 : N. A type can be interpreted as a set, and the statement above can be interpreted
as 5 ∈N (indeed, according to folklore the “:” symbol is derived from the “∈” symbol, which
in turn is a stylized version of the first character of ™st…, Greek for “it is”.) Given that we can
interpret a type as a set, it is natural to consider the type of types. A set of types is known as a
universe, and the universe of small types (the types of terms) is often denoted by ∗. So, we have

N : ∗
1For simplicity, we do not show the (necessary) type annotation on f ; the type of f will be discussed in Section 2.3.4.

31

Chapter 2. Background

In words, the type of N is ∗. The type of a type is sometimes also referred to as the kind of a
type (Jones, 1993). Thus, the type of “5” is N, and the kind of “N” is ∗. The type annotation on
the identity function now makes sense: we want an argument a of kind ∗ (a small type), and an
argument x of type a.

In the context of this section the distinction between types and kinds is somewhat artificial as
we can continue the hierarchy and introduce the next universe: the set of the types of types (or, if
you prefer, the set of kinds). Barendregt denotes this universe by �. Thus, we have

∗ : �

(You could read that statement as “star is a kind”). Although Barendregt does not continue the
hierarchy further than �, it is not hard to see that the hierarchy can be continued ad infinitum (see
also Section 2.3.5).p. 

An alternative approach is to collapse the hierarchy into a single universe ∗ (or Type), and
assume that ∗ is a member of itself:

∗ : ∗

This should remind the reader of Russell’s paradox, and indeed assuming ∗ : ∗ leads to logical in-
consistency: all propositions are provable; or, from a computational point of view, non-termination
can no longer be guaranteed (Coquand and Herbelin, 1994). However, if the language is intended
for programming rather than theorem proving and supports general recursion so that the system is
logically inconsistent regardless1, assuming ∗ : ∗ simplifies the type system (without sacrificing
computational soundness) and may thus be a valid choice (Altenkirch and Oury, 2008).

2.3.3 Dependency

When we apply the identity function on natural numbers λ(x : N) · x to a term (say, 5) we
obtain another term; hence, this is a term that depends on a term. Similarly, when we apply
the generalized identity function λ(a : ∗) · λ(x : a) · x to a type (say, N), we obtain a term
λ(x : N) · x. Hence, the generalized identity function is a term that depends on a type.

Likewise, we can construct types that depend on types or types that depend on terms. E.g.,

λ(a : ∗) · a× a

construct the type of pairs of elements of type a given a type a. Hence, this is a type that depends
on a type. Finally, consider the proposition

n =N m

for two natural numbers n and m. Under the Curry-Howard isomorphism this proposition is
considered to be a type; a proof of the proposition is a term of the corresponding type. Now

λ(n : N) · n =N 0

constructs the type of proofs that some natural number n equals 0. Hence, this is a type that
depends on on a term.

1The term µx · x has type A for any A, including A = ⊥.

32

2.3. Explicitly typed lambda calculus

The type systems in the Barendregt cube are classified by how many of these dependencies
they support. All systems support terms depending on terms, so there are three dimensions left:
support for terms depending on types, types depending on types and types depending on terms
(types depending on terms are also simply known as dependent types).

2.3.4 The expression language

In most languages, there is a separate term language (the language of programs) and type language
(the language of types of programs). As we saw, however, no such distinction is made in the
Barendregt cube. Instead, the distinction is made by the type system. An expression e (say, 5) that
would traditionally be thought of as a term (a program) will have a type σ (N) where the kind of
σ is ∗. A type (say, N) on the other hand will have a type σ (∗) where the type of σ is �. More
succinctly, e is a program when e : σ : ∗ and a type when e : σ : �.

The expression language is shown in Figure 2.6. It is the core lambda calculus (Chapter 1), p. , p. 

except that variables bound by a lambda abstraction are annotated with the type of the variable,
and the language is extended with a “cartesian product”, which we will look at now. In the
previous sections, we considered four different functions. The simplest was the identity function
on natural numbers

λ(x : N) · x

What is the type of this function? The type of functions (the function space) from a type a to a
type b is usually denoted by a→ b; hence, the type of the identity function above is

N→N

Similarly, we have

(λ(a : ∗) · a× a) : ∗ → ∗

and

(λ(n : N) · n = 0) : N→ ∗

But what is the type of the generalized identity function?

λ(a : ∗) · λ(x : a) · x

Given a type a, this will be a function from a to a; hence, we need a binder at the type level, which
we will denote by Π.1 Thus, the type of the generalized identity function is

Π(a : ∗) · a→ a

This construct is known as the cartesian product or the dependent function space and generalizes
the “ordinary” function space; we can read a→ b as shorthand for Π(x : a) · b for some variable
x that does not appear free in b.

1In the concrete syntax of Coq, this is denoted by ∀: ∀(a : ∗) · a→ a. However, we want to reserve this notation for
the “implicit polymorphism” introduced in Section 2.5.

33

Chapter 2. Background

2.3.5 Calculus of Constructions

All the proofs in this dissertation are written in the language of Coq, a proof assistant developed in
Inria (Bertot and Casteran, 2004). The logic of Coq is an extension of the calculus of constructions
(λC in the Barendregt cube or higher order predicate logic). It supports an infinite hierarchy of
universes; ∗ is called Set, � is called Type(0), and the hierarchy continues

Type(i) : Type(i + 1)

In addition, Coq has a universe Prop at the same level as Set (that is, both Prop : Type(0)
and Set : Type(0)). The difference between Set and Prop is not important for our current
purposes; briefly, elements of a type in Prop represent proofs and can be removed when a
program is compiled, whereas elements of a type in Set represent computational content and
need to be retained.

Furthermore, Coq supports inductive and co-inductive data types. In the remainder of this
section, we will discuss inductive data types (an explanation of co-induction is beyond the scope
of this dissertation). For a more formal exposition, the reader is referred to (Paulin-Mohring,
1993) or (Pfenning and Paulin-Mohring, 1990).

So far, we have assumed the existence of a type of natural numbers and a type of booleans,
and we have seen the (dependent) function space constructor which, given two types a and b,
constructs the type of the functions from a to b. Inductive data types provide a mechanism to
build up new types from scratch. We will demonstrate this by example, using the concrete syntax
from Coq.

The simplest type possible is the type that has no inhabitants (the empty set). This type
is called False in Coq since the set of proofs of the proposition False is the empty set (by
definition). It is defined as follows:

Inductive False : Prop := .

The fact that there is nothing in between the “:=” and the “.” indicates that False is the empty
type. After the empty type, we can introduce the singleton or unit type (the type that has exactly
one inhabitant). In Coq, this type is called True.

Inductive True : Prop :=

| I : True.

There is one constructor for type True, and it is called I. That is, we have

I : True

Given two types A and B, we can construct the type of pairs of elements A and B:

Inductive prod (A : Type) (B : Type) : Type :=

| pair : A → B → prod A B.

The pair constructor takes an argument of type A and an argument of type B, and returns an
element of type prod A B. For example, we have

pair I I : prod True True

34

2.4. System FA

We can introduce some syntactic sugar and rewrite this as

(I,I) : True× True

Similarly, we can construct the sum of two types (this type is called Either in Haskell):

Inductive sum (A : Type) (B : Type) : Type :=

| inl : A → sum A B

| inr : B → sum A B.

Inductive data types also give us (restricted) recursion at the type level. For example, we can
construct the type of natural numbers as follows:

Inductive nat : Set :=

| O : nat

| S : nat → nat.

This is the Peano encoding of the natural numbers; we can of course introduce syntactic sugar and
simply write n for Sn O. Finally, we can define the type of lists of elements of a type A as

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A → list A → list A.

Here too we will introduce some syntactic sugar: we will denote the type list A as [A], and we
will use [1, 2, 3] to denote the list

cons 1 (cons 2 (cons 3 nil))

Inductive data types must be positive: no negative occurrences of the data type that is being
defined may occur inside its definition. The exact definition of positivity is rather involved and
we refer to the Coq reference manual instead (Coq Development Team, 2006, Section 4.5.3,
Well-formed inductive definitions). The purpose of the positivity requirement is that all programs
in Coq must terminate; we note here only that X occurs negatively in X → A. The data type that
allows the implicit recursion trick from Section 2.9.1 therefore cannot be defined in Coq. p. 

2.4 System FA

As we will see in Section 2.5, the type annotations in the explicitly typed lambda calculus make p. 

programs laborious to write and difficult to read. We prefer to omit them, but without loosing the
expressive power of the original type system. Of course, this is easier or harder depending on
what type system we start with; the current focus in functional language research is System FA.

Unfortunately, the literature gets a bit sloppy in its use of terminology here and it is often
claimed that System F is the reference calculus (for example Botlan and Rémy, 2003; Leijen,
2008a). In this section, we will explain what System F is and why it is unsuitable as a reference
calculus for modern functional languages, and then introduce System FA.

Note that the name “System FA” is non-standard as far as we are aware (partly because most
people simply refer to “System F” but actually mean a larger calculus); it was coined by Sulzmann
et al. (2007).

35

Chapter 2. Background

Term and type language
e ::= term σ ::= type

x variable a type variable
λ(x : σ) · e lambda abstraction σ→ σ function space
e e application Π(a : ∗) · σ universal type
Λ(a : ∗) · e type abstraction
e {σ} type application

Typing rules

x : σ ∈ Γ Γ ` σ : ∗
VAR

Γ ` x : σ

Γ, x : σ ` e : σ′ Γ ` σ : ∗
ABS

Γ ` λ(x : σ) · e : σ→ σ′
Γ ` e : σ→ σ′ Γ ` e′ : σ

APP
Γ ` e e′ : σ′

Γ, a : ∗ ` e : σ
TABS

Γ ` Λ(a : ∗) · e : Π(a : ∗) · σ
Γ ` e : Π(a : ∗) · σ Γ ` σ′ : ∗

TAPP
Γ ` e {σ′} : σ[a := σ′]

Kinding rules

a : ∗ ∈ Γ
TVAR

Γ ` a : ∗
Γ ` σ : ∗ Γ ` σ′ : ∗

FUN
Γ ` σ→ σ′ : ∗

Γ, a : ∗ ` σ : ∗
UNIV

Γ ` Π(a : ∗) · σ : ∗

Figure 2.7: System F

2.4.1 System F

System F1 was introduced by Jean-Yves Girard in his 1972 dissertation (in French; the first English
description of System F by Girard is Girard, 1986) and by Reynolds (1974). It is effectively
system λ2 from the Barendregt cube, which supports terms depending on terms (∗, ∗) and terms
depending on types (�, ∗), but no types depending on types (�,�) or types depending on terms
(∗,�). In System F, terms and types are distinguished syntactically rather than through the typing
relation (see also Section 2.3.4). This means that:p. 

1. In the syntax of terms, we need different syntax for abstraction over terms (λx · e) and over
types (Λa · e), and different syntax for term application (e e′) and type application (e {σ})2.

2. We must specialize the dependent function space to its degenerate case (σ→ σ′) and the
case for terms depending on types (Π(a : ∗) · σ).3

3. We need a separate typing relation (relating terms to types) and kinding relation (relating
types to kinds).

The full system is shown in Figure 2.7. All types in System F must have kind ∗; we nevertheless
(perhaps somewhat pedantically) specify a kinding relation to make sure that all type variables
that occur in terms and types are bound.

1... called F by chance ... (Girard, 1986)
2To avoid confusion with the type of lists [a], we use Girard’s notation for type application rather than the more

common e [σ], which is due to Reynolds.
3Girard overloads the Λ operator for both type abstraction and the universal type, so he would denote Π(a : ∗) · σ as

Λa · σ; Reynolds uses ∆a · σ instead. Neither Girard nor Reynolds give the kind of a explicitly, as they do not consider
types of kind other than ∗. We use Π to be consistent with the notation in Section 2.3, and give the kinds to make the fact
that System F only supports types of kind ∗ explicit.

36

2.4. System FA

2.4.2 Algebraic data types

Languages such as Clean and Haskell support user-defined types through algebraic data types.
The definition of an algebraic data type takes the form

data T a1 a2 . . . ap

= C1 T11 T12 . . . T1m1

| C2 T21 T22 . . . T2m2

...

| Cn Tn1 Tn2 . . . Tnmn

This can (almost) be interpreted as an inductive data type

Inductive T (a1 : κ1) (a2 : κ2) . . . (ap : κp) : ? :=

| C1 : T11 → T12 → . . . → T1m1 → T a1 a2 . . . ap

| C2 : T21 → T22 → . . . → T2m2 → T a1 a2 . . . ap
...

| Cn : Tn1 → Tn2 → . . . → Tnmn → T a1 a2 . . . ap

except that the positivity requirement is dropped. Note that the syntax precludes specializing
the arguments in the codomain of the constructors: each constructor must return the exact same
type. Moreover, since these languages are not dependently typed, algebraic data types can be
parametrized by types only (and not by terms). They can however be parametrized by types of
arbitrary kind. For example, here is a Haskell definition of generalized trees:

data GTree (f :: * -> *) (a :: *) = MkTree a (f (GTree f a))

The Haskell type of MkTree as reported by ghc is

∀ (a :: *) (f :: * → *). a → f (GTree f a) → GTree f a

This makes it clear that we cannot give a System F type to MkTree, because we need to quantify
over types other than ∗ (in this case, a type of kind ∗ → ∗).

2.4.3 System FA

Given the observation from the previous section, it may seem that system λω (also known as
System Fω) would be a better choice as a reference calculus. After all, it supports types of
arbitrary kind. However, System Fω is too powerful: the presence of arbitrary type level functions
makes type inference (the process of recovering type information from a program written in an
implicitly typed language) undecidable. We can therefore use System Fω as a target language for
translation, but we cannot hope to use it as a reference calculus for an implicitly typed language.

Hence, we need something in between System F and System Fω, which is where System FA

comes in: System F extended with algebraic data types and pattern matching where type variables
can be of higher kind and type constructor applications can be partial (Sulzmann et al., 2007).
From the History of Haskell paper (Hudak et al., 2007):

‘‘Type inference for a system involving higher kinds seems at first to require higher-
order unification, which is both much harder than traditional first-order unification and
lacks most general unifiers [...]. However, by treating higher-kinded type constructors
as uninterpreted functions and not allowing lambda [abstraction] at the type level,
Jones’s paper (Jones, 1993) shows that ordinary first-order unification suffices.

37

Chapter 2. Background

2.4.4 Fragments of System F

There are two important ways in which we can restrict the types in System F (or System FA):
we can limit the rank of the types and we can make the system predicative. In System F proper,
polymorphic functions are first-class: we can abstract over polymorphic functions (require them
as arguments) and we can pass them as arguments to other polymorphic functions. As we shall
see, in the finite-rank fragment of System F we lose the first ability; in the predicative fragment
the second.

We define the set R(n) of types of rank n (Kfoury and Tiuryn, 1992) as follows. R(0), the
types of rank 0, are the types without any occurrences of Π. R(n + 1) is the smallest set such that

R(n + 1) ⊇ R(n) ∪
{
(Π(a : κ) · σ|σ ∈ R(n + 1)

}
∪
{

σ→ σ′|σ ∈ R(n), σ′ ∈ R(n + 1)
}

The rank-n fragment of System F is System F where the set of permissible types is R(n). In
particular, the rank-0 fragment is the simply typed lambda calculus (λ→ in the Barendregt cube).

The rank-1 fragment is not particularly more useful than the rank-0 fragment: although we
can now abstract over types and define the polymorphic identity function we saw before

id = λ(a : ∗) · λ(x : a) · x (2.6)

we cannot abstract over such terms

λ(id : Π(a : ∗) · a→ a) · . . . (2.7)

because that would require a rank-2 type. We will come back to this point when we introduce
let-polymorphism in Section 2.5.1.p. 

In the predicative fragment of System F, we can instantiate type variables only by types of
rank 0: type variables cannot be instantiated by polymorphic functions. For example, consider the
function that creates a singleton list:

single : Π(b : ∗) · b→ [b]

If we pass (2.6) as an argument to single, we will get a list of type

single {Π(a : ∗) · a→ a} id : [Π(a : ∗) · a→ a]

That is, a list of polymorphic identity functions. In the predicative fragment of System F, we
cannot apply single to id directly. The best we can do is

λ(a : ∗) · single {a→ a}(id a) : Π(a : ∗) · [a→ a]

We will revisit this example when discussing HMF in Section 2.5.4.p. 

38

2.5. Implicitly typed lambda calculus

Term and type language
e ::= term σ ::= type

x variable a type variable
λx · e lambda abstraction σ→ σ function space
e e application ∀(a : ∗) · σ type scheme

Typing rules

x : σ ∈ Γ Γ ` σ : ∗
VAR

Γ ` x : σ

Γ, x : σ ` e : σ′ Γ ` σ : ∗
ABS

Γ ` λx · e : σ→ σ′
Γ ` e : σ→ σ′ Γ ` e′ : σ

APP
Γ ` e e′ : σ′

Γ, a : ∗ ` e : σ
GEN

Γ ` e : ∀(a : ∗) · σ
Γ ` e : ∀(a : ∗) · σ Γ ` σ′ : ∗

INST
Γ ` e : σ[a := σ′]

Kinding rules

a : ∗ ∈ Γ
TVAR

Γ ` a : ∗
Γ ` σ : ∗ Γ ` σ′ : ∗

FUN
Γ ` σ→ σ′ : ∗

Γ, a : ∗ ` σ : ∗
UNIV

Γ ` ∀(a : ∗) · σ : ∗

Figure 2.8: Type assignment system for System F (System F2)

2.5 Implicitly typed lambda calculus

Consider again the following example:

(λ(f : Π(a : ∗) · a→ a) · (f N 1, f B True)) (λ(a : ∗) · λ(x : a) · x) (2.8)

This term looks rather involved because of all the type annotations on the variables. Erasing the
type annotations gives the following simpler term:

(λ f · (f N 1, f B True)) (λa · λx · x) (2.9)

We can simplify this term further and erase all type information:

(λ f · (f 1, f True)) (λx · x) (2.10)

For every system in the Barendregt cube we can define a domain free type system (Barthe and
Sørensen, 2000) that erases type annotations in the style of (2.9) and a type assignment system
(van Bakel et al., 1997) that erases all type information in the style of (2.10). A discussion of
these systems in their full generality is beyond the scope of this dissertation; instead, we will
concentrate on the type assignment system for System F, called F2 in (van Bakel et al., 1997)1,
shown in Figure 2.8.

When we compare System F (Figure 2.7) to System F2, we notice that the type annotation on p. 

the variable bound by a lambda abstraction has disappeared. In addition, the term language no
longer includes type abstraction and type application. The corresponding typing rules TAbs and

1Presumably, the name System F2 is based on System F2, which is the name some authors use for System F, based on
a hierarchy where System F1 is the simply typed lambda calculus and going up to System Fω in the limit (for example
Pierce, 2002, Section 30.4, Fragments of Fω). To add to the confusion, Girard himself presents a similar hierarchy (Girard,
1986, Appendix A.1), but starts with System F, which he terms System F0.

39

Chapter 2. Background

TApp have been replaced by two new typing rules Gen and Inst. These new typing rules have
the same purpose as TAbs and TApp, but can now be applied to any term (they are not syntax

directed). We use ∀ instead of Π to signify this change in semantics.
The conceptual difference between Π(a : ∗) · a → a and ∀(a : ∗) · a → a is subtle. A

function of the first type is a function that, given a type a, returns a function from a→ a for that

a. A function of the second type is a function from a→ a, for any a: it is a function that has an
infinite family of types. For this reason, ∀(a : ∗) · a → a is often referred to as a type scheme;
type schemes more closely match our intuition that λx · x can be interpreted to have any of a large
range of types (Section 2.3.1).p. 

Although both systems are logically equivalent, there is a catch. For a type system to be
useful, we need a type checking algorithm that can verify whether a program is type correct. For
an explicitly typed language, writing such an algorithm is straightforward; it is slightly harder
when considering dependent types, but not significantly so (Löh et al., 2008). The corresponding
algorithm for an implicitly typed language is called type inference, since the algorithm will need
to infer which types were “implied” by the programmer. Unfortunately, type inference for System
F2 is undecidable. As it turns out, even the potentially simpler problem of deciding whether a
program in System F2 can be typed at all (without specifying exactly what the type of the program
is) turns out to be equivalent to the type inference problem, and hence equally undecidable (Wells,
1999).

Part of the problem is that there are no principal types in System F2. In System F (indeed, in
any explicitly typed type system) every term has exactly one type.1 But in an implicitly typed
language, terms can have more than one type. For example in System F2,2

VAR
x : N ` x : N `N : ∗

ABS
` λx · x : N→N

or
VAR

x : B ` x : B ` B : ∗
ABS

` λx · x : B→ B

or
VAR

a : ∗, x : a ` x : a
TVAR

a : ∗ ` a : ∗
ABS

a : ∗ ` λx · x : a→ a
GEN

` λx · x : ∀(a · ∗) · a→ a

However, of these three types for the identity function, the third is more general than the first
two: ∀(a : ∗) · a → a can be instantiated (using rule Inst) to N → N or B → B. In fact,
∀(a : ∗) · a→ a is the most general or principal3 type of the identity function.

Unfortunately, not all terms in System F2 have a principal type. For instance, the example
from the start of this section

λ f · (f 1, f True))

has type
(∀(a : ∗) · a→ a)→ (N, B)

1Technically, in a dependent type system, a term can have more than one type, but they must all be β–equivalent.
2We leave out parts of the proof trees for readability.
3principal, adj.: Of a number of things or persons, or one of their number: belonging to the first rank; among the

most important; prominent, leading, main (Oxford English Dictionary)

40

2.5. Implicitly typed lambda calculus

or
∀(b : ∗) · (∀(a : ∗) · a→ b)→ (b, b)

and there is no System F2 type that is more general than (can be instantiated to) both.
In summary, although System F2 appears to give us the expressive power of System F, it does

so at too large a cost: type correctness for System F2 is undecidable. However, we do not want
to use System F either: the abundance of type annotations obfuscates our programs. The goal
therefore is to try and define a calculus which is sufficiently powerful (ideally, as powerful as
System F) but that allows us to omit as many type annotations as possible.

The most traditional solution is to restrict types to rank 1 and impose predicativity, but
introduce let-polymorphism which allows limited abstraction over polymorphic types (see also
Section 2.4.4); such a system is commonly referred to as a Hindley/Milner style type system, and p. 

will be introduced in Section 2.5.1. This has long been the standard type system in functional
languages. No type annotations are necessary, but the expressive power of the system is limited.

More recent proposals are based on an attempt to combine System F with System F2, so that
we have to write some type information but not all. The proposals differ in how much of the
power of System F they recover, how much type information the user needs to write down, and
how “obvious” it is when this type information is required.

The first well-known proposal in this category is the type system by Odersky and Läufer.
We will discuss their type system briefly in Section 2.5.2, but we will not look at type inference. p. 

Instead, Section 2.5.3 will discuss a type system proposed by Simon Peyton Jones et al. which p. 

is based on the Odersky/Läufer type system, but simplifies it. Finally, Section 2.5.4 will discuss p. 

HMF by Daan Leijen; while the type systems of Odersky/Läufer and Peyton Jones et al. support
arbitrary rank types, they are still limited to the predicative fragment of System F; HMF truly
supports first-class polymorphism.

There are various other proposals in this category, such as boxy types (Vytiniotis et al., 2006),
Rigid MLF (Leijen, 2007a) and the very recent FPH (Vytiniotis et al., 2008). In addition, here are
some proposals that go beyond System F types (or even System Fω types) to attempt to solve the
problem of principal types; MLF (Botlan and Rémy, 2003), HML (Leijen, 2008b) and the type
system of Lushman (2007) fall into this category. A discussion of these systems is beyond the
scope of this dissertation.

2.5.1 Let polymorphism

The most successful type system to date that supports polymorphism without requiring any type
annotations is the one introduced by Milner for ML (Milner, 1978). It is often referred to as
the Hindley/Milner type system; Hindley was a logician who defined a similar type system for
combinatory logic ten years earlier (Hindley, 1969). Milner specified a type inference algorithm
in his original paper (thus proving that type inference for his type system was decidable) but left
open whether this algorithm produced principal types. A few years later, Damas and Milner (1982)
published another paper in which they answered this question affirmatively. The latter paper is
probably the more accessible and more well-known of the two, and the term Damas/Milner type
system sometimes used as synonymous with Hindley/Milner (or let polymorphism).

A Hindley/Milner type system can be described as the predicative rank-1 fragment of System
F, in which all types must be in prenex form. That is, a type of the form

41

Chapter 2. Background

Term and type language
e ::= term σ ::= polytype

x variable ∀a : ∗ · σ universal quantification
λx · e lambda abstraction τ monotype
e e application
let x = e in e local definition τ ::= monotype

a type variable
τ → τ function space

Typing rules

x : σ ∈ Γ Γ ` σ : ∗
VAR

Γ ` x : σ

Γ, x : τ′ ` e : τ Γ ` τ′ : ∗
ABS

Γ ` λx · e : τ′ → τ

Γ ` e : τ′ → τ Γ ` e′ : τ′
APP

Γ ` e e′ : τ

Γ, a : ∗ ` e : σ
GEN

Γ ` e : ∀(a : ∗) · σ
Γ ` e : ∀(a : ∗) · σ Γ ` τ : ∗

INST
Γ ` e : σ[a := τ]

Γ ` e : σ Γ, x : σ ` e′ : τ
LET

Γ ` let x = e in e′ : τ

Figure 2.9: The Hindley/Milner type system

∀a · a→ ∀b · b→ b

must be rewritten as1

∀ab · a→ b→ b

Since all universal quantifiers must therefore be at the top-level, we can define rank-1 types
syntactically rather than through an equation: we distinguish between monotypes which cannot
contain any universal quantifiers, and polytypes which consist of a (possibly empty) list of universal
quantifiers followed by a monotype. The type system is shown fully in Figure 2.9.

We have presented the type system in a slightly different style than in the original paper to
clarify the relation to the type systems we presented so far. In particular, we are very explicit
about kinds, even though only types of kind ∗ are permitted; as for System F, this formally ensures
that all type variables are properly bound.

Since the domain of the function space must be a monotype, we cannot type

(λ f · (f [1, 2, 3], f [True,False])) reverse

However, the distinguishing feature of the Hindley/Milner type system is the introduction of the
let construct, which re-introduces a limited form of abstraction over terms with a universally
quantified type. Thus, we can type

let f = reverse

in (f [1, 2, 3], f [True,False])

1We use ∀ab · τ as short-hand for ∀a · ∀b · τ.

42

2.5. Implicitly typed lambda calculus

since let-bound variables may be assigned a polytype (the typing rule for let is the only rule
that introduces polytypes into the typing environment).

As mentioned in Section 2.4.4, the rank-1 fragment of System F is not much more useful the p. 

rank-0 fragment since although we can define polymorphic functions, we cannot abstract over
them. Intuitively, the Hindley/Milner type system can be seen as a type system that allows to
introduce a series of polymorphic values one by one, where each definition can be used in the
following definitions. It follows, however, that we have lost compositionality (Wells, 2002): the
type of a let expression cannot be given in terms of the types of both subexpressions. When
type-checking (let x = e in e′), e must be type-checked before e′. This is a regrettable
consequence, but to avoid it we need to introduce more powerful type systems such as intersection
types (Wells, 2002, Section 3.3). A discussion of intersection types is however beyond the scope
of this dissertation.

The type system as presented in Figure 2.9 is not syntax directed: although most rules have a p. 

distinct syntactic form in their conclusion, rules Inst and Gen can be applied to any term at any
point. From (Peyton Jones et al., 2007, Section 4.3, The syntax-directed Damas-Milner system),

‘‘This flexibility makes it hard to turn the rules into a type-inference algorithm. For
example, given a term, say λx · x, it is not clear which rules to use, in which order, to
derive a judgement ` λx · x : σ for some σ.

If all the rules had a distinct syntactic form in their conclusions, the rules would be
in so-called syntax-directed form, and that would, in turn, fully determine the shape
of the derivation tree for any particular term t. This is a very desirable state of affairs,
because it means that the steps of a type inference algorithm can be driven by the
syntax of the term, rather than having to search for a valid typing derivation.

(emphasis in original)

We noted before that the only rule that introduces a polytype into the typing environment is LET.
Moreover, the premises to all the other rules are of the form Γ ` e : τ for a monotype τ: hence,
the conclusion of a rule should be a monotype. These two observations lead to the syntax-directed
presentation of the type system in Figure 2.10. The rule for variables now fully instantiates the p. 

type scheme found in the environment, and the rule for let expressions includes an explicit
generalization step.

To generalize τ, we find all free type variables in τ that do not occur in the domain of Γ and
quantify over them (rule GEN). The reason for subtracting the type variables in the domain of Γ is
that the rule for generalization in the original system (Figure 2.9) has an implicit side-condition p. 

that a /∈ Γ (otherwise we would violate the invariant that every variable occurs at most once inside
an environment).

This side condition is crucial. For example, consider this (invalid) derivation:

VAR
a : ∗, f : a→ a, a : ∗ ` f : a→ a

GEN‡

a : ∗, f : a→ a ` f : ∀(a : ∗) · a→ a
INST

a : ∗, f : a→ a ` f : N→N . . . ` 0 : N
APP

a : ∗, f : a→ a ` f 0 : N
ABS

a : ∗ ` λ f · f 0 : (a→ a)→N
GEN

` λ f · f 0 : ∀(a : ∗) · (a→ a)→N

43

Chapter 2. Background

Typing rules

x : σ ∈ Γ `inst σ � τ
VAR

Γ ` x : τ

Γ, x : τ ` e : τ′ Γ ` τ : ∗
ABS

Γ ` λx : e : τ → τ′
Γ ` e : τ → τ′ Γ ` e′ : τ

APP
Γ ` e e′ : τ′

Γ `gen e : σ Γ, x : σ ` e′ : τ
LET

Γ ` let x = e in e′ : τ

Generalization and instantiation

Γ ` e : τ a = ftv(τ)− ftv(Γ)
GEN

Γ `gen e : ∀a · τ
INST

`inst ∀a · τ � τ[a := τ′]

Figure 2.10: Syntax directed presentation of the Hindley/Milner type system

This typing derivation must be invalid: it claims to be able to apply any function f to a natural
number and produce another natural number. Nevertheless, it is almost correct, except for a
violation of said side condition. In the application of Gen marked (‡), we bind a twice in the
environment, allowing us to pretend that f has the right type. We effectively assumed that the a
bound by the universal quantifier is the same a that was already bound in the environment.

Many presentations of the Hindley/Milner type system do not explicitly record the kinds of
type variables. The rule for generalization is then given as

Γ ` e : σ a /∈ fv(Γ)
GEN

Γ ` e : ∀(a : ∗) · σ

If presented this way, the kinds of type variables are not mentioned in Γ (as we have done) but are
left implicit. This rule is almost equivalent to the one we have presented (assuming the implicit
side condition): it is slightly more permissive, since it allows to (implicitly) reintroduce the same
type variable into the environment as long as it is not used anywhere.

The type inference algorithm presented by Damas and Milner is called algorithmW and is
shown in Figure 2.11. It follows rather directly from the syntax-directed typing rules; it relies onp. 

the unification algorithm described in Section 2.2.3 to compare two types, and needs to be able top. 

generate “fresh” type variable. A fresh type variable is one that is not used so far; we will leave a
more formal description of freshness until Section 7.2.1.p. 

AlgorithmW returns principal types, but not many proofs of the original algorithm exist in the
literature. The original paper is often cited (Damas and Milner, 1982), but that merely states the
lemma and refers to the “author’s forthcoming Ph.D. thesis” for the proofs, which unfortunately
is no longer easily accessible. There are however some recent papers about a formal (machine
verified) proof of the correctness ofW (Dubois and Ménissier-Morain, 1999, or Naraschewski
and Nipkow, 1999, for instance). We do not reproduce a proof here, but do note that it relies on
the unification algorithm to return most general unifiers.

There are also other type inference algorithms for the Hindley/Milner type system; algorithm
M is another well-known one (Lee and Yi, 1998). These algorithms all produce the same result
for type correct programs, but have different behaviour for type-incorrect programs; the reader is
referred to (Heeren, 2005) for a more in-depth discussion of this issue.

44

2.5. Implicitly typed lambda calculus

W(Γ, e) returns a pair of a substitution and a type (S, τ) so that SΓ ` e : τ.
W((Γ, x : ∀a1 · · · an · τ), x) =

(∅, τ[a1 := b1, . . . , an := bn) fresh b1, . . . , bn

W(Γ, f e) =
let (S1, τ1) =W(Γ, f)

(S2, τ2) =W(S1Γ, e)

S3 = mgu(S2τ1
?≈ τ2 → b) fresh b

in (S3S2S1, S3b)

W(Γ, λx · e) =
let (S, τ) =W((Γ, x : b), e) fresh b
in (S, Sb→ τ)

W(Γ, let x = e1 in e2) =
let (S1, τ1) =W(Γ, e1)

(S2, τ2) =W(S1Γ, x : generalize(S1Γ)τ1, e2)

in (S2S1, τ2)

Figure 2.11: AlgorithmW

2.5.2 Odersky/Läufer

The Odersky/Läufer system is shown in Figure 2.12. When compared to the Hindley/Milner p. 

system in Figure 2.9, we notice two important differences. First, there is a new syntactic construct, p. 

λ(x :: σ) · e, with associated typing rule ANNABS. This construct allows to introduce functions
of a higher rank type (abstract over polymorphic functions): rule ANNABS is the second rule after
LET that introduces polytypes into the environment. This is the core idea behind this and another
type systems, one that we mentioned before: without annotations, types are restricted to rank-1
(rule ABS still restricts the domain and codomain of the function space to be monotypes), but we
relax this restriction if the user provides an annotation. Thus, we are combining the implicitly
typed lambda calculus with the explicitly typed lambda calculus.

The second difference is that rule INST is replaced by rule SUB. In the Hindley/Milner type
system, if e : σ, we can use rule INST to deduce that e : τ for any instantiation τ of σ.1 In the
higher rank type system the situation is more complicated: if e : σ, we can use rule SUB to deduce
that e : σ′ for any σ′ that is “less polymorphic” than σ: formally, for any σ′ such that σ � σ′ (as a
memory aid, consider that the set of expressions of type σ is contained in the set of expressions of
type σ′ or that σ is “less specific” than σ′).

The (�) relation is called subsumption2. Its definition is shown in Figure 2.12; here we will p. 

consider a few examples only, due to Peyton Jones et al. (2007). The following examples are
all valid in the Hindley/Milner type system as well as in the more general Odersky/Läufer type
system:

1Technically, for any generic instantiation (Damas and Milner, 1982).
2subsume, v.: To bring (one idea, principle, term, etc.) under another, (a case, instance) under a rule, to take up into,

or include in, something larger or higher (Oxford English Dictionary)

45

Chapter 2. Background

N �N

N→ B �N→ B

∀a · a→ a �N→N (2.11)

∀a · a→ a � ∀b · [b]→ [b]

∀a · a→ a � ∀bc · (b, c)→ (b, c)

∀ab · (a, b)→ (b, a) � ∀c · (c, c)→ (c, c) (2.12)

Valid in the Odersky/Läufer system but not in Hindley/Milner (due to higher rank types):

B→ (∀a · a→ a) � B→N→N

(N→N)→ B � (∀a · a→ a)→ B (2.13)

(∀b · [b]→ [b])→ B � (∀a · a→ a)→ B

These examples are clarified when we regard these types as System F types, reading Π for ∀
(System F was defined in Figure 2.7). We can then give evidence of σ � σ′ by providing a Systemp. 

F term that produces an element of type σ′ given an element e of type σ. For example, evidence
of (2.11) is simple:

λ(e : Π(a : ∗) · a→ a) · e {N}

Similarly, evidence of (2.12) is

λ(e : Π(a : ∗) ·Π(b : ∗) · (a, b)→ (a, b)) ·Λ(c : ∗) · e {c} {c}

Finally, evidence of (2.13) is

λ(e : (N→N)→ B) · λ(f : Π(a : ∗) · a→ a) · e (f {N})

Note the contravariance in this last example: the subsumption relation is reversed for the domain
of the function space (rule FUN).

Obviously, the tricky part is to come up with a syntax directed presentation of the type system
which is suitable for type inference. However, rather than considering Odersky and Läufer’s
solution to this problem, we will move straight to the solution proposed by Simon Peyton Jones et

al. in the next section.

2.5.3 Practical type inference for arbitrary rank types

Peyton Jones et al. (2007) give two syntax directed presentations of the Odersky/Läufer system.
The first, shown in Figure 2.13, is a simplified version of the system given in the original paperp. 

(Odersky and Läufer, 1996).
Compared to the syntax directed Hindley/Milner system (Figure 2.10), we see two differences.p. 

First, there is the new rule for annotated lambda abstractions ANNABS that we already discussed
in Section 2.5.2. Second, the rule for application (e e′) is adapted. Since e may require e′ to have
a polymorphic type, we must generalize the type of e′, and then do a subsumption check to make
sure that the type of e′ is at least as polymorphic as the type expected by e.

46

2.5. Implicitly typed lambda calculus

Term and type language
e ::= term σ ::= polytype

x variable ∀a · σ universal quantification
λx · e lambda abstraction σ→ σ higher rank type
λ(x :: σ) · e annotated lambda τ monotype
e e application
let x = e in e local definition τ ::= monotype

a type variable
τ → τ function space

Typing rules
x : σ ∈ Γ

VAR
Γ ` x : σ

Γ, x : τ ` e : σ
ABS

Γ ` λx · e : τ → σ

Γ, x : σ ` e : σ′
ANNABS

Γ ` λ(x :: σ) · e : σ→ σ′

Γ ` e : σ→ σ′ Γ ` e′ : σ
APP

Γ ` e e′ : σ′
Γ ` e : σ Γ, x : σ ` e′ : σ′

LET
Γ ` let x = e in e′ : σ′

Γ ` e : σ a /∈ ftv(Γ)
GEN

Γ ` e : ∀a · σ
Γ ` e : σ `subs σ � σ′

SUB
Γ ` e : σ′

Subsumption

`subs σ � σ′ a /∈ ftv(σ)
SKOL

`subs σ � ∀a · σ′
`subs σ[a := τ] � σ′

SPEC
`subs ∀a · σ � σ

`subs σ′1 � σ1 `subs σ2 � σ′2 FUN
`subs σ1 → σ2 � σ′1 → σ′2

MONO
`subs τ � τ

Figure 2.12: Odersky/Läufer type system

Type language
σ ::= qualified type ρ ::= type without top-level quantifiers

∀a · σ universal quantification τ monotype (τ defined as before)
ρ type without top-level quantifiers σ→ ρ higher rank type

Typing rules
x : σ ∈ Γ `inst σ � ρ

VAR
Γ ` x : ρ

Γ, x : τ ` e : ρ
ABS

Γ ` λx · e : τ → ρ

Γ, x : σ ` e : ρ
ANNABS

Γ ` λ(x :: σ) · e : σ→ ρ

Γ ` e : σ→ ρ Γ `gen e′ : σ′ `subs σ′ � σ
APP

Γ ` e e′ : ρ

Γ `gen e : σ Γ, x : σ ` e′ : ρ
LET

Γ ` let x = e in e′ : ρ

Generalization and instantiation

Γ ` e : ρ a = ftv(ρ)− ftv(Γ)
GEN

Γ `gen e : ∀a · ρ
INST

`inst ∀a · ρ � ρ[a := τ]

Figure 2.13: Syntax directed presentation of the Odersky/Läufer type system

47

Chapter 2. Background

Term and type language
e ::= term

x variable
λx · e lambda abstraction
e e′ application
(e :: σ) annotated expression
let x = e in e local definition

Typing rules

x : σ ∈ Γ `instσ
δ σ � ρ

VAR
Γ `δ x : ρ

Γ, x : τ `⇑ e : ρ
ABS⇑

Γ `⇑ λx · e : τ → ρ

Γ, x : σ `⇓ e : ρ
ABS⇓

Γ `⇓ λx · e : σ→ ρ

Γ `⇑ e : σ→ ρ′ Γ `gen
⇓ e′ : σ `instσ

δ ρ′ � ρ
APP

Γδ ` e e′ : ρ

Γ `gen
⇓ : σ `instσ

δ σ � ρ
ANNOT

Γ `δ (e :: σ) : ρ

Γ `gen
⇑ e : σ Γ, x : σ `δ e′ : ρ

LET
Γ `δ let x = e in e′ : ρ

Generalization and instantiation

Γ `δ e : ρ a = ftv(ρ)− ftv(Γ)
GEN

Γ `gen
δ e : ∀a · ρ

`instρ
δ ρ[a := τ] � ρ′

INSTσ

`instσ
δ ∀a · ρ � ρ′

INSTρ⇑`instρ
⇑ ρ � ρ

`subs ρ � ρ′
INSTρ⇓`instρ

⇓ ρ � ρ′

Figure 2.14: PTI

There is one technical detail that makes it possible to keep the presentation so close to
the Hindley/Milner type system and the original Odersky/Läufer system. Although we allow
polytypes in the domain of the function space (thus introducing higher rank types), we restrict the
codomain to monotypes: we require types to be in prenex form (Section 2.5.1). This was used inp. 

older versions of Practical type inference for arbitrary rank types, but not in the version that was
eventually published. The system without the restriction is slightly more expressive but also more
complicated; we prefer the system with the prenex types and will not discuss the alternative. See
(Peyton Jones et al., 2007, Section 4.6.2) of the published paper for some details.

Although the syntax directed version given by Simon Peyton Jones et al. is slightly simpler
than the syntax directed system given by Odersky and Läufer, the real contribution of (Peyton
Jones et al., 2007) is a bidirectional version of the same type system, shown in Figure 2.14. We
will refer to this type system as PTI for Practical Type Inference (our term).

The main difference between PTI and the first syntax directed Odersky/Läufer system is that
type information is propagated into terms so that we can write (λx · e) :: (σ → ρ) instead of
λ(x :: σ) · e. This is common in functional languages where we might write

f :: σ→ ρ

f x = e

rather than

48

2.5. Implicitly typed lambda calculus

f (x :: σ) = e

The syntax of terms is modified to allow a type annotation on arbitrary expressions (e :: σ).
For conciseness, we have left out the rules for annotated lambdas (any term λ(x : σ) · e can be
replaced by (λx · e) :: σ→ ρ for a suitable ρ); see (Peyton Jones et al., 2007, Figure 7).

The typing rules now include a directionality; we combine type inference (Γ `⇑ e : ρ) with
type checking (Γ `⇓ e : ρ). The difference is most evident in the rule for abstraction: when
inferring a type for a lambda abstraction, the domain of the function space must be a monotype (we
cannot infer higher rank types). However, when checking that an abstraction has a type σ→ ρ,
we allow for higher rank types. Many of the other rules are polymorphic in their directionality;
this is indicated by the use of a variable (Γ `δ e : ρ).

Perhaps surprisingly, type inference for PTI is not much more difficult than type inference for
the basic Hindley/Milner type system. For a detailed discussion we refer to Peyton Jones et al.
(2007), which shows how to modify a type inference algorithm for Hindley/Milner to support
arbitrary rank types. Here we want to highlight only one aspect of this algorithm: the use of
skolemization.

The rule for application in the original Hindley/Milner type system is

Γ ` e : τ′ → τ Γ ` e′ : τ′
APP

Γ ` e e′ : τ

In the inference algorithm, we can infer a type for e and infer a type for e′, and then call unify to
make sure that the type in the function domain matches the type of the argument. In the higher
rank system, however, the rule for application becomes

Γ ` e : σ→ ρ Γ `gen e′ : σ′ `subs σ′ � σ
APP

Γ ` e e′ : ρ

(We are referring to the syntax directed system in Figure 2.13 rather than the bidirectional system p. 

in Figure 2.14, because it makes the issues slightly clearer. The same problems arise in the p. 

bidirectional version.) In the inference algorithm, we can no longer use unification to make sure
that the argument type matches the expected type; instead, we need to do a subsumption check to
make sure that the argument is polymorphic enough:

σ′ � σ

In other words, we need to implement the `subs relation (Figure 2.12). How can we check whether p. 

one type scheme is an instance of another? For example, consider

∀ab · a→ b→ b
?
� ∀c · c→ c→ c (2.14)

As a first attempt, we might try to instantiate a, b, c with fresh meta-variables a, b, c and then unify

a → b → b
?≈ c → c → c. This unification equation has a solution [a := c, b := c] so that we

conclude that the subsumption check is successful. However, we would end up with the same
unification equation, the same solution and the same conclusion for

∀c · c→ c→ c
?
� ∀ab · a→ b→ b (2.15)

49

Chapter 2. Background

However, (2.14) is true whereas (2.15) is not. Hence, we will need to be more sophisticated.
Instead of instantiating the quantified variables by meta-variables, we instantiate the quantified
variables of the right-hand type scheme by skolem constants. A skolem constant denotes a constant
but unknown type. In particular, two different skolem constants a and b can never unify with each
other (as far as unification is concerned, skolem constants are constants and not variables). So, to
check (2.14), we will try to unify

a→ b→ b
?≈ c→ c→ c

which has a solution [a := c, b := c], but when checking (2.15), we will try to unify

a→ b→ b
?≈ c→ c→ c

which will fail because a and b cannot be unified. For nested type schemes we apply the same
technique, making sure to take the contravariant behaviour of the function space into account.

The original Odersky and Läufer paper refers to this technique as “unification under a mixed
prefix” and cites (Miller, 1992). The “mixed prefix” refers to the fact that some variables are
universally quantified (the skolem constants) while others are existentially quantified (the meta-
variables). Note however that the problem discussed by Miller is much more general than
necessary in this context (indeed, is undecidable in general).

Term and type language
e ::= term σ ::= qualified type

x variable ∀a · σ universal quantification
λx · e lambda abstraction ρ type without top-level quantifiers
λ(x : σ) · e annotated lambda
e e application ρ ::= type without top-level quantifiers
let x = e in e local definition a type variable

c σ1 . . . σn type application

τ ::= monotype
a type variable
c τ1 . . . τn type application

Typing rules

x : σ ∈ Γ
VAR

Γ ` x : σ

Γ, x : τ ` e : ρ
ABS

Γ ` λx · e : τ → ρ

Γ, x : σ ` e : ρ
ANNABS

Γ ` λ(x : σ) · e : σ→ ρ

Γ ` e : σ→ σ′ Γ ` e′ : σ minimal(σ→ σ′)
APP

Γ ` e e′ : σ′

Γ ` e : σ Γ, x : σ ` e′ : σ′ most general(σ)
LET

Γ ` let x = e in e′ : σ′

Γ ` e : σ a /∈ ftv(Γ)
GEN

Γ ` e : ∀a · σ

Γ ` e : ∀(a : ∗) · σ
INST

Γ ` e : σ[a := σ′]

Figure 2.15: HMF

50

2.5. Implicitly typed lambda calculus

2.5.4 HMF

The typing rules for HMF (Leijen, 2008a) are shown in Figure 2.15 (we discuss only the “Plain
HMF” system without extensions). They are almost identical to the Odersky and Läufer typing
rules (Figure 2.12), with two important exceptions.

First, HMF is invariant. Instead of the general subsumption relation (rule SUB in Figure 2.12)
we can only generalize and instantiate the outermost variables of a type scheme (rules GEN and
INST).1 When comparing two types, any nested type schemes must be identical (up to alpha-
renaming): there is no notion of “at least as polymorphic as”. In particular, this means that we do
not have to worry about the contravariant/covariant behaviour of the function space constructor
(as all type constructors are invariant in their arguments).

The second exception is the important one. Rule INST allows to instantiate type variables with
type schemes: HMF is impredicative. This is a major departure from PTI and the Odersky and
Läufer type system. It is also the reason for the two side conditions added to the rules for APP

and LET. Consider

id :: ∀ a. a → a

id x = x

single :: ∀ a. a → [a]

single x = [x]

Ignoring the side conditions, we can derive two different types for single id:

` single : ∀a · a→ [a]
INST

` single : (b→ b)→ [b→ b]

` id : ∀a · a→ a
INST

` id : b→ b
APP

` single id : [b→ b]
GEN

` single id : ∀b · [b→ b]

or
` single : ∀a · a→ [a]

INST
` single : (∀b · b→ b)→ [∀b · b→ b] ` id : ∀b · b→ b

APP
` single id : [∀b · b→ b]

The second derivation requires impredicativity (we are instantiating a with ∀b · b → b) and is
therefore not permissible in the Odersky and Läufer type system or in PTI. In System F both
derivations of course are allowed, but since System F is explicitly typed this causes no difficulties:
the programmer will always make clear which of the two types was intended.

In an implicitly typed language, we have two options. We can make the language of types
more expressive so that there is a type which is more general than both. This is essentially the
approach taken by MLF (Botlan and Rémy, 2003), but at quite a large cost: type inference for
MLF is rather involved.

The alternative is to build a “bias” into the type system, and this is exactly what the side
conditions in the HMF typing rules ensure (for a formal definition of these side conditions, see
the paper). In the absence of a type annotation, HMF will always prefer predicative instantiation
(the first derivation) over impredicative instantiation (the second). The second derivation is only
available by using an explicit type annotation.

1The HMF paper presents the type system using the System F instance relation, which is a combination of the GEN
and INST rules. Our presentation is equivalent but more in line with the other systems presented in this chapter.

51

Chapter 2. Background

For the implementation of type inference, the side conditions do not explicitly need to be
verified: type inference for HMF is not difficult exactly because the built-in bias in the typing
rules facilitates type inference. We will not reproduce the type inference algorithm here, and refer
the reader to the HMF paper instead. The algorithm is very similar to algorithmW (Section 2.5.1)p. 

with a modified unification algorithm which relies on the skolemization technique described in
Section 2.5.3.p. 

2.6 Substructural logics

Consider the following three derivations in the simply typed lambda calculus. The first demon-
strates functions do not need to use their arguments in the order they are passed.

f : a→ b ∈ x : a, f : a→ b
VAR

x : a, f : a→ b ` f : a→ b

x : a ∈ x : a, f : a→ b
VAR

x : a, f : a→ b ` x : a
APP

x : a, f : a→ b ` f x : b
ABS

x : a ` λ f · f x : (a→ b)→ b
ABS

` λx · λ f · f x : a→ (a→ b)→ b

(2.16)

The second demonstrates that we can use variables more than once.

f : a→ a→ b ∈ f : a→ a→ b
VAR

f : a→ a→ b, x : a ` f : a→ a→ b

x : a ∈ f : . . . , x : a
VAR

f : . . . , x : a ` x : a
APP

f : a→ a→ b, x : a ` f x : b

x : a ∈ f : . . . , x : a
VAR

f : . . . , x : a ` x : a
APP‡

f : a→ a→ b, x : a ` f xx : b
ABS

f : a→ a→ b ` λx · f xx : a→ b
ABS

` λ f · λx · f xx : (a→ a→ b)→ a→ b
(2.17)

The final derivation shows that not all variables have to be used.

x : a ∈ x : a, y : b
VAR

x : a, y : b ` x : a
ABS

x : a ` λy · x : b→ a
ABS

` λx · λy · x : a→ b→ a

(2.18)

Logical rules
VAR

x : τ ` x : τ

Γ, x : τ ` e : τ′
ABS

Γ ` λx · e : τ → τ′

Γ ` e1 : τ → τ′ ∆ ` e2 : τ
APP

Γ, ∆ ` e1 e2 : τ′

Structural rules

Γ ` e : τ
WEAK

Γ, x : τ′ ` e : τ

Γ, y : τ′, z : τ′ ` e : τ
CONTR

Γ, x : τ′ ` e[y := x, z := x] : τ

Γ, ∆, Θ ` e : τ
EXCH

Γ, Θ, ∆ ` e : τ

Figure 2.16: Structural presentation of the simply typed lambda calculus

52

2.6. Substructural logics

Such environment manipulations (using assumptions out of order, reusing some assumptions
and ignoring others) are implicitly allowed in the type systems we have seen thus far. It is however
possible to give a structural presentation of a type system in which these operations are made
explicit. Figure 2.16 gives such a presentation for the simply typed lambda calculus.

The differences between a structural presentation and a non-structural presentation are subtle.
The rule for application (APP) now uses a typing environment Γ to type the function, another
environment ∆ to type the argument, and uses the combined environment (Γ, ∆) in the conclusion
of the rule. This has two consequences.

Recall from Section 2.1.2 that we regard the typing environment as a list of assumptions, p. 

and that every variable must occur at most once inside an environment. Suppose we need an
assumption x : a both to type the function and to type the argument, as in the rule marked ‡ in
derivation (2.17). That means that we must have x : a ∈ Γ and x : a ∈ ∆. But then x will appear
twice in (Γ, ∆), which violates the invariant. Thus, using different environments in the branches
of a derivation has the non-obvious consequence that we can no longer use variables more than
once. Unless, that is, we apply rule CONTR first, which explicitly duplicates an assumption in the
environment, renaming variables to make sure no variable occurs more than once.

The second consequence is that we can no longer use assumptions in the environment out
of order, as list concatenation is not commutative. If the environment is x : a, f : a → b as
in derivation (2.16), we are forced to use x : a for the first premise and f : a → b for the
second—unless we apply rule EXCH first to explicitly reorder the assumptions.1

The other modification to the typing rules is the rule for variables. Rather than simply requiring
that x : σ must occur somewhere in the environment Γ, the rule now states that x : σ can be typed
only in the singleton environment x : σ. This means that every variable must be used; derivation
(2.18) is no longer valid. Unless, that is, we apply rule WEAK first, which explicitly allows us to
throw away assumptions in the environment.

We have thus also introduced three new rules: exchange (EXCH), weakening (WEAK) and
contraction (CONTR). Collectively, these are known as the structural rules. In the type systems
we saw before this section, these rules are admissible (can be proven from the other rules). The
real advantage of making the rules explicit, of course, is that we can restrict the use of these rules
to exert control over environment manipulation.

For example, we can remove rule WEAK to obtain relevant logic (all assumptions must be
used), rule CONTR to obtain affine logic (assumptions can be used at most once), rules WEAK

and CONTR to obtain linear logic (all assumptions must be used exactly once) or rule EXCH to
obtain ordered logic (assumptions must be used in order). Logics or type systems in which the
use of the structural rules is restricted are known as substructural logics or type systems2.

Looking ahead, uniqueness typing can (as a first approximation) be described as a logic in
which contraction can only be applied to variables of a non-unique type (that is, only variables
of a non-unique type can be used more than once). We will therefore not be interested in
limiting weakening, and we do not care about the ordering of the assumptions in the environment.
Section 7.2.2 in the chapter on formalization discusses how this can be formalized elegantly. p. 

1This rule is often presented as
Γ, ∆ ` e : τ

EXCH′

∆, Γ ` e : τ

However, EXCH′ is not powerful enough. In particular, EXCH cannot be proven from EXCH′.
2Restall (2000) accredits the name to Schröder-Heister and Došen.

53

Chapter 2. Background

We will not further investigate any substructural logics in this chapter, and we will delay a
description of substructural type systems to the next chapter on related work (Chapter 3). For ap. 

more in-depth discussion of substructural logics we refer the reader to (Restall, 2000). For linear
logic specifically, refer to the excellent tutorial introduction by Wadler (1993), or the textbook by
Troelstra (1992). Note, however, that the textbooks by Restall and Troelstra go well beyond what
we will need in this dissertation.

2.7 Operational semantics and soundness

In the introduction (Chapter 1) we mentioned that “executing” a program in a functional languagep. 

means evaluating or simplifying it, and that a type system can be used to make sure that evaluation
will not get stuck. In this section we will see how to make these notions precise.

The fundamental evaluation step in the lambda calculus is known as beta-reduction, and is
defined as

(λx · e) e′ → e[x := e′] (β−reduction)

In words, we can reduce the application of a function to an argument to the function body,
substituting the argument for the formal parameter of the function. This rule however only lets us
simplify an expression of the form ((λx · e) e′). For example, we cannot apply beta-reduction to(

(λx · x) (λy · y y)
) (

(λx · x) (λz · z)
)

(2.19)

since the term does not have the right shape. Instead, we need a rule that allows us to “look inside”
this term and apply beta-reduction to a subterm first. The most general such rule is

e→ e′
EVAL

C[e]→ C[e′]

The C in this rule denotes a context, which is a term with a “hole”. Formally:

C ::= []|x|CC|λx · C

This mirrors the syntax for lambda terms, with the addition of a “hole”. If C is a context and
T is a term, then C[T] denotes the lambda term obtained from plugging T into the hole in C
(section 7.3.3 will give a more formal description). Rule EVAL is sometimes (e.g., Girard, 1986,p. 

Definition 3.3) referred to as the compatible closure of the beta-reduction relation (with respect to
contexts C).

As we shall see, however, the order in which we apply beta-reduction to the subterms matters
and so programming languages often specify an evaluation strategy which defines which subterms
can be reduced and in which order that should happen. This is formalized by restricting the
locations of the holes in the context, and (in some cases) by restricting the class of terms to which
we can apply beta-reduction. In the next three sections, we will consider three such strategies:
call-by-value, call-by-name and call-by-need. Their formal definitions are shown in Figure 2.17.p. 

54

2.7. Operational semantics and soundness

General reduction

BETA
(λx · e) e′ → e[x := e′]

e→ e′
EVAL

C[e]→ C[e′]

Call-by-Value

BETA
(λx · e) V → e[x := V]

e→ e′
EVAL

E[e]→ E[e′]

where
V ::= value E ::= evaluation context

x variable []
λx · e abstraction E e

(λx · e) E

Call-by-Name

BETA
(λx · e) e′ → e[x := e′]

e→ e′
EVAL

E[e]→ E[e′]

where
V ::= value E ::= evaluation context

x variable []
λx · e abstraction E e

Call-by-Need

VALUE
let x = λy · e in E[x]→ (E[x])[x := λy · e]

COMMUTE
(let x = e in V) e′ → let x = e in V e′

ASSOC
let y = (let x = e in V) in E[y]→ let x = e in let y = V in E[y]

e→ e′
EVAL

E[e]→ E[e′]

where let x = e′ in e is syntactic sugar for (λx · e) e′ and
V ::= value E ::= evaluation context

λx · e abstraction []
let x = e in V sharing E e

let x = e in E
let x = E in E′[x]

Figure 2.17: Operational semantics

55

Chapter 2. Background

2.7.1 Call-by-value

Call-by-value evaluation is the evaluation strategy implemented in most languages, where the
argument to a function must be evaluated to a value before function call is made (variables and
lambda abstractions are considered values). Evaluation stops when the outermost term is a value.
The call-by-value evaluation of (2.19) is(

(λx · x) (λy · y y)
) (

(λx · x) (λz · z)
)

→ (λy · y y)
(
(λx · x) (λz · z)

)
→ (λy · y y) (λz · z)
→ (λz · z) (λz · z)
→ (λz · z)

2.7.2 Call-by-name

In call-by-name the function argument is not evaluated before the function is called; rather, the
unevaluated term is passed as an argument and terms will only be evaluated when they are required.
The call-by-name evaluation of (2.19) is(

(λx · x) (λy · y y)
) (

(λx · x) (λz · z)
)

→ (λy · y y)
(
(λx · x) (λz · z)

)
→

(
(λx · x) (λz · z)

) (
(λx · x) (λz · z)

)
→ (λz · z)

(
(λx · x) (λz · z)

)
→ (λx · x) (λz · z)
→ λz · z

Call-by-name evaluation opens up new possibilities. For example, in Clean, we can define a
function that returns the list of all natural numbers greater or equal than n as

nat :: Int -> [Int]

nat n = [n : nat (n + 1)]

Since this function returns an infinite list of natural numbers, evaluation of an expression such as

length (nat 0)

will never terminate. However, evaluation of an expression such as

take 5 (nat 0)

(where take n returns the first n elements of a list) will. Thus, call-by-name evaluation allows
programming idioms that are not available in a call-by-value setting (Hughes, 1989; Leijen and
Meijer, 2001). Moreover, although it is more difficult to understand the time and space behaviour
of call-by-name programs (for instance, see Maessen, 2002), there are many data structures that
can only be implemented efficiently in a call-by-name language (Okasaki, 1998; Bird et al., 1997).
Finally, we will argue in Section 2.8.5 that the use of a substructural type system is more suited top. 

a call-by-name language than a call-by-value language.

56

2.7. Operational semantics and soundness

2.7.3 Call-by-need

Despite its advantages, call-by-name evaluation has an important downside too: since arguments
are substituted for formal arguments in unevaluated form, they may be evaluated more than once.
We saw this in the derivation in the previous section, which evaluated (λx · x)(λz · z) twice and
therefore took one step more than the call-by-value evaluation.

The call-by-need or lazy evaluation strategy implements the observational behaviour of call-
by-name in a way that requires no more substitution steps than call-by-value reduction (Maraist
et al., 1998). Sharing is indicated by a term of the form

let x = e in (x, x)

which is syntactic sugar for
(λx · (x, x)) e

and can be thought of as a graph

(. , .)

e

The call-by-name evaluation of (2.19) is(
(λx · x) (λy · y y)

) (
(λx · x) (λz · z)

)
=

(
let x = λy · y y in x

) (
(λx · x) (λz · z)

)
→V (λy · y y)

(
(λx · x) (λz · z)

)
= let y = (λx · x) (λz · z) in y y
= let y = (let x = λz · z in x) in y y
→V let y = λz · z in y y
→V (λz · z) (λz · z)
= let z = λz · z in z
→V λz · z

where all the (=) lines are simply rewriting some terms using the “let” syntax to make the
sharing more explicit. Notice that the term (λx · x)(λz · z) is reduced only once.

Since the topic of this dissertation is the design of a type system to allow side effects in a pure
functional language without losing properties such as definiteness, it will come as no surprise that
an evaluation strategy that may evaluate terms more than once is not suitable for our purposes.
Since we are interested in lazy evaluation, we will opt to use the call-by-need semantics.

Unfortunately, although call-by-name and call-by-value are entirely standard, there is no
universally agreed definition of call-by-need evaluation. The step definition of call-by-need we
have shown are the “standard” reduction rules from (Maraist et al., 1998), where rule VALUE is
slightly modified so that all variables are substituted at once (see also Maraist et al., 1998, Section
8, On types and logic).

57

Chapter 2. Background

2.7.4 Soundness

In the evaluation strategies discussed in this section, evaluation completes when the program has
become a value.1 A soundness proof that the type system guarantees that evaluation does not get
stuck then takes the form of two theorems. The first states that if an expression e is well-typed,
then either e is a value or e reduces to another term e′:

Theorem 2 (Progress) If ` e : σ for some type σ, then either e is a value or there exists an

expression e′ such that e→ e′.

The second theorem states that evaluation preserves types:

Theorem 3 (Preservation or Subject Reduction) If Γ ` e : σ and e→ e′ then Γ ` e : σ

Taken together, these two theorems prove that if a term is well-typed, it will either reduce to a
value or reduce indefinitely.

2.7.5 On small-step semantics

The evaluation relations we specified in this section are known as small-step semantics: we specify
what a single step in the relation looks like. The use of small-step semantics for soundness proofs
was pioneered by Wright and Felleisen (1994).

Given a small-step semantics, we can characterize the evaluation of a term to a value by
defining a relation (⇒) such that e ⇒ v for some value v if there exists a sequence of single
reduction steps such that

e→ e0 → e1 → · · · → v

Alternatively, we can give evaluation rules that define ⇒ directly. Such a definition of an
evaluation strategy is known as a big-step semantics, natural semantics or Kahn-style semantics
(after the scientist who first proposed it). Big-step semantics have some advantages over small-step
semantics; for example, the well-known big-step semantics for call-by-need by Launchbury (1993)
is much smaller and (arguably) more elegant than the small-step semantics we showed above.

Nevertheless, although big-step semantics can be used for soundness proofs (Harper, 1994,
1996), they are not quite as well suited. The problem is that we cannot state an equivalent of
the progress lemma for languages that allow non-terminating (diverging) programs. For a non-
terminating program e, we may not have e⇒ v for any v, even if e is well-typed. Thus, we cannot
distinguish between non-terminating programs and programs that get stuck.

The standard solution is to introduce a new term wrong or err, and add new reduction rule
for every possible ill-typed term. For example, in PCF (Section 1.2) we might have a rule that thep. 

application of the increment function to a boolean yields a type error:

inc tt⇒ wrong

In this setup, the preservation lemma suffices and we do not need a separate progress lemma: since
wrong does not have any type, preservation will prove that well-typed terms do not evaluate to
wrong. However, as Leroy (2006) observes

1Maraist et al. refer to an “answer” instead of a “value”; the change in terminology is irrelevant for our current
purposes and we will stick to “value” in this section. In later chapters where we will deal exclusively with the call-by-need
semantics, we will refer to an “answer” as in the original article.

58

2.8. Side effects

‘‘This approach is unsatisfactory for two reasons: (1) extra rules must be provided to
define e⇒ err, which increases the size of the semantics; (2) there is a risk that the
rules for e⇒ err are incomplete and miss some cases of “going wrong”, in which
case the type soundness statement does not guarantee that well-typed terms either
evaluate to a value or diverge.

Leroy’s paper contains a good discussion of the benefits of either approach, as well as suggesting
some other solutions.

2.8 Side effects

An often cited advantage of functional programming languages such as Clean or Haskell is that
they are pure or referentially transparent. In this section we will take a closer look at what we
mean by purity, referential transparency and related properties, why they are easily lost when we
add side effects, and how that can be avoided by using substructural logics or monads. We will
not investigate the specifics of individual substructural logics (including uniqueness typing); this
will be the subject of the next chapter.

2.8.1 Referential transparency

Referential transparency is a concept from the philosophy of language introduced by Quine:

‘‘One of the fundamental principles governing identity is that of substitutivity—or, as
it might well be called, that of indiscernibility of identicals. It provides that, given

a true statement of identity, one of its two terms may be substituted for the other in

any true statement and the result will be true. It is easy to find cases contrary to this
principle.

(Quine, 1953, Reference and Modality, emphasis in original)

He then proceeds to give a number of counterexamples. For example, it is true that

Tegucigalpa = the capital of Honduras

Now suppose that it is also true that

Philip believes that Tegucigalpa is in Nicaragua

Presumably, it is not true that

Philip believes that the capital of Honduras is in Nicaragua

Quine explains:

‘‘The principle of substitutivity should not be extended to contexts in which the name to
be supplanted occurs without referring simply to the object. Failure of substitutivity
reveals merely that the occurrence to be supplanted is not purely referential, that is,
that the statement depends not only on the object but on the form of the name [...] we
may speak of the context “believe that” as referentially opaque.

59

Chapter 2. Background

So, a context is referentially transparent if it preserves referentiality (preserves substitution of
identity) or referentially opaque if it does not. We call a formal language (such as a programming
language) referentially transparent if every context in the language is referentially transparent.

We can paraphrase and state that referential transparency asserts the validity of the closure
rule of equational logic (Section 2.2.1 or Figure 2.3), which justifies the claim that referentialp. , p. 

transparency makes equational reasoning possible. From this perspective we can clearly see the
problem with the definition of referential transparency: when we take the set of identities that we
want to reason with to be the empty set, every language is vacuously referentially transparent.

For example, do we have the identity i ≈ i++ in C? Although the latter expression increments
the value of i after being evaluated, the value of i++ is defined to be i. Generally, when we
allow for e1 ≈ e2 when their values are the same then C is certainly not referentially transparent.
However, when we allow e1 ≈ e2 only when their values and effects are the same, then perhaps
we should conclude that C is (non-trivially) referentially transparent.

However, consider trying to prove that addition on integers is commutative in C:

∀(n m : int), n + m = m + n

Proving this lemma means allowing the identity n + m ≈ m + n; but if we are doing equational
reasoning, then by rule SUBST that means that we should be able to substitute any term for n
and m (as long as they are of type int) and the rule should still hold. This will clearly fail;
the expressions we substitute for n and m may have side effects, so that n + m and m + n may
evaluate to different values. Hence, we will be unable to prove this lemma.

One might object that the lemma will hold for expressions without a side effect; i.e., restate
the lemma so that it holds for “pure” integers only. That is a valid point of view, but unfortunately
“purity” is hard to express in C. In particular, the type system of C does not differentiate between
i and i++ (both have type int). The monadic approach to side effects in a pure functional
language (Section 2.8.6) can be regarded as a solution to this problem: a “pure” integer will havep. 

type Int, but the construction of an integer that has a side-effect will have type m Int for some
monadic type m (for instance, IO Int).

Ultimately, we are not interested in referential transparency per se but in reasoning about
and proving properties of programs. As we saw, referential transparency does not guarantee that
this is possible: every language is vacuously referential transparent when we take the empty set
of identities. One might argue however that some languages are more “usefully” referentially
transparent than others: if we cannot prove basic arithmetic laws such as commutativity of addition
in some language, then terming that language referentially transparent is misleading at best. We
want a language to be usefully referentially transparent so that we can prove these mathematical
laws, essential for reasoning, and yet have side effects.

2.8.2 Leibniz’ Law, extensionality, definiteness and unfoldability

In the previous section, we defined a context to be referentially transparent when it preserves
substitution of identity. The principle of indiscernibility of identicals, as mentioned by Quine,
is known as Leibniz’ Law. Thus, a language is referentially transparent when Leibniz’s Law
holds. Of course, the problem is again which terms we consider as identical. (For an interesting
application of Leibniz’ Law in functional programming, see Baars and Swierstra, 2002).

60

2.8. Side effects

An expression is extensional if the only thing we need to know about its subexpressions is their
value (Søndergaard and Sestoft, 1990) (as opposed to how these values were constructed). For
example, it does not matter whether we evaluate f (1 + 5) or f (6). It is claimed that extensionality
is a consequence of referential transparency (Strachey, 2000/1967), but it is not clear to me in
what sense that is true; it will certainly be difficult to make that statement precise.

A variable is called definite if every occurrence of the variable refers to the same value. For
example, in mathematics we assume that every x in 3x3 + 2x2 + 17x refers to the same value. In
programming languages with side effects, however, this is often not the case. For example, in C,
if x is a global value, then it may well be that the two occurrences of x in

x + f() + x

refer to a different value (if f modifies it). Clearly, we want all variables to be definite if we want
to be able to reason about programs. That is, we do not want variables to actually vary! It should
be noted that many papers seem to use the term “referential transparency” to denote definiteness.

Finally, a language has the unfoldability property if we can always replace a function call by
its definition. I.e., if

f x = e

then we should be able to replace f a by [x 7→ a]e. Unfoldability means that we can take a
function definition such as the above and treat it as an actual identity f x ≈ e which we can then
use for equational reasoning. To a large extent, unfoldability depends on evaluation strategies
(Section 2.7). For example, if ⊥ denotes a non-terminating computation, then given p. 

g x = 5

in a strict language g⊥ will not terminate, but unfolding g will simply give 5. In a lazy language,
both g⊥ and its unfolding will evaluate to 5, but even in a lazy language we need to be careful with
non-termination; we cannot avoid strictness completely. For example, given a “lazy” conjunction
operator, which evaluates its second argument only if the first argument is not equal to False,
then

False∧⊥

will evaluate to False, but
⊥∧ False

will evaluate to ⊥. Hence, we cannot prove the lemma

∀(a b : B), a ∧ b = b ∧ a

but can only prove
∀(a b : B), a 6= ⊥ → b 6= ⊥ → a ∧ b = b ∧ a

Some theorem provers such as Sparkle (de Mol et al., 2002) are rather fastidious about termination;
other people argue that it is okay (with some reservations) to ignore this issue (Danielsson et al.,
2006). We will not consider non-termination further in relation to side effects and purity or
equational reasoning.

61

Chapter 2. Background

2.8.3 Purity

The running theme of this section is that we want to be able to reason about programs; that is,
we want to be able to prove basic lemmas such as mathematical arithmetic identities; we want
extensionality, variables should be definite, unfoldability should apply. We want the language to
be pure, and yet have side effects.

In What is a Purely Functional Language, Sabry (1998) considers various ways to characterize
purity. He rejects referential transparency as a possibility because it does not have a universally
agreed definition, and notes that the simple fact that equational reasoning is possible gives few
guarantees. As we noted previously, every language permits equational reasoning; the question
is how many identities we will be able to prove. After reviewing various other possibilities, he
eventually finds one suitable candidate. He defines a language to be purely functional if

1. it is a conservative extension of the simply typed lambda-calculus,

2. it has well-defined call-by-value, call-by-need, and call-by-name evaluation functions, and

3. all three evaluation functions are weakly equivalent

A language is a conservative extension of the simply typed language calculus (STLC) when it
includes every well-typed term of the STLC, and the semantics coincide on those terms; two
semantics are weakly equivalent if they both evaluate a term t to the same value, or one of the two
semantics is undefined on t. We will consider whether this characterization of a purely functional
language is appropriate for our purposes in the next section.

2.8.4 Substructural logics

It is clear that the core lambda calculus is purely functional following Sabry’s definition (previous
section). Moreover, it is not hard to see that extensionality, definiteness and unfoldability apply.
However, when we add side effects to the lambda calculus, unless we take precautions we quickly
loose many of these properties.

For example, suppose we add support for arrays to the language, and an operation that modifies
an array in-place:

update_array :: Array → Int → Int → Array

update_array array index new_value = ..

We have not added “global” state to the language, but have lost definiteness. For example, in

f :: Array → (Array, Array, Array)

f arr = (arr, update_array arr 0 1, arr)

the first occurrence of arr will have a different value than the last (assuming left-to-right
evaluation of the arguments). Or, perhaps even worse, if the update array happens to be
evaluated first, all occurrences of arr will have the same value: the updated array!

Similarly, we loose definiteness when we add a function to read an integer from the user. The
two occurrences of read int in this function will not have the same value:

g = read_int + read_int

Moreover, we have lost the identity 2 ∗ n = n + n, because the above program is not equivalent to

h = 2 * read_int

62

2.8. Side effects

As explained in the introduction (Chapter 1), substructural logics such as uniqueness typingp. 

can be used to guarantee that a variable will be used at most (or exactly) once. The type of
update array is modified to

update_array :: Array• → Int → Int → Array•

where the bullets (•) in the type indicate the uniqueness of the array: the array must be used
only once (the specifics of individual logics will be considered in the next chapter). This means
that the definition of f , above, will be rejected; in fact, we can safely add update array

without loosing definiteness, because the type system guarantees that any array that is passed to
update array will be used only once. Definiteness holds therefore trivially: arrays that are
modified can only occur once.

“True” side-effecting functions such as read int refer to an implicit state (the “world
state”). In order to add such functions to a purely functional language we have to make this state
explicit. The type of functions such as read int is thus modified to

read_int :: World• → (Int, World•)

The difference between g and h is now more explicit:

g world = let (i, world’) = read_int world

(j, world’’) = read_int world’

in (i + j, world’’)

h world = let (i, world’) = read_int world

in (2 * i, world’)

Again, the type system will guarantee that every world object is used exactly once.
However, does this approach allow us to prove useful lemmas? For example, can we prove

that
∀(n : N), 2 · n = n + n (2.20)

Consider a function that finds the minimal element in an array and then discards the array. For
efficiency purposes, the function does a partial (in-place) sort of the array to find the minimal
element. Hence, the function will have type

find_minimal :: Array• → Int

We can use this function to multiply the smallest element of the array by two:

twice_minimal arr = 2 * find_minimal arr

By equation (2.20), this should be equal to

twice_minimal arr = find_minimal arr + find_minimal arr

but in fact that is not even a valid program, much less equivalent to the previous program. So, it
seems that we have lost (“useful”) equational reasoning.1 Nor does this language seem to meet
Sabry’s definition of a purely functional language. For example, consider the following term

(\x -> (x, x)) (find_minimal arr)

1Note that the “observable sharing” extension to Haskell (Claessen and Sands, 1999)—another calculus that is
sensitive to sharing—has similar problems. Diviánszky (2006) notes that purity may be recovered in such a calculus using
a uniqueness type system, but unfortunately does not show how. An investigation into this topic might be interesting future
work.

63

Chapter 2. Background

for some array arr. Under call-by-need semantics, this term will be in normal form after the
evaluation of find minimal arr, but under call-by-name semantics this term reduces to

(find_minimal arr, find_minimal arr)

which is certainly not equivalent (in fact, will be rejected by the type checker).
However, if we regard equation (2.20) as having an implicit side-condition that the left hand

side and the right hand side of the equation must be well-typed then we can use equational
reasoning. Similarly, it should be possible to adjust Sabry’s definition so that the various semantics
take typing into account. We will prove in Chapter 7 that the call-by-need semantics preservesp. 

types, but that will not be true for the call-by-name semantics (although it may be true for the
call-by-value semantics). If we modify the weak equivalence to include that the types must remain
well-typed at every step during evaluation, we should be able to prove that a language that uses a
substructural logic can be purely functional. However, at this stage this is only a conjecture and
we must unfortunately leave a formal treatment of this issue to future work.

2.8.5 Laziness

In this section we consider one more, slightly subtler, issue related to substructural logics and
equational reasoning. By definition, the unit type 1 (denoted as () in Haskell or UNIT in Clean)
has a single element, also denoted by 1. Therefore, we should be able to prove that

∀(u : 1), u = 1 (2.21)

Will we be able to prove this in a functional language that uses substructural logics to add side
effects in a “safe” manner? Suppose we have a function hello that prints “hello world” to the
console:

hello :: World• → World•

Given hello, we can easily define a derived function hello’:

hello’ :: World• → 1

hello’ world = let world’ = hello world in 1

Now we want to consider the following problem: is the program

λworld. hello’ world

equivalent to the program

λworld. 1

Equation (2.21) tells us that these two programs are indeed equivalent, but at first sight they seem
not to be equivalent at all: we have lost the side effect (the printing of “hello world”) in the second
example. However, in a lazy language, hello’ does not have a side effect either! Since the
result of the call to hello is ignored in the body of hello’, laziness means that hello will
never be invoked at all by hello’. Hence, these two programs are equivalent, but only in a lazy
language. In a strict language, these two programs are not equivalent, and it is not clear how to
modify equation (2.21) in a similar vein to equation (2.20) to make it hold.

64

2.8. Side effects

2.8.6 Monads

The monadic approach abstracts over functions from one world state to another as follows:

data IO a = IO (World → (a, World))

unIO :: IO a → World → (a, World)

unIO (IO f) = f

For example, the functions that open and close files have type

openFile :: FilePath → IOMode → IO Handle

hClose :: Handle → IO ()

which, when expanded, are approximately the same as

openFile :: FilePath → IOMode → World → (Handle, World)

hClose :: Handle → World → ((), World)

The crucial difference between the monadic approach and the approach in Clean, however, is that
the IO type is abstract (and the unIO function not exported). Programmers never manipulate
world objects directly. Instead, the standard library offers numerous primitive functions on the
world state, and an interface to string these functions together.

This interface consists of two functions, called return and »= (also called bind), which
are defined as follows.

return :: a → IO a

return x = IO (λworld → (x, world))

(>>=) :: IO a → (a → IO b) → IO b

x >>= f = IO (λworld → let (a, world’) = unIO x world

in unIO (f a) world’)

In fact, any type m that supports two operations

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

which satisfy a few laws (Section 2.10.3) is known as a monad. There are many such structures, p. 

but a general discussion of monads is beyond the scope of this dissertation. Wadler (1995) provides
a good introduction.

Using the monadic interface and assuming a function

readInt :: IO Int

we can write the program that reads two integers from the user and adds them together as

readTwo :: IO Int

readTwo = readInt >>= λa →
readInt >>= λb →
return (a + b)

This is exactly the same program as function g in Section 2.8.4, except that the threading of the p. 

world state is now hidden inside the monad. As a consequence, re-using the same world state
twice is impossible.

Since monads are a very useful abstraction, Haskell provides a special syntax to write monadic
programs. Using this syntax, the above program can be rewritten as

65

Chapter 2. Background

readTwo :: IO Int

readTwo = do a ← readInt

b ← readInt

return (a + b)

Note however that this is a change in syntax only; this program can be “desugared” into the
previous version. Although this is superficially very similar to an imperative program (reading
“:=” for “←”), this is still a functional program with all the associated benefits. See (Peyton
Jones, 2001, Section 7) for a discussion of this point.

2.8.7 Uniqueness typing versus Monads

At the time of writing, the world’s most popular purely functional programming language is
undoubtedly Haskell, which uses monads for I/O. Although it is largely orthogonal to the subject
of this dissertation, the reader is likely to wonder about the relative merits of uniqueness typing
and the monadic approach. We will therefore briefly discuss the advantages and disadvantages of
both approaches in this section.

Before we begin the comparison it must be pointed out that monads are a very general
functional design pattern, which can be used for much more than just modelling I/O—this applies
equally to languages with and without uniqueness typing. Even Clean programmers use monads
when they are found to provide a useful interface (e.g., Plasmeijer et al., 2007). Conversely,
uniqueness typing can be used for purposes other than I/O too; for instance, the compiler can use
uniqueness information to generate more efficient code. Besides, the choice is ultimately a matter
of taste: de gustibus perpetue disputandum!

We are not aware of any serious studies that compare the two, except for one paper that
compares proving properties over programs written in monadic style and programs written using
a uniqueness type system. That paper comes to the conclusion that, at least as far as proofs are
concerned, the difference is negligible:

‘‘In (Butterfield and Strong, 2002) we explored a program which manipulated a small
part of the world file system component, namely a single file. This lead us to a
tentative conclusion that the explicit environment passing style of Clean programs
was easier to reason about because (i) we could confine our attention to the small
portion of the world state under consideration, and (ii) because we did not have the
small overhead of unwrapping the monad.

However, the case study presented here differs crucially in that (i) the program
involves the state of the entire file system at every step, and (ii) we have developed a
set of operators which simplify the proofs in both paradigms. We can conclude that
for this case study, the differences in reasoning overhead between the two paradigms
are too small to be of any concern.

(Dowse et al., 2003)

Nevertheless, some general statements can and have been made about the differences between both
approaches. In the paper that introduces Haskell’s monadic I/O system, Peyton Jones and Wadler
(1993) make the following comparison, which sums up the most commonly heard arguments from
either side:

66

2.8. Side effects

‘‘Compared to the monad approach, [uniqueness typing] suffers from a number of
drawbacks: programs become more cluttered; the linear type system has to be
explained to the programmer and implemented in the compiler; and code-improving
transformations need to be re-examined to ensure they preserve linearity. The latter
problem may be important; Wakeling found that some standard transformations could
not be performed in the presence of linearity (Wakeling, 1990).

The big advantage of a linear type system is that it enables us to write programs
which manipulate more than one piece of updatable state at a time. The monadic
[presentations of arrays passes] the array around implicitly, and hence can only easily
handle one at a time. This is an important area for future work.

We will have a closer look at the claims made in this comparison.

Programs become more cluttered

Consider the Haskell function that writes the characters ‘a’ and ‘b’ to a file:

ab :: Handle → IO ()

ab f = do hPutChar f ’a’

hPutChar f ’b’

The Clean equivalent is

ab :: (File• → File•)

ab = fwritec ’a’ ◦ fwritec ’b’

I will claim that the Clean version is less “cluttered” than the Haskell version, and certainly has a
more functional feel. The objection is nonetheless fair: the example above is one that actually
benefits from uniqueness typing. The most important disadvantage of uniqueness typing is that
it affects all types, even those of function that do not deal with I/O. For example, the identity
function has the following type in Clean:

id :: tu ×−→ tu

These types get increasingly more complicated with multiple arguments and higher-order functions.
This is an important issue even when types can be inferred: functional programmers rightly like
to write down the types of their top-level definitions. However, part of our thesis is that these
types can be simplified. Moreover, although we have left this issue for future work (Section 8.2.4), p. 

adding syntactic conventions can go a long way towards removing all or nearly all “clutter”.

Linear type system has to be explained to the programmer

In our experience, the concept of a monad is significantly more difficult to explain than the concept
of uniqueness typing. Although monads are simple to define, they are a very general concept
making them difficult to comprehend. Whether because of a lack of good teaching materials or
intrinsic complexity, monads are a stumbling block for most new Haskell programmers. When
teaching object oriented programming, we do not teach design patterns until the programmer is
comfortable with the paradigm and the language. Unfortunately, for a beginning student wishing
to write his hello world example in Haskell, he will immediately be faced with monads. One
might claim that this is the wrong example to start with, but then again I/O is the raison d’être of

every program (Peyton Jones, 2001).

67

Chapter 2. Background

In a language with uniqueness typing writing hello world is no more difficult than writing
a function to add two numbers, or requires any concepts that are not required when writing the
addition function. The types of the functions can be inferred by the compiler and can therefore be
ignored by the student if he wishes. Some people even claim that programmers do not really need
to understand a type system:

‘‘The [Boxy] type system is arguably too complicated for Joe Programmer to un-
derstand, but that is true of many type systems, and perhaps it does not matter too
much: in practice, Joe Programmer usually works by running the compiler repeatedly,
treating the compiler as the specification of the type system.

(Vytiniotis et al., 2006)

While I certainly do not want to argue that uniqueness typing is too complicated to understand,
I will argue that getting started with I/O in a programming language with uniqueness typing is
easier than getting started with monadic I/O, and moreover, the programmer does not even need
to understand the type system before he can do so.

Linear type system has to be implemented

While this statement is obviously true, this dissertation aims to show that with a suitable formaliza-
tion of uniqueness typing, the cost of implementation is very low (in particular, see Section 6.4).p. 

Code-improving transformations need to be re-examined

While this is listed as a disadvantage in the original citation, I maintain that this is actually an
advantage (a feature, not a bug!). In Section 2.8 of Tackling the Awkward Squad, Peyton Jones
(2001) discusses that in ghc, IO is internally defined as

type IO a = World → (a, World)

This definition is not available to the programmer, but in ghc’s internal representation, the
definition of the IO monad is expanded. This is dangerous: the fact that the World must be kept
single-threaded is lost, and “optimization” passes in the compiler might duplicate side effects.
Peyton Jones claims that this will not happen because of certain properties of the compiler, but
these properties cannot be verified. Contrast this to the following quote from the History of

Haskell paper:

‘‘GHC appears to be the first compiler to use System F as a typed intermediate
language [...]. Several years later, we added a “Core Lint” typechecker that checked
that the output of each pass remained well-typed. If the compiler is correct, this
check will always succeed, but it provides a surprisingly strong consistency check—
many, perhaps most bugs in the optimizer produce type-incorrect code. Furthermore,
catching compiler bugs this way is vastly cheaper than generating incorrect code,
running it, getting a segmentation fault, debugging it with gdb, and gradually tracing
the problem back to its original cause. Core Lint often nails the error immediately.
This consistency checking turned out to be one of the biggest benefits of a typed
intermediate language, although it took us a remarkably long time to recognize this
fact.

(Hudak et al., 2007, Section 9.1)

68

2.8. Side effects

Even if one feels that monadic I/O is easier to work with than uniqueness typing, we can build
a monadic interface to I/O on top of uniqueness typing (see Jones, 1995c, for one worked out
example). For example, we can define IO as

type IO a = World• → (a, World•)

If the uniqueness type system is then maintained throughout the compiler (that is, for the internal
representation as well as the source language) expanding the definition of IO is safe: optimization
passes in the compiler that might inadvertently duplicate side effects will be caught by the type
checker.

Granularity

The most important objection to monadic I/O (other than that monads are difficult to explain to
beginning students) is the following:

‘‘If we compare the monad approach to [uniqueness typing] then there are some
striking differences. The environment that is manipulated in the monad approach is
implicit and “appears” only in the IO type. As a result programming in the system
creates one single spine of I/O operations and therefore over determines order of
evaluation [...].

(Achten and Plasmeijer, 1995, emphasis in original)

For example, consider the following function in Clean:

f :: ({Char}•, {Char}•)• → ({Char}•, {Char}•)•

f (arr1, arr2) = (update arr1 0 ’x’, update arr2 0 ’x’)

Function f takes a pair of arrays of characters as arguments, and updates both arrays (sets the first
element in the array to “x”). Compare this to the Haskell implementation:

f :: (IOArray Int Char, IOArray Int Char) → IO ()

f (arr1, arr2) = do writeArray arr1 0 ’x’

writeArray arr2 0 ’x’

Even apart from the fact that the Haskell programs looks like an imperative program rather than a
functional one, there is one important difference between both programs: in the Haskell program,
the first array must be updated before the second. In the Clean program the order of evaluation is
unspecified; in fact, both updates could even be done in parallel. Conceptually, the problem is
that in Haskell the whole “world” is updated when the array is updated (albeit implicitly through
the monadic interface), whereas in the Clean program only part of the world is updated. This
“splitting up” of the world state is an important concept in uniqueness typing (Plasmeijer and van
Eekelen, 1999; see also Achten and Plasmeijer, 1995):

‘‘[Using monads to implement side-effects] is simple but has the disadvantage that all
objects to be destructively updated must be maintained by the system in a single state
which is kept hidden from the programmer. Clean does not have this restriction. One
can have arbitrary states which can be passed around explicitly. Such a state can be
fractured into independent parts (e.g., distinct variables for the file system and the
event queue).

69

Chapter 2. Background

This problem is acknowledged by proponents of monadic I/O (Wadler, 1997; Peyton Jones,
2003). One proposed solution is to introduce the concept of commutative monads, which have the
property that the following two expressions are equivalent:

do a ← f x do b ← g y

b ← g y a ← f x

h a b h a b

Unfortunately the IO monad is certainly not commutative, so introducing commutative monads
by itself will not solve this problem: there must be a way to split the world.

Of course, one must be careful when splitting the world. Clean for instance allows to “split
off” a file from the world state; writes to that file affect the file, but do not affect the world:

writeFile :: Char → File• → File•

However, writing to a file obviously does have an effect on the world; for instance, if there is also
a library function to query the disk space available,

diskSpace :: World• → (Int, World•)

then referential transparency may be lost.
A related problem with the granularity of the monadic approach is that it is more difficult

to express that some parts of a data structure may be destructive modified, but others may not.
Using uniqueness typing, it is straightforward to give a type to spine-unique lists ([a]• for some
a); the elements of such a list cannot be modified in-place, but the list itself can. Of course, it is
possible to simulate this using pointers (Refs) in the IO monad, but not with the same ease and
not without having to define new data structures.

2.9 Language extensions

2.9.1 Recursion

In the untyped lambda calculus, we can define non-terminating programs with the help of a fixed

point combinator (attributed to the logician Curry), defined as

Y = λf → (λx → f (x x)) (λx → f (x x))

This combinator gives us general recursion, and hence non-termination. For example, we can
rewrite the factorial function

fac n = if n == 0 then 1 else n * fac (n - 1)

as

fac = Y (λf λn → if n == 0 then 1 else n * f (n - 1))

In most typed languages, however, we cannot type Y due to the self-application of x: since x is
applied to an argument, it must have a function type (σ → σ′); but since x is applied to itself,
we must have that x : σ. Hence, we must have a type σ such that σ ∼= σ→ σ′. As observed by
Morris (1969), such a type can be defined when we introduce a fixed point operator on the type
level (µa · a→ σ′), but most languages do not support general recursive types because they make
type checking difficult. However, many languages do support algebraic data types (Section 2.4.2),p. 

which provides a controlled recursion on the type level; we can use an algebraic data type to
define Y (formulation due to Stefan Holdermans, personal communication):

70

2.9. Language extensions

data F a = F {unF :: F a → a}

{-# NOINLINE y #-}

y :: (a → a) → a

y f = g (g . unF)

where

g x = f (x (F x))

(The pragma is necessary to stop ghc from trying to inline the y combinator, which will make
compilation non-terminating.)

Of course, an easier solution is to introduce a fixpoint operator µ into the term language. The
typing rule can be presented as

Γ, x : σ ` e : σ
REC

Γ ` µx · e : σ

Equivalently, we can introduce a recursive let expression

Γ, x : σ ` e : σ Γ, x : σ ` e′ : σ′
LETREC

Γ ` letrec x = e in e′ : σ′

To allow for multiple mutually recursive definitions, we can modify the rule to

Γ, x : σ ` e : σ Γ, x : σ ` e′ : σ′
LETREC

Γ ` letrec x = e in e′ : σ′

Alternatively, an encoding of mutual recursion using pairs is also possible. For example, we can
define odd as

odd = letrec even = λn → if n == 0 then True else odd (n - 1)

odd = λn → if n == 0 then False else even (n - 1)

in odd

where we define even and odd as two mutually recursive functions, or we can define a pair of
the functions even and odd as a single recursive definition:

odd = letrec e_o = (λn → if n == 0 then True else snd e_o (n - 1)

, λn → if n == 0 then False else fst e_o (n - 1)

)

in snd e_o

As we have seen briefly in Section 2.6 (and will see in more detail in Chapter 3), some languages p. , p. 

impose restrictions on variables that are used more than once. However, these restrictions will
also apply to variables that are defined recursively (Section 3.2.5). So although the encoding of p. 

mutual recursion using pairs requires more than once reference to e o in its definition, this will
not impose any additional restrictions on the use of the recursively defined terms.

Finally, it should be mentioned that in a language such as Coq that does not support generic re-
cursion but does support co-inductive data types, generic recursion can be recovered by embedding
it into a special monad known as the Partiality monad (Capretta, 2005).

71

Chapter 2. Background

2.9.2 Qualified types

The theory of qualified types was introduced by Jones (1994, 1995b,a). We will not make use of
qualified types in this thesis, but it has been suggested that we should (we will address this in the
conclusions, Chapter 8) and some of the related work does (Chapter 3). We will therefore presentp. , p. 

a brief description here. For a more thorough introduction, please refer to (Jones, 1995a).
Qualified types introduce an “intermediate” between monomorphic types and polymorphic

types. For example, a type ∀(a : ∗) · π(a)⇒ a→ a→ B describes the set of types

{a→ a→ B | a : ?, π(a)}

The exact nature of the predicates (π) is not important, but we must have an entailment relation

between (finite) sets of predicates, satisfying the following conditions:

• P
 P′ whenever P ⊇ P′ (monotonicity)

• If P
 Q and Q
 R then P
 R (transitivity)

• If P
 Q then SP
 SQ for some substitution S (closure)

The typing rules are shown in Figure 2.18. The typing relation takes the form

P | Γ ` e : σ

which states that e has type σ in environment Γ assuming the set of constraints P. The system we
have shown is the extension of System F with qualified types; other presentations based on System
F2 or the Hindley/Milner type system are also possible. Since we are showing an explicitly typed
calculus, we are using Π instead of ∀ in line with the notation elsewhere in this chapter.

Type schemes ∀a · P⇒ σ are usually restricted to be unambiguous: a ∪ fv(P) ⊆ fv(σ). This
restriction can be relaxed in some cases, but one must be careful; see (Jones, 1995a) for details.

Type language
σ ::= type

a type variable
σ→ σ function space
Π(a : ∗) · σ universal type
π ⇒ σ qualified type (unambiguous π)

Typing rules
x : σ ∈ Γ

VAR
P | Γ ` x : σ

P | Γ, x : σ ` e : σ′
ABS

P | Γ ` λ(x : σ) · e : σ→ σ′
P | Γ ` e : σ→ σ′ P | Γ ` e′ : σ

APP
P | Γ ` e e′ : σ′

P | Γ ` t : σ a /∈ fv(Γ) ∪ fv(P)
TABS

P | Γ ` Λ(a : ∗) · t : Π(a : ∗) · σ
P | Γ ` e : Π(a : ∗) · σ

TAPP
P | Γ ` e {σ′} : σ[a := σ′]

P, π | Γ ` e : σ
PRED

P | Γ ` e : π ⇒ σ

P | Γ ` e : π ⇒ σ P
 π
SAT

P | Γ ` e : σ

Figure 2.18: System F with qualified types

72

2.10. Category theory

2.10 Category theory

Category theory is an increasingly important tool in theoretical computer science. However, this
is not the place—nor am I the author—to give a detailed exposition of this large subject. We will
need category theory only in the discussion of related work in the next chapter; the summary we
provide here therefore builds up only to the concepts that we will have a use for. For more details,
the reader is referred to one the many texts on category theory such as (Awodey, 2006), (Barr and
Wells, 1999) or (Pierce, 1991).

2.10.1 Fundamental concepts

A category is a collection of objects and arrows between them, together with a few axioms. We
will often draw a category like this:

C

X

Y

Z

f g

As a notational convention, we will use C,D for categories, X, Y, Z for objects in categories, and
f , g for arrows in categories.

For all arrows f : X → Y and g : Y → Z the composition g ◦ f : X → Z must be defined,
and composition must be associative (g ◦ f is sometimes also written as g f ; g ◦ g can be written
as g2). Moreover, for every object X in the category, there must be an identity arrow 1X on X
satisfying f ◦ 1X = f = 1Y ◦ f for all f : X → Y.

When we draw a category the composition and identity arrows are often left implicit (as we
did above). Do not be misled by the apparent directionality of the arrows in a category: an arrow
from X to Y is not necessarily a way to get from an X to a Y (although it often is); rather, it
merely indicates some connection between X and Y.

An important example of a category is Sets, the category of sets and total functions1. Compo-
sition in Sets is function composition (which we know to be associative); the identity arrow on an
object X is the identity function on X.

We can go “one level up” and consider the category Cat of all categories and structure
preserving maps between categories, called functors (denoted by F, G, U). A functor from C to D
has two components: a map from the objects in C to objects in D, and a map from the arrows in C
to arrows in D.

C D

•

•

•

•

•

F

1Here and elsewhere there are cardinality issues, which however do not concern us.

73

Chapter 2. Background

A functor must satisfy the following axioms

• If f : X → Y in C, then F(f) : F(X)→ F(Y) in D

• F(g ◦ f) = F(g) ◦ F(f)

• F(1X) = 1F(X).

For every category C we can define a functor HomC(X,−) : C → Sets which takes any object Y
in C to the set of arrows from X to Y (in Sets).

On the next level up we find the functor category Fun(C,D) of functors between C and D
and natural transformations between functors. A natural transformation η can be thought of as
a generalization of a polymorphic function (in the sense of System F, see Section 2.4). Givenp. 

two functors F, G : C → D and any object X in C, ηX is an arrow FX → GX in D such that the
following diagram1 in D commutes for any f : X → Y:

C D
X

Y

f

FX FY

GX GY

Ff

Gf

ηX ηY

F

G

Finally, functors and natural transformations give rise to the notion of an adjunction. An adjunction
consists of a pair of adjoint functors F : C → D and U : D → C together with a natural
transformation η : 1C → U ◦ F so that for any X ∈ C, Y ∈ D, and f : X → UY, there exists a
unique g : FX → Y such that the following diagram in C commutes:

C D
Y

FX

g

X

(U◦F)X

UY

ηX

f

Ug

F

U

When F and U form an adjunction, we write F a U and say that F is left adjoint to U and U
is right adjoint to F. Adjunctions describe a relation between two categories. This relation is
more evident from the following equivalent definition: F a U is an adjunction if there exists an
isomorphism between hom-sets which is natural in both X and Y:

φ : HomD(FX, Y) ∼= HomC(X, UY) : ψ

where φ is given by φ(g) = U(g) ◦ ηX. Alternatively, the unit η : 1C → U ◦ F and the co-unit

ε : F ◦U → 1D can be defined in terms of the witness of the isomorphism:

ηC = φ(1FC)

εD = ψ(1UD)

1By an abuse of notation we will present categories and diagrams in categories in the same way.

74

2.10. Category theory

2.10.2 Products, exponentials and currying

The product of two objects X and Y in a category C is an object X ⊗ Y together with two
projection arrows π1 : X ⊗ Y → X and π2 : X ⊗ Y → Y (often called fst and snd in
functional programming languages) so that for all other objects Z with two arrows f : Z → X and
g : Z → Y, there exists a unique arrow h : Z → X⊗Y such that f = π1 ◦ h and g = π2 ◦ h. If
X⊗Y and X′⊗Y′ are product objects, then for every pair of arrows f : X → X′ and g : Y → Y′,
f ⊗ g : X⊗Y → X′ ⊗Y′ is the arrow 〈 f ◦ π1, g ◦ π2〉. In Sets, the product of two objects (two
sets) is the cartesian product of the sets (not all categories have products).

We can now define a functor X⊗− : C → C which maps an object Y ∈ C to X⊗Y and an
arrow f : Y → Z ∈ C to 1X ⊗ f : (X⊗Y)→ (X⊗ Z). We define the exponential (−)X to be
right adjoint to this functor; that is, we must have a natural isomorphism

φ : HomC(X⊗Y, Z) ∼= HomC(Y, ZX) : ψ

In Sets, ZX is the set of all functions from X → Z. Functional programmers will recognize φ

and ψ as

curry :: ((a, b) → c) → (b → a → c)

uncurry :: (b → a → c) → ((a, b) → c)

Semantically, function application can defined in terms of the co-unit ε : (X ⊗−) ◦ (−)X →
1C = (X, (−)X) → 1C of this adjunction, that is as εY = ψ(1YX) : (X, YX) → Y, or in a
functional language:

uncurry (id :: (a -> b) -> (a -> b)) :: (a, a -> b) -> b

2.10.3 Monads

In category theory, a monad on a category C is defined to be a triple (T, η, µ) of a functor
T : C → C and two natural transformation η : 1C → T and µ : T2 → T such that the following
diagrams commute:

T T2 T

T

ηT Tη

= µ =

T3 T2

T2 T

Tµ

µT µ

µ

We refer to η as the unit of the monad and to µ as the multiplication; functional programmers
usually refer to the unit as the return operation, and to the multiplication as the join operation.
Note that bind (Section 2.8.6) can be recovered using λx · λ f · µ ((T f) x). p. 

Two remarks on notation. First, the composition ηT of a natural transformation η with a functor
T is defined to be (ηT)(X) = η(TX) (using the component of the functor on objects); similarly,
the composition Tη of a functor with a natural transformation is defined to be (Tη)(X) = T(ηX)
(using the component of the functor on arrows). Second, these two diagrams are diagrams
of natural transformations: for every object X ∈ C, we can “instantiate” these diagrams to a
commutative diagram for X in C.

75

Chapter 2. Background

Every monad gives rise to an adjunction. Define the Kleisli category CT; the objects in CT

are the objects in C, but an arrow f [: A [−→ B in CT corresponds to an arrow f : A→ TB in C.

The identity arrow 1[
X on an object X ∈ CT is given by ηX. Composition of f [: A [−→ B and

g[: B [−→ C must be an arrow A [−→ C, corresponding to an arrow A→ TC in C, and is given by

A
f−→ TB

Tg−→ T2C
µC−→ TC

To define the adjunction, we must find two functors F : C → CT and U : CT → C:

C CT

X

TY

X

Y

f f [

T

F

U

Define FX = X for all X ∈ C. For each arrow f : X → Y in C we must get an arrow F(f) :

FX [−→ FY = X [−→ Y in CT , which is an arrow X → TY in C; it is given by F f = T f ◦ ηX.

Going the other way, define UX = TX. Then for an arrow f [: X [−→ Y in CT , corresponding to
an arrow f : X → TY in C, we must get an arrow U f [: U(X)→ U(Y) = TX → TY in C; it
is given by U f [= µY ◦ T f . The unit of the adjunction is the unit of the monad.

Equivalently, a monad (T, η, µ) gives rise to a natural isomorphism

φ : HomCT (FX, Y) ∼= HomC(X, UY)

with CT , F and U as before. It is useful to spell that out. Unfolding the definition of F and U:

φ : HomCT (X, Y) ∼= HomC(X, TY)

That is, every function f [: X [−→ Y in CT is isomorphic to a function g : X → TY in C. Of course,
that is no surprise, since that is how we defined CT in the first place; in fact, this isomorphism is
an identity: φ(g) = U(g) ◦ ηX = µY ◦ Tg ◦ ηX = g:

X
TX T2Y

TY

ηX
Tg

µY

g

To see this, remember that η : 1C → T is a natural transformation:

X TX

TY T2Y

g Tg

ηX

ηTY

Therefore φ(g) = µY ◦ (Tg ◦ ηX) = µY ◦ (ηTY ◦ g) = (µY ◦ ηTY) ◦ g = 1TY ◦ g = g (the first
equality comes from the naturality of η, the second from the triangle equalities of the monad).

76

Related Work

The motivation for and the explanation of the use of substructural type systems for adding side
effects to functional languages without losing purity was explained in Chapters 1 and 2, especially p. , p. 

Section 2.8. In this chapter we look at the specific properties of instances of substructural type p. 

systems: uniqueness typing, linear logic, uniqueness logic and the single threaded polymorphic
lambda calculus (STPLC). We also discuss a number of other related type systems, but the subject
area is huge and a full survey is beyond the scope of this dissertation. We will mostly ignore
type systems targeted at sharing analysis (but see Section 3.2.8) or static analyses like (Shankar, p. 

2001) which aim to perform destructive updates when possible but cannot be used for “real” side
effects such as I/O. We will not discuss more theoretical properties such as relational parametricity
(Mogelberg and Simpson, 2007; Bierman et al., 2000), denotational semantics (Wadler, 1992,
1994; Benton and Wadler, 1996; Turner and Wadler, 1999) or program equivalence (Bierman,
2000), nor will we discuss applications of uniqueness typing in the context of imperative languages
such as in the papers by Boyland (2001) and Fähndrich and DeLine (2002) or the work on Eiffel∗

(Eiffel extended with support for uniqueness, Minsky, 1996). A comparison between uniqueness
typing in Clean and some of these languages can be found in (Ahmed et al., 2005).

We will not discuss each type system in detail, but rather highlight only their most important
aspects. In particular, we will generally ignore algebraic data types and recursion, although we
will explain the basic issues in the section on uniqueness typing (Section 3.2). p. 

3.1 An aside on syntax

All systems in this chapter decorate types to distinguish between “restricted” and “unrestricted”
types, for some meaning of restricted such as “has been used at most once” (unique), “will be used
exactly once” (linear), or “is written to” (in the STPLC). Rather than using the original syntax of
these systems, we have tried to use one uniform syntax. We denote a type τ with an attribute ν

as τν. In linear or affine type systems (including uniqueness typing) we denote types for which
the application of structural rules (contraction or weakening) is restricted (unique, linear or affine
types) as τ•, and types for which the structural rules can arbitrarily be applied as τ×.

Although we hope that a uniform syntax makes this chapter more readable and makes it easier
to compare the various systems, it must be pointed out that the chosen syntax can have profound
influences on the design of a type system. For example, in the original presentation of linear logic
types do not have an attribute. Instead, Int is the type of linear (restricted) integers and !Int
is the type of non-linear (unrestricted) integers (we would denote these two types as Int• and
Int×, respectively). Likewise, a→ b is the type of linear functions from a to b, and !(a→ b) is
the type of non-linear functions from a to b (here denoted as a •−→ b and a ×−→ b).

77

Chapter 3. Related Work

Although this may seem like a simple matter of syntax, using “!”-style syntax suggests that
it is necessary to “unwrap” a non-linear type before it can be used. For example, if f has type
!(a→ b), that is, a function wrapped in a !-constructor, before we can apply it we must apply a
typing rule1 to unwrap the function to obtain an element of type a → b. However, that means
that we must have a way to go from a non-linear type to a linear type—and we may not want
such a rule (this is in fact the major difference between uniqueness typing and linear logic, as
discussed below). Moreover, the “!”-style syntax makes it difficult to see how to denote types
with polymorphic linearity, whereas with attributes this can simply be denoted by ∀u · Intu.

Thus, it may be argued that presenting linear logic without the ”!”-constructor but using
attributes somehow misrepresents the type system, especially if one is interested in the evolution
of these systems. Nevertheless, as our primary goal in this chapter is the comparison of these
systems, we feel that a uniform syntax is to be preferred.

Finally, a note on the translation from “!”-syntax to the syntax using attributes: when a typing
rule in “!”-style mentions a type τ, for some meta-variable τ, this means that we can substitute
any type for τ. Hence, we will denote this type as τν in this chapter, to emphasize that both the
base type and its attribute are arbitrary. (This can be simplified if we treat both types and attributes
as types of special kinds, but this will be the subject of Chapter 6.) Similarly, a type such as !τ forp. 

a meta-variable τ will be presented here as τ×.

3.2 Uniqueness typing

The type system we will develop in this dissertation is directly based on the uniqueness type system
of the programming language Clean (van Bakel et al., 1992; Smetsers et al., 1994; Barendsen
and Smetsers, 1993b, 1995b,a, 1996). Nevertheless, of all the type systems considered in this
chapter, the original development of Clean’s type system has a distinctly different feel, as it was
developed as a type system for a (graph) rewriting system rather than the lambda calculus. This
slightly different perspective results in some subtle differences in the typing rules.

For example, at the time of writing, the paper that is probably the best (formal) reference
for Clean’s type system is (Barendsen and Smetsers, 1996); Figure 3.1 shows the typing rules.p. 

The term rewriting background of the system is clearly visible in these rules: no rule is given
for lambda abstraction. Instead, two special rules are given for currying functions (CURRY) and
applying curried functions (CAPP). Although we have tried to keep the syntax as uniform as
possible for the type systems in this chapter, we have not attempted to give a “lambda calculus”
presentation of Clean’s type system here. Indeed, such a presentation was one of the original
motivations for our work, and we will present such systems in later chapters.

In the rest of this section we will explain the type system using a series of examples designed
to expose the various aspects of the system. This will also set us up for the rest of this chapter,
because we will reconsider many of these examples in the context of alternative type systems.

3.2.1 Introduction

Every type in Clean comes in a unique version and a non-unique version. Elements of a unique type
are guaranteed never to be shared and can hence be updated in place without losing definiteness
(see Section 2.8 for a more detailed discussion of this idea).p. 

1In some cases, the system even requires a special construction at the term level.

78

3.2. Uniqueness typing

Typing rules

VAR
x : τν ` x : τν

F ,A ` C : τ′ν′ . τν Γi ` ei : τ′i
ν′i

APP
Γ ` Ce : τν

Γ ` e : τν τν ≤ τ′ν
′

SUB
Γ ` e : τ′ν

′

Γ : e : τν

WEAK
Γ, x : τ′ν

′ ` e : τν

Γ, y : xτ′ν
′
y, z : xτ′ν

′
y ` e : τν

CONTR
Γ, x : τ′ν

′ ` e[y := x, z := x] : τν

F ,A ` Fk+1 : (τν, τ′ν
′
) . τ′′ν

′′
ν f ≤ Πν

CURRY

F ,A ` Fk : τν . (τ′ν
′ ν f−→ τ′′ν

′′
)

Γ ` e : τν
ν f−→ τ′ν

′
∆ ` e′ : τν

CAPP
Γ, ∆ ` Ap(e, e′) : τ′ν

′

Πu is • if any of u is.

Subtyping relation

tν ≤ tν′ ⇔ ν = ν′ (type variable t)

Cνa τν ≤ Cνb τ′ν′ ⇔ νa ≤ νb and τν ≤sign(C) τ′ν′ (type constructor C)

τνa
a

ν−→ τ
νb
b ≤ τνc

c
ν′−→ τ

νd
d ⇔ ν = ν′ and τνa

a ≤	 τνc
c and τ

νb
b ≤

⊕ τ
νd
d

where sign(T) denotes the variance of T (covariant ⊕, contravariant 	, or invariant). For details
see (Barendsen and Smetsers, 1996).

Uniqueness correction

Change the top-level attribute of a type to be non-unique. Note that x·y is a partial function; in
particular, xt•y (for some type variable t) and xτνa

a
•−→ τ

νb
b y are undefined.

xt×y = t×

xCuτνy = C×τν

xS ×−→ Ty = S ×−→ T

Figure 3.1: Uniqueness typing rules (Barendsen and Smetsers, 1996) (see comments in text)

79

Chapter 3. Related Work

For example, Clean supports arrays which, unlike lists, can be accessed and updated in O(1)
time. The function that overwrites an element at some index in an array of characters has type

cUpdate :: {Char}• Int Char → {Char}•

({Char} is Clean syntax for an array of characters; in the ASCII syntax for Clean, {Char}• is
written as *{Char}.) As mentioned before, functions in Clean can have more than one argument;
currying is treated separately (see Section 3.2.4).p. 

Likewise, a Clean program is a function from an old to a new world state:

Start :: World• → World•

For example, here is a simple Clean program to output “Hello world” to the console:

Start :: World• → World•

Start world = let (console, world‘) = stdio world

console‘ = fwrites "Hello world" console

(success, world‘‘) = fclose console‘ world‘

in world‘‘

This program uses the following functions from the Clean standard library, which open the console,
write a string to a file handle, and close a file handle, respectively.

stdio :: World• → (File•, World•)

fwrites :: {Char} File• → File•

fclose :: File• World• → (Bool, World•)

The Clean syntax has various conventions for denoting common patterns of types with uniqueness
attributes, and a special scoping rule to avoid having to invent a new name for each new world

object. These conventions make code easier to write, but to the inexperienced Clean programmer
will obscure the details. Hence, we will not use any of these conventions in this dissertation, with
the exception of one: in the context of Clean types, a type without an attribute, such as Int,
denotes the non-unique version of the type (Int×). Thus, the type of fwrites above is really

fwrites :: {Char}× File•
×−→ File•

That is, fwrites is a non-unique function which takes a non-unique string (character array) and
a unique file and returns a unique file.

3.2.2 Subtyping

A term of a unique type is guaranteed not to be shared, whereas no such guarantees are given for
terms of a non-unique type. However, suppose a function (such as fwrites, above) expects a
non-unique string. That is, it expects a string for which no sharing guarantees are given; should
we be able to pass a unique string to fwrites? Intuitively, the answer should be affirmative; the
additional guarantees about the string are not relevant to the operation of fwrites, but neither
are they harmful.

For this reason Clean introduces a subtyping relation, where a unique type is considered a
subtype of its non-unique counterpart. Hence, we will be able to pass a unique string to fwrites,
or indeed write a function that duplicates unique arrays:

dupArray :: {Char}• → ({Char}×, {Char}×)

dupArray arr = (arr, arr)

80

3.2. Uniqueness typing

Only elements of a non-unique type can be duplicated, so in the body of dupArray we are
expecting a non-unique array. Due to subtyping, however, arr can be treated as if its type is a
non-unique array. The subtyping relation is not uniform, however. In particular, a unique function

cannot be treated as a non-unique function. Hence, it is impossible to write a function

// Illegal example

dupFn :: (Int
•−→ Int) → (Int

×−→ Int, Int
×−→ Int)

dupFn fn = (fn, fn)

It is therefore also impossible to write a generic “duplication” function of type

// Illegal example

dupAny :: a• → (a×, a×)

dupAny x = (x, x)

We can write this function, but its type is different:

dup :: a× → (a×, a×)

dup x = (x, x)

Due to Clean’s subtyping relation, dup can be used to duplicate unique arrays, but cannot be used
to duplicate unique functions. The reason for this non-uniformity will be given in the section on
partial application (Section 3.2.4).

3.2.3 Uniqueness propagation and polymorphism

Uniqueness types often have constraints (implications between uniqueness attributes) associated
with them. In Clean, for example, fst (the function which returns the first element of a pair) has
type

fst :: (tu, sv)w → tu, [w ≤ u, w ≤ v]

The type uses uniqueness variables to denote unknown uniqueness attributes, just like type
variables are used to denote unknown types. The constraint [w ≤ u] denotes that w must be
unique if u is (u implies w)1. To understand the need for this constraint, suppose we have a pair
with elements x :: t and y :: s. The only references to these elements are from this pair, so t and s
get a unique (•) attribute. Further, suppose that there are two references to the pair, making the
attribute of the type of the pair non-unique (×). Visually:

(·, ·) :: (t•, s•)×

x :: t• y :: s•

If we could extract a unique element from a non-unique pair, we could extract x from the pair
and modify it. But then the value of x as seen through the second reference will also change, and
referential transparency is lost. So, we can only extract a unique element from a container if the
container is unique itself (w ≤ u). In section 3.6.3 on Mercury (which does not currently enforce p. 

this), we will give an example program that duplicates arbitrary unique objects by extracting
unique elements from non-unique pairs.

1Perhaps the choice of the symbol ≤ is unfortunate. In logic a ≤ b denotes a implies b, whereas here u ≤ v denotes
v implies u. Usage here conforms to Clean conventions.

81

Chapter 3. Related Work

3.2.4 Partial application

The problem of partial application is probably the most subtle in the design of substructural type
systems, and it is important that we understand it fully. Consider the function that returns the first
of its two arguments:

const = λx → λy → x

Temporarily ignoring the attributes on arrows, const has type

const :: tu → sv → tu

Given const, what would be the type of

sneakyDup = λx → let f = const x

in (f 1, f 2)

It would seem that since f has type sv → tu, this term has type

sneakyDup :: tu → (tu, tu)

but this is clearly wrong: the elements in the result pair are shared, so the attribute on their types
must be non-unique.

Recall from the previous section that if we want to extract a unique element from a container,
the container must be unique itself. When we execute a function, the function can extract elements
from its closure (the environment which binds the free variables in the function body). If any of
those elements is unique, executing the function will involve extracting unique elements from
a container (the closure), which must therefore be unique itself. Since we do not distinguish
between a function and its closure in the lambda calculus, this means that the function must be
unique. Thus a function needs to be unique on application (that is, a function can be applied only
once) if the function can access unique elements from its closure.

There are various ways in which this problem can be solved and we will propose two new
ways in Chapters 4 and 6. The solution adopted in Clean is that the result of a partial applicationp. , p. 

is a unique function if the supplied argument was unique. Moreover, the subtyping relation is
defined such that a unique function is not considered a subtype of a non-unique function, and
therefore must remain unique. We say that the function is necessarily unique or essentially unique.

In the example above, f is duplicated (used twice), so that its type must be non-unique. Hence,
the argument supplied to const had to be non-unique, and the type of sneakyDup is therefore
the same as the type of dup, as expected:

sneakyDup :: t× → (t×, t×)

In the typing rules (Figure 3.1) this is formalized in rule CURRY and the definition of uniquenessp. 

correction1. CURRY says that if we partially apply a function the result is a unique function if any
of the supplied arguments is unique. Then the rule for contraction (CONTR), which duplicates
a variable so that it can be used more than once, uses a uniqueness correction on the type of
the variable to make it non-unique. This correction however is partial, and will fail on unique
functions.

1Note that Barendsen and Smetsers use [·] instead of x·y to denote uniqueness correction; we do not use this notation
to avoid confusion with the syntax for lists.

82

3.2. Uniqueness typing

3.2.5 Recursion

A recursively defined object must be non-unique. To see why, consider the following definition of
an infinite list of 1s:

ones = [1 : ones]

Suppose that we would allow the type for ones to be a unique list of integers, [Int]•. Then we
would be able to pass ones as argument to a function that changes the head of a list in-place:

update_head :: [tu]• → tu → [tu]•

Since update head only modifies the head of a list, we would expect the result of

update_head ones 2

to be the (infinite) list [2, 1, 1, 1, ...]. However, since ones is recursively defined, the
result would actually be [2, 2, 2, 2, ...]. In fact, there is more than one reference to
ones in update head ones 2; one from the call to update head, and one from within
ones itself. Hence, a recursively defined object must always be non-unique1.

It is possible to define a fixpoint operator in Clean, for instance using a recursive data type
(Section 2.9.1) or simply using term-level recursion as p. 

y :: (tu ×−→ tu) ×−→ tu

y f = f (y f)

The type of y may seem slightly worrying, since it does not require the generated object to be
non-unique. In particular, we can define

ones’ :: [Int]•

ones’ = y (λtail → [1:tail])

However, ones and ones’ are not the same object. In ones, the tail of the list is ones, whereas
in ones’ the tail is a function application which when evaluated will produce the next element
of the list. Hence, the list nodes themselves will not be shared in ones’ and it is sound to give
ones’ a unique type.2

3.2.6 Read-only access

One of the challenges that type systems such as uniqueness typing and linear logic face is to
support multiple read-only accesses before a write access. The canonical example is the definition
of a function swap which swaps two elements in an array. It can be defined in Clean as

swap :: {a}• Int Int → {a}•

swap arr i j

#! a = select arr i

b = select arr j

= update (update arr i b) j a

1Clean does in fact allow to give a type annotation to ones to make it a unique list of integers, [Int]•. However, this
changes the semantics of ones: it now becomes a function that returns an infinite list of 1s, much like ones’. Thanks to
John van Groningen for pointing this out.

2Note that since the argument to y must be a non-unique function, it cannot contain any unique elements in its closure
(Section 3.2.4). Hence, we cannot use y to create a list with “shared but unique” elements.

83

Chapter 3. Related Work

This example is type correct and modifies a (unique) array in-place, even though there are three
references to arr in the body of swap. The reason that the program is nevertheless accepted is
that the two select operations must be evaluated before the calls to update (the #! syntax
denotes strict evaluation). Since select only inspects the array, and since the calls to select
are guaranteed to be evaluated before the call to update, we can allow such definitions without
sacrificing properties such as definiteness (Section 2.8).p. 

We have to be careful however: it is imperative to avoid aliasing. For example, consider1

strictDup :: {#Char}• -> ({#Char}•, {#Char}×)•

strictDup arr

#! arr‘ = arr

= (arr, arr‘)

This is yet another variant of dup, but one that should be rejected: the type of strictDup tells
us that it returns one unique and one non-unique array; but since both arrays are the same, they
should never be given a unique type. The problem is that although access to arr in the #! line is
indeed read-only, it also creates an alias to arr. To make the problem even more obvious, if we
do not prohibit aliasing we could define

disaster :: {#Char}• -> ({#Char}•, {#Char})•

disaster arr

#! arr‘ = arr

= (update arr 0 ’a’, arr‘)

Since arr and arr’ are both references to the same array, the result of disaster "xyz"

will be ("ayz", "ayz"), and we have lost definiteness.
This problem is difficult to avoid, and both uniqueness typing and linear logic use a heuristic:

severe restrictions are placed on the types of the variables that are assigned in the read-only
accesses: essentially, only basic types such as integers are allowed (Plasmeijer and van Eekelen,
2002, Section 9.4). This is however difficult to get right; in fact, it turns out that the Clean compiler
accepts strictDup and disaster (de Vries, 2007)! This bug has since been solved, but it
illustrates the difficulty of the problem.

Unfortunately, it seems that a more principled solution to this problem is not possible without
making the system significantly more complicated. We will discuss one proposed solution (in the
context of linear logic) in Section 3.3.3. The single threaded polymorphic lambda calculus alsop. 

solves this problem to some extent (Section 3.5.3). Finally, we will briefly come back to this issuep. 

when we list future work (Section 8.2.9).p. 

3.2.7 Reference count analysis2

As discussed in the section on substructural logics in the previous chapter (Section 2.6), we mustp. 

be careful to split the typing environment in rules such as App with more than one premise. This
is however a non-deterministic operation: when the type inferencer, which is trying to find a proof
that a term is well-typed, needs to apply a rule such as App (bottom-up), it does not know how to
split the typing environment.

1{#Char} is the type of arrays of “unboxed” characters; that is, actual characters as opposed to pointers to thunks of
code for yet-to-be-evaluated characters.

2Reference count analysis is sometimes also referred to as sharing analysis; however, we want to reserve this term for
a different analysis, discussed in Section 3.2.8.

84

3.2. Uniqueness typing

One solution is to annotate the terms with local sharing information. Every use of a variable x
in a term is annotated as x⊗ if it occurs more than once in its range (or if it is recursively defined)
and as x� otherwise. We consider a few examples. The identity function is marked as

id x = x�

since there is only one reference to x in the body of id. Note that even when a variable is used
only once, that does not automatically make its type unique: when a shared term is passed to id,
it will still be shared when it is returned from id.

In the definition of dup, however, there are two references to the same variable, which must
therefore be marked as shared:

dup x = (x⊗, x⊗)

The reference count analysis does not make a distinction between variables that correspond to
functions and variables that correspond to function arguments. For example, the function twice is
marked as

twice f x = f⊗ (f⊗ x�)

We can now redefine the typing rules over annotated terms. We no longer need to split typing
environments, nor do we need explicit structural rules. In fact, the type system starts to look
like an ordinary structural type system, which makes type inference much easier. Of course, the
rule for variables must now be split into two rules: one for variables marked as ⊗ (for which
we need to apply the uniqueness correction shown in Figure 3.1) and one for variables marked p. 

as � (for which we do not). We do not show the redefined typing rules here, because they do
not illustrate any new properties of the type system (see instead (Barendsen and Smetsers, 1996,
Section Uniqueness Typing Inference), which also contains a theorem that the two presentations
are equivalent). We will however make extensive use of this style of presentation in the chapters
to come.

An alternative solution proposed by Hage et al. (see next section; personal communication
with Stefan Holdermans) is to pass the same environment to both branches of a typing derivation,
but keep track of which variables in the typing environment are referenced. When typing an
application (f e), we type both f and e in an environment Γ; variables that are used in both
f and e will be corrected when typechecking the application to have a non-unique type. This
approach only works when the type of the variable at the usage site cannot differ from the type
of the variable at the binding site. For example, in a type system where variables can lose their
uniqueness (such as the one we propose in Chapter 4), we can define a function dup of type p. 

dup :: tu → (t×, t×)v

dup x = (x, x)

In such a type system, we cannot correct the type of x when we typecheck the application (of the
pair constructor), since the type of x in the typing environment has not changed, even if the type of
x at the usage site is different. A similar problem occurs in a type system where variables cannot
lose their uniqueness, but with support for first-class uniqueness polymorphism (Chapter 6): p. 

dup :: (∀u.tu)→ (t×, t×)v

dup x = (x, x)

The alternative approach to reference count analysis is feasible in Hage et al. (2007) because
variables cannot loose their uniqueness in that system and the type of the second dup variation
cannot even be represented (see next section).

85

Chapter 3. Related Work

3.2.8 Uniqueness typing and sharing analysis

Call-by-need languages such as Haskell are often implemented by updatable thunks. A thunk is a
data structure in memory that represents a suspended computation. For example, in

let x = f 1 ; y = f 2 in y + x

two thunks are created for (f 1) and (f 2); no computation takes place until the result of (f 2) is
required by the addition. Once evaluated, a thunk is updated with the result of the computation to
avoid needless future re-evaluation. This is of course only possible in pure languages where the
result of evaluation depends solely on the expression and not on global state (Section 2.8). Seep. 

(Harris and Singh, 2007, section 2) for a good introduction to thunks.
According to Marlow (1993), however, 70% of the time the result of a thunk is only required

once and updating the thunk is unnecessary. Sharing analysis (Turner et al., 1995; Wansbrough
and Peyton Jones, 1999) attempts to find out which thunks do and do not need to be updated. Like
uniqueness typing, sharing analysis therefore distinguishes between expressions that are used
only once and expressions that are used more than once. For example, the function double is
assigned the type

double :: Int•
×−→ Int×

double x = 2 * x

The annotation on the domain of the function means that double will evaluate its argument
at most once. However, passing an argument that is used more than once will not cause any
problems:

let x = .. in (double x) * x

Thus, there is a coercion

coerce :: t× → t•

Conversely, given

square :: Int×
×−→ Int×

square x = x * x

if we pass an expression of type Int•, that is, an argument for which we have inferred that it
will be accessed only once, then this argument will be re-evaluated twice within square; worse,
it might be that the argument thunk will be garbage collected after the first use resulting in an
abnormal termination of the program. Thus, we do not want to allow a coercion of the form

invalid_coerce :: t• → t×

Hage, Holdermans, and Middelkoop (2007) observe that this subtyping behaviour is dual to that
of uniqueness typing (Section 3.2.2). They present a type system which is parametrized by thep. 

direction of the subtyping relation and encompasses both uniqueness typing and sharing analysis.1

The authors present two type systems, an explicitly typed “target” language in the style of
System F (Section 2.4) and an implicitly typed Hindley-Milner style (Section 2.5.1) ”source”p. , p. 

language. Both systems are presented using the qualified types framework (Section 2.9.2) to dealp. 

with inequality constraints between uniqueness attributes. Like Clean’s type system, the system
supports both uniqueness polymorphism (referred to as polyvariance) and subtyping.

1Linear logic is dual to uniqueness typing in the same way as sharing analysis and one might argue that sharing
analysis and linear logic are two sides of the same coin. For example, we will discuss a linear logic (Turner et al., 1995) in
Section 3.3 that is also often cited as a paper on sharing analysis.

86

3.3. Linear logic

To the best of our knowledge, Hage et al.’s type system is the only uniqueness system
supporting first class polymorphism other than the one we define in this dissertation (although an
inference algorithm is only given for the Hindley/Milner fragment). Regrettably, the type system
as presented does not guarantee that unique elements are not shared, as it does not deal with the
partial application problem (Section 3.2.4). The authors acknowledge the problem, and mention p. 

that the solution we proposed in an earlier paper (de Vries et al., 2007b, or Chapter 4 in this p. 

dissertation) might solve the problem; they adopt this approach in (Hage and Holdermans, 2008).
Although the target language supports first-class polymorphism, the top-level attribute of

a type cannot be universally quantified (Wansbrough and Peyton Jones (1999) adopt the same
approach). The typing relation takes the form1

P | Γ ` e : σu

for some type σ, which can be a type scheme. This means that we can infer

(λx · x) : (∀t u · tu → tu)×

However, the body of the type scheme (the type on the dots in ∀a · . . .) must be a type without an
attribute. We will argue later in this dissertation that the type

(λx · x) : ∀t u · (tu → tu)×

is more intuitive (and will enforce this structure using a kind system; Chapter 6); but even if p. 

the first type seems reasonable, this representation does have an important disadvantage: since
the assumptions in the typing environment take the same form (x : σu), top-level uniqueness
attributes on assumptions cannot be universally quantified and hence

λ(x :: ∀u.Intu) · (x, x)

cannot be typed (indeed, the term itself cannot even be represented). Depending on whether the
language supports subtyping or not, terms of this shape may be useful (Section 6.3). p. 

3.3 Linear logic

Linear logic was introduced by Jean-Yves Girard (Girard, 1987, 1991); its use as a type system
was pioneered by Philip Wadler. It is probably both the most well-known substructural logic and
the most well-known substructural type system, and many people seem to equate substructural
logic and linear logic. As O’Hearn and Pym (1999) put it:

‘‘Perhaps the most lasting impression of linear logic, much more than the formal
system itself, will be its revealing of the computational significance of the structural
rules of Weakening and Contraction.

Indeed, an often heard comment at conferences after a presentation on uniqueness typing is: “is
this not just linear logic?” Before presenting some linear type systems, we will address this
question first.

1This relation is denoted as Γ ` e :u σ in the paper, where no distinction is made between the typing environment and
the predicate environment. See also Section 2.9.2 on qualified types.

87

Chapter 3. Related Work

3.3.1 Linear logic versus uniqueness typing

Like uniqueness typing, linear typing distinguishes between two classes of types: linear types
and non-linear types. Like terms of unique types, terms of linear types cannot be duplicated. One
relatively minor difference is that linear type systems also restrict disregarding elements of a
linear type (in that respect, uniqueness typing is closer to affine logic than to linear logic).

However, there is a more important difference. In its original form, linear logic was designed
for a very different application domain than uniqueness typing. Rather than reasoning about
sharing, linear logic reasons about “supply” and “consumption”. Linear types model resources
that can be used (consumed) only once; non-linear types model resources of which there is an
infinite supply. For example, a “linear” banknote can be regarded as a single banknote (and can
be expended only once), whereas a “non-linear” banknote can be regarded as an infinite stack of
banknotes. From this perspective, it is reasonable to allow the terms

λx · x :: t× •−→ t•

or λx · (x, x) :: t× •−→ (t•, t•)•

To continue the analogy, these terms peel off one and two banknotes from our infinite stack. This
coercion from a non-linear type to a linear type is known as dereliction in linear logic.

From a uniqueness perspective, however, we certainly do not want to admit these terms. The
first changes a term for which there are no sharing guarantees into a term that is guaranteed not to
be shared; worse, the second duplicates a term and guarantees that the two terms in the result will
be unique (guaranteed not to be shared). While we may want to allow these operations for some
types such as arrays (where we can implement the term by copying the entire array), we certainly
do not want to allow this operation for all types (especially in the case of the world state).

Indeed, in a uniqueness type system we may want to allow

λx · x :: t• •−→ t×

From the perspective of uniqueness typing this term simply loses the uniqueness guarantee.1

When considered from the perspective of linear logic, however, this term should definitely not
be allowed: it changes a single bank note into an infinite supply. Harrington (2001, Chapter 5,
Conclusions) phrases it well: in linear logic, “linear” means “will not be duplicated” whereas in
uniqueness typing, ”unique” means “has not been duplicated”. In a paper on a type system based
on linear logic, Wadler (1991) argues

‘‘Does this mean that linearity is useless for practical purposes? Not completely.
Dereliction means we cannot guarantee a priori that a variable of linear type has
exactly one pointer to it. But if we know this by other means, then linearity guarantees
that the pointer will not be duplicated or discarded.

Nevertheless, we consider this a serious weakness of the use of linear logic for reasoning about
sharing. In fact, Wadler appears to agree: three out of the four type systems he proposes do not
include dereliction. These type systems are therefore closer in spirit to uniqueness typing than to
linear logic, although no mention of uniqueness typing is made in any of the papers.

1We must however be careful with partially applied functions; see Section 3.2.4.

88

3.3. Linear logic

VAR
x : τν ` x : τν

Γ, x : τν ` e : τ′ν
′

ABS
Γ ` ¡λx · e : τν •−→ τ′ν

′
Γ ` e1 : τν •−→ τ′ν

′
∆ ` e2 : τν

APP
Γ, ∆ ` (¡e1 e2) : τ′ν

′

Γ, x : τν ` e : τ′ν
′

non-linear Γ
ABS×

Γ ` λx · e : τν ×−→ τ′ν
′

Γ ` e1 : τν ×−→ τ′ν
′

∆ ` e2 : τν

APP×
Γ, ∆ ` (e1 e2) : τ′ν

′

Γ ` e : τν

WEAK
Γ, x : τ′× ` e : τν

Γ, x : τ′×, x : τ′× ` e : τν

CONTR
Γ, x : τ′× ` e : τν

Figure 3.2: Typing rules from (Wadler, 1990)

VAR
x : τν ` x : τν

Γ, x : τν ` e : τ′ν
′

ABS
Γ ` λx · e : τν •−→ τ′ν

′

Γ ` e1 : τν •−→ τ′ν
′

∆ ` e2 : τν

APP
Γ, ∆ ` e1 e2 : τ′ν

′

Γ ` e : τν

WEAK
Γ, x : τ′× ` e : τν

Γ, x : τ′×, x : τ′× ` e : tν

CONTR
Γ, x : τ′× ` e : τν

Γ ` e : τν non-linear Γ
PROMOTION

Γ ` e : τ×
Γ, x : τ′ν

′ ` e : τν

DERELICTION
Γ, x : τ′× ` e : τν

Figure 3.3: Typing rules from (Wadler, 1991, Section 3)

3.3.2 Wadler’s type systems

In the type system presented in Wadler’s first paper (Wadler, 1990), the linear and non-linear types
are kept completely separate, even on the term level. There is a different syntax for defining linear
functions (¡λx · e) and non-linear functions (λx · e), and likewise there is a different syntax for
applying linear functions (¡e1 e2) and applying non-linear functions (e1 e2).

The typing rules, presented in Figure 3.2, are based on the simply typed lambda calculus
where the rules for contraction and weakening (see Section 2.6) apply to non-linear types only. p. 

Linear and non-linear types are kept completely separate: coercion from a non-linear type to a
linear type (dereliction) is not allowed (nor is coercion in the other direction).

Since the type system distinguishes syntactically between linear and non-linear functions,
we need separate typing rules for linear and non-linear functions. However, rules APP• and
APP× are identical, and the only difference between rules ABS• and ABS× is that non-linear
functions cannot contain any linear elements in their closure (side-condition “non-linear Γ”; see
Section 3.2.4 for a discussion on the necessity of this condition). p. 

In his next paper, Wadler (1991) presents a series of type systems, starting with an earlier
linear type system presented by Abramsky (1993) (see also Mackie, 1994). This type system is
based directly on linear logic (including dereliction) and is shown in Figure 3.3.

Wadler proceeds to give a version of the typing rules that supports “use variables” and
constraints (inequalities) between them. These can be compared to uniqueness variables and
constraints between uniqueness variables (see Section 3.2), except that in the original presentation p. 

the syntax is rather awkward; since Wadler uses the !–style syntax (see Section 3.1), he is led to p. 

put the use variable on the !. That is, Intu would be denoted by !uInt.

89

Chapter 3. Related Work

VAR
x : τν ` x : τν []

Γ, x : τν ` e : τ′ν
′
[C]

ABS

Γ ` λx · e : τν
ν f−→ τ′ν

′
[C ∪ {ν f ≤ νc | τνc

c ∈ Γ}]

Γ ` e1 : τν
ν f−→ τ′ν

′
∆ ` e2 : τν

APP
Γ, ∆ ` e1 e2 : τ′ν

′

Γ ` e : τν

WEAK
Γ, x : τ′× ` e : τν

Γ, x : τ′×, x : τ′× ` e : τν

CONTR
Γ, x : τ′× ` e : τν

Figure 3.4: “Steadfast” typing rules from (Wadler, 1991, Section 7)

The next variation presented uses “standard types” (a canonical form of types) and presents the
typing rules with rules DERELICTION and PROMOTION “embedded” in the other rules. Neither of
these changes affect the properties of the type system in any fundamental way and are irrelevant
for our current purposes.

Finally, he presents a version with “steadfast” linear types that cannot be coerced to non-linear
types (i.e., dereliction is removed). These rules are shown in Figure 3.4.

If the steadfast type system looks like uniqueness typing, the system presented by Turner,
Wadler, and Mossin (1995) is even more similar. It it almost identical to the steadfast type system,
except that weakening is now unrestricted. In other words, variables of a linear type no longer
have to be used, but if they are used they can be used at most once. The only feature distinguishing
uniqueness typing from (Turner et al., 1995) is the absence of a coercion from linear (unique)
types to non-linear (non-unique types) in the latter.

For a further discussion of linear type systems and their relation to the purity question we
considered in Section 2.8 the reader might like to refer to (Cooper, 1997), but note that Cooperp. 

claims (Chapter 6) that the steadfast typing rules do not guarantee that terms of a linear type are
not shared. He creates the following term:

use_twice :: (tu •−→ sv) •−→ (tu •−→ rw) •−→ (1×
×−→ tu) •−→ (sv, rw)up

use_twice f g x = (f (x ⊥), g (x ⊥))

Since we can instantiate this type to

use_twice :: (t• •−→ sv) •−→ (t• •−→ rw) •−→ (1×
×−→ t•) •−→ (sv, rw)up

Cooper concludes that this means that we can use use twice to use unique elements twice.
This conclusion however is not justified. If we pass a function (x) to use twice that can return
a unique element whenever it is applied to an element of type unit, then indeed we can invoke that
function twice to get two unique elements. However, such a function cannot be defined in the
core calculus: the elements in the closure of a non-linear function must be non-linear (see also the
discussion of partial application in Section 3.2.4).p. 

3.3.3 Observable linear types

Both uniqueness typing and linear logic struggle with the read-only access problem first described
in Section 3.2.6. Wadler presents a solution similar to the solution adopted in Clean (for example,p. 

see Wadler, 1990, Section 4, Read-only access), with the same problems.

90

3.4. Uniqueness logic

Odersky (1992) proposes to solve this problem in a more principled fashion by distinguishing
between non-linear, linear and “observer” types. Variables that are assigned a linear type in an
expression can be assigned an observer type in the body of a strict-let expression. By checking
that the types of the variables assigned in the strict-let expression do not contain any observer
types, the type system can guarantee that these variables do not escape.

The typing rules are based on the type system from (Turner et al., 1995), the final system
we described in the previous section with steadfast linear types and unrestricted weakening.
Variables of a linear type cannot be coerced to a non-linear type (no subtyping), but they can

be coerced to observer types, and thus be read from (but not written to) arbitrarily many times.
The system correctly deals with the partial application problem: lambda expressions with linear
elements in their closure must be linear themselves, and can thus be executed only once. The
rule for application has the important side-condition that a function to be executed is linear or
non-linear, but not of an observer type. This is important to prohibit executing a function with
linear elements in its closure more than once by coercing it to an observer type in the body of a
strict-let expression.

As long as there are only two possible attribute values (linear or non-linear) we can express
linearity requirements simply by adorning type variables with the required linearity attribute. An
unfortunate consequence of introducing a third kind of attribute (observer) is that we need to
introduce constraints instead.1 A constraint on a type τ can be of the form “τ must be linear or
non-linear” (but not of an observer type), “τ must be non-linear or observer” (but not linear) or “τ

must be linear or observer” (but not non-linear). Odersky uses ν ≤ 0̄, ν ≤ 1̄ and ν ≤ 2̄ to denote
these constraints, where ν is the attribute on τ. The system uses qualified types (Section 2.9.2) p. 

as a constraint framework; we do not show the full typing rules as they provide little additional
insight.

3.4 Uniqueness logic

Uniqueness logic (Harrington, 2001, 2006) is an attempt to define the logic that corresponds to
uniqueness typing through the Curry-Howard isomorphism. That said, while the logic is “inspired
by” Clean’s uniqueness type system, there are significant differences, especially regarding the
treatment of partial application. The rules are defined in Figure 3.5. The type system is presented p. 

as a sequent calculus (Section 2.1.3) rather than in natural deduction style. This makes the p. 

comparison between uniqueness logic and the other systems in this chapter slightly more difficult,
but does not otherwise change the properties of the type system.

3.4.1 Affinity

At a first glance it may seem that the type system is linear rather than affine: rule WEAK allows to
discard variables of a non-unique type only. However, rule WEAK′ is admissible (can be derived
from the other rules):

Γ ` e : τν

WEAK′
Γ, x : τ′ν

′ ` e : τν

1Note that it is not correct to introduce a subtyping relation so that an observer type is considered a subtype of a
non-linear type: this would mean that we can forget that a term has an observer type, and thus escape from from a strict-let
expression. It is thus important to use constrained polymorphism rather than subtyping.

91

Chapter 3. Related Work

VAR
x : τν ` x : τν

Γ ` e′ : τ′ν
′

∆, x : τ′ν
′ ` e : τν

CUT
Γ, ∆ ` e[x := e′] : τν

Γ ` e′ : τν ∆, x : τ′ν
′ ` e : τ′′ν

′′

→LEFT
Γ, ∆, y : τν •−→ τ′ν

′ ` e[x := y e′] : τ′′ν
′′

Γ, x : τν ` e : τ′ν
′

→RIGHT
Γ ` λx · e : τν •−→ τ′ν

′

Γ, x : τ′ν
′ ` e : τ×

DERELICTION
Γ, x : τ′× ` e : τ×

Γ ` e : τν

PROMOTION
Γ ` e : τ×

Γ ` e : τν

WEAK
Γ, x : τ′× ` e : τν

Γ, x : τ′×, x : τ′× ` e : τν

CONTR
Γ, x : τ′× ` e : τν

Figure 3.5: Uniqueness Logic (Harrington, 2001)

which means that the type system is in fact affine. To show that WEAK′ is admissible, we first
show that REDEMPTION is admissible (Harrington, 2006, Section 2)

Γ, x : τ′× ` e : τν

REDEMPTION
Γ, x : τ′ν

′ ` e : τν

using the derivation

VAR
x : τ′ν

′ ` x : τ′ν
′

PROMOTION
x : τ′ν

′ ` x : τ′× Γ, x : τ′× ` e : τν

CUT
Γ, x : τ′ν

′ ` e[x := x] : τν

=
Γ, x : τ′ν

′ ` e : τν

Notice that the admissibility of REDEMPTION together with the requirement that the conclusion of
DERELICTION must be non-unique implies the duality of the subtyping relation when compared
to linear logic.

Given REDEMPTION, admissibility of WEAK′ is trivial:

Γ ` e : tu

WEAK
Γ, x : s× ` e : tu

REDEMPTION
Γ, x : sv ` e : tu

3.4.2 Partial application

The rules for left and right introduction of× (non-unique) are more interesting. Rule PROMOTION

is essentially subtyping: every unique term can be coerced into a non-unique term. This is similar
to Clean’s subtyping relation, but unlike in Clean, the subtyping relation applies even to functions.

To avoid problems with partial application, the rules for left and right introduction of →
deal with unique functions only. The only way to apply a non-unique function is to apply rule
DERELICTION (see equation (2.1) for an explanation of application in sequent calculi); butp. 

DERELICTION can only be applied if the result is non-unique. Put another way, functions can
always be applied multiple times (even if they have unique elements in their closure), but the
result of applying a shared function is always non-unique.

92

3.4. Uniqueness logic

This solves the dup problem from Section 3.2.4, but we nevertheless consider the proposed p. 

solution inadequate. Consider the function that closes a file and returns a boolean indicating
whether the operation was successful:

closeFile :: File•
×−→ Bool×

In Harrington’s system, the following program would be accepted

closeFileTwice file = (\g. g ⊥, g ⊥) (\x. closeFile file)

even though it is not referentially transparent (in Clean, this program would be rejected by the type
checker). In fact, a function such as closeFile, which returns a non-unique result, can even be
applied to non-unique files using rule Dereliction. Harrington discusses the implementation
of this rule:

‘‘The [DERELICTION] rule can be implemented in two ways. We can either change
all destructive updates on that value to equivalent non-destructive updates, or [...]
we can make a copy of the value to a sufficient depth to guarantee that any structure
which might be modified is unshared.

(Harrington, 2006, Section 2.1.1)

Both these options can be implemented for destructive updates on arrays, for example. The
destructive update can be replaced by a non-destructive update, or the array can be copied before
the destructive update is applied. However, for “truly” destructive updates (such as operations on
files) neither option is possible.

One might argue that this is a library design issue: it is the responsibility of the library designer
to type foreign (side-effecting) functions in such a way that they always return a unique result (so
that rule DERELICTION does not apply). This may seem reasonable: after all, it is already the
responsibility of the library designer to require unique inputs to side-effecting functions. However,
even when the library is designed as follows

closeFile :: File•
×−→ File•

isClosed :: File×
×−→ Bool×

a user can easily define closeFile’

closeFile’ :: File•
×−→ Bool×

closeFile’ = isClosed . closeFile

with exactly the same problems as closeFile (there is no rule in the type system that forces
the result of a function to be unique when its input is unique).

3.4.3 Exponentials in a non-unique context

The result of applying a shared function in the logic hitherto described is always non-unique,
even when that function has no unique objects in its closure. This is overly restrictive, and the
final section of (Harrington, 2006) describes an extension to the type system to overcome this
deficiency. Unfortunately, only a categorical characterization of this new kind of function is given
(without the corresponding logical rules); so rather than attempting to give an “equivalent” set of
logical rules in the syntax we use throughout this dissertation, we will give the presentation as it
is in the paper.

93

Chapter 3. Related Work

Most of Harrington’s dissertation is concerned with a categorical semantics for the logic;
a discussion of this semantics is beyond the scope of this chapter, but we do need a few of its
definitions. The semantics is given with respect to a “uniqueness category” U . An object X in this
category denotes a type X in the type system, and an arrow from X → Y is a term (a program) of
type X → Y. The exact definition of the category and its properties does not concern us here.

The category comes equipped with a monad (◦, η, µ) where ◦ is Harrington’s symbol for
non-unique; ◦ is not quite equivalent to × in our notation, since Harrington treats ◦ as a type
constructor so that Int is the type of unique integers (which we would denote Int•), and both
Int◦ and (Int◦)◦ describe the type of non-unique integers (which we would denote as Int×;
see also the discussion of syntax in Section 3.1). The first component of the monad ηX : X → X◦p. 

is essentially subtyping; the second component µX : (X◦)◦ → X◦ says that ◦ is idempotent.
The new function space (or “exponential”) is denoted by A ⇒ C. That is, a term of type

A⇒ C is a function from A to C that does not have any unique elements in its closure and can
therefore be shared freely: Harrington defines A⇒ B and (A⇒ B)◦ to be isomorphic.

Denoting the Kleisli category corresponding to U by U ◦ and the right adjoint of the Kleisli
adjunction for ◦ by G (Section 2.10.3), A⇒ B is defined to be the right adjoint of A⊗ (G−):p. 

U ◦ U
C

A⊗ B◦B

A⇒ C

A⊗ (G−)

A⇒ −

That is, there is a natural bijection1

curry◦ : HomU (A⊗ B◦, C) ∼= HomU ◦(B, A⇒ C)

which by the definition of the Kleisli category and the fact that (A ⇒ C)◦ is isomorphic to
A⇒ B is equivalent to:

curry◦ : HomU (A⊗ B◦, C) ∼= HomU (B, A⇒ C)

In other words, a function from B→ A⇒ C is (isomorphic to) a function from A⊗ B◦ → C so
that the B in the closure of A⇒ C must be non-unique. Evaluation of A⇒ C is given as usual
by the co-unit of the adjunction (Section 2.10.2).

Like in linear logic, there is a choice between introducing a new syntax for abstraction and
application for terms of type a⇒ b (as in Figure 3.2) or allowing the same syntax for both termsp. 

of type a→ b and terms of a⇒ b (as in Figure 3.3). Unfortunately, neither choice is completely
satisfactory. Consider the function apply (λ f · λx · f x). When using a different syntax for both
constructs, the user must choose whether apply applies functions of type a→ b or functions of
type a ⇒ b. When using the same syntax, the type system must choose; unfortunately, a → b
and a⇒ b are incomparable (neither is more general than the other) so we lose principal types.
Harrington does not discuss this issue.

1In the paper, the bijection is given as curry◦ : HomU (A⊗ B◦, C) ∼= HomU◦ (B◦, A⇒ C), but I believe that to be
a mistake since that does not follow from the definition of A⇒ − as right adjoint to A⊗ (G−).

94

3.5. Single-threaded polymorphic lambda calculus

3.5 Single-threaded polymorphic lambda calculus

The single-threaded polymorphic lambda calculus, or STPLC for short, by Guzmán (Guzmán and
Hudak, 1990; Guzmán, 1993) is similar to uniqueness typing in spirit but significantly different in
implementation. It is also considerably more complex than the other systems we consider in this
chapter, despite repeated claims by Guzmán that the system is “simple and intuitive”.

Our review here is based mainly on Guzmán’s PhD thesis. There are some subtle differences
between the PhD thesis and the paper (which predates the thesis by approximately three years);
some discussion of the differences can be found in the conclusions to the thesis (Chapter 8).

3.5.1 Intuition

An important difference between uniqueness typing (or linear logic) and the STPLC is that in
the STPLC an attribute denotes how a variable is used, as opposed to an innate property of the
variable:

‘‘A static type system characterizes the type of values used in programs; i.e., it
is concerned with properties satisfied by the values in the programs. A liability
[attribution] system on the other hand, is concerned with how the values are used in
the program: i.e., how often they are used, whether they are mutated, etc.

(Guzmán, 1993, Section 4.2; emphasis in original)

This is a fundamental difference and one that makes understanding the STPLC difficult to someone
accustomed to uniqueness or linear typing. For example, it means that a function f cannot make
any demands about the type of term that is passed as argument to f . If f destructively updates its
argument, all it can say is that it writes to its argument (in particular, it can not demand that the
argument must be single-threaded). Instead, when the type checker finds that a multi-threaded
variable (one that is used more than once) is passed to a function that writes to its argument, it
signals a type error.

Instead of a single attribute (such as “uniqueness”), Guzmán considers three: read-only (R),
free (F; not “captured” as part of another object such as a list), and single-threaded (linearity, S).
Of these three, single-threaded corresponds most closely to uniqueness and indicates if a variable
is used once or more than once within its scope. He then considers all possible conjunctions
and disjunctions of these attributes, which form a lattice (Figure 3.6). However, many of the p. 

resulting 20 properties are indistinguishable, and Guzmán reduces the set of 20 properties down
to 8 abstract uses (also shown in the same figure). These uses are:

⊥ No use at all
rs Read-only, free, and single-threaded
rm Read-only and free, but multi-threaded
cs Captured and single-threaded
cm Captured and multi-threaded
ws Written to and single-threaded
ws∨cm Disjunction of cm and ws
wm Written to and multi-threaded (error)

95

Chapter 3. Related Work

>

R ∪ S ∪ F

R ∪ S R ∪ F S ∪ F

R ∪ (S ∩ F) S ∪ (R ∩ F) F ∪ (S ∩ R)

(R ∩ S) ∪ (R ∩ F) ∪ (S ∩ F)R S F

R ∩ (S ∪ F) S ∩ (R ∪ F) F ∩ (S ∪ R)

R ∩ S R ∩ F S ∩ F

R ∩ S ∩ F

⊥

wm

ws∨cm

cm
ws

cs rm

rs

⊥

wm

ws∨cm

cm ws

rm cs

rs

⊥
Figure 3.6: Lattice of R, S and F and the domain of abstract uses (Guzmán, 1993)

96

3.5. Single-threaded polymorphic lambda calculus

The abstract use of x in
x

is cs (independent of the type of x): it is used once, not written to, and captured in the closure of
the enclosing lambda expression. However, the abstract use of x in

f x

depends on the use of x by f . Therefore, the function space is decorated with an abstract use, which
indicates how applying the function to an argument changes the abstract use of that argument. For
example, if the type of f is a ws−→ b, then the abstract use of x in (f x) is ws · cs = ws.

It is important to realize however that attributes are not considered part of the type in the
STPLC; the types a and b in the domain and codomain of f are “base” types without an attribute.
The attribute on the arrow does not specify the attribute of the function, but rather how applying
the function modifies the attribute on the argument to the function.

A somewhat unusual design decision of the STPLC is that attributes are associated only with
variables (as opposed to with arbitrary terms). The liability of a term is an environment mapping
all the free variables in the term to an attribute (abstract use). That is, attributes can only be used
to reason about how variables are used.

Some terms however generate objects that are not associated with any variable. For example,
there is an “anonymous” object created by

mkArray 10 0

(which creates an array of 10 integers initialized to 0). Of course, this array is only anonymous
insofar as there is no variable that is associated with the array; we can name the array (indeed,
this is exactly the expression mkArray 10 0). However, since the STPLC associates abstract uses
only with variables, but still wants to be able to reason about the abstract use of this “anonymous
object”, a distinguished variable ξ is introduced which describes the use of “the” anonymous
object. The function space constructor is modified again to get a second attribute; when a function
of type a

u1−→
u2

b is applied to an argument, the abstract use of the argument is modified based on

u1, and the abstract use of the anonymous object is modified based on u2.
There could be more than one anonymous object in an expression, so that the abstract use

associated with ξ must be a conservative estimate across all anonymous objects. This is one of
the most obscure aspects of the STPLC and makes it quite difficult to understand exactly what a
liability of an expression means.

3.5.2 Typing rules

The most important typing rules are shown in Figure 3.7. They take the form p. 

C, Γ ` e : 〈τ, L〉

C is a set of subtyping constraints which we will not consider further (the STPLC uses a subtyping
relation between liabilities based on the lattice of abstract uses). Γ is a typing environment and
maps identifiers to types as usual; τ is the type of e and L is the liability of e. It is instructive to
consider some of our running examples again, dup, sneakyDup and strictDup.

97

Chapter 3. Related Work

Typing rules

CON
C, Γ ` k : K(k)

(for some mapping K from constants to types and liabilities)

VAR
C, (Γ, x : σ) ` x : 〈σ, [x 7→ cs]〉

C, (Γ, x : τ1) ` e : 〈τ2, [L, x : u1, ξ : u2]〉
ABS

C, Γ ` λx · e : 〈τ1
u1−→
u2

τ2, L〉

C, Γ ` e1 : 〈τ1
u1−→
u2

τ2, L1〉 C, Γ ` e2 : 〈τ1, L2〉
APP

C, Γ ` e1 e2 : 〈τ2, (L1
par
� (u1 · L2)) t [ξ 7→ u2]〉

C, Γ ` e1 : 〈τ̃1
u1−→
u2

τ2, L1〉 C, Γ ` e2 : 〈τ̃1, L2〉
STRICTAPP

C, Γ ` e1 e2 : 〈τ2, ((u1 · L2)
seq
� L1) t [ξ 7→ u2]〉

(where τ̃ is the set of all types excluding the functions)

C, Γ ` ec : 〈Bool, Lc〉 C, Γ ` et : 〈τ, Lt〉 C, Γ ` e f : 〈τ, L f 〉
IF

C, Γ ` if ec et e f : 〈τ, (Lc
seq
� (Lt

alt
� L f))〉

Combining abstract uses

u1
alt
� u2 = u1 t u2 u1

seq
� ⊥ = u1

⊥
seq
� u2 = u2

u1
par
� ⊥ = u1 rs

seq
� u2 = u2

⊥
par
� u2 = u2 rm

seq
� u2 = rm t u2

u1
par
� u2 = (↑ u1) t (↑ u2) u1

seq
� u2 = (↑ u1) t (↑ u2)

u · ⊥ = ⊥ ↑ ⊥ = ⊥
u · rs = rs ↑ u = rm (u v rm)
⊥ · u = u (ws v u) ↑ u = cm (u v cm)
⊥ · u = rs ↑ u = wm
cs · u = u
u · cs = u
cm · cm = cm
ws · ws = ws
u1 · u2 = wm

Combining Liabilities

(L1 � L2) ξ = (L1 ξ) t (L2 ξ)
(L1 � L2) x = (L1 x)� (L2 x)

(u · L) x = u · (L x)

Figure 3.7: Typing rules in the STPLC

98

3.5. Single-threaded polymorphic lambda calculus

C
O

N
`

p
:〈

a
cs −→

(a
cs −→ cs

P
a

a)
,[

]〉
V

A
R

x
:a
`

x
:〈

a,
[x

:c
s]
〉

A
P

P
x

:a
`

p
x

:〈
a

cs −→ cs
P

a
a,

[x
:c

s]
〉

V
A

R
x

:a
`

x
:〈

a,
[x

:c
s]
〉

A
P

P
x

:a
`

p
x

x
:〈

P
a

a,
[x

:c
m

,ξ
:c

s〉
A

B
S

`
λ

x
·p

x
x

:〈
a

cm −→ cs
P

a
a,

[]〉

C
O

N
`

p
:〈

a
cs −→

(a
cs −→ cs

I)
,[

]〉

V
A

R
f

:I
→

a
`

f
:〈

I
→

a,
[f

:c
s]
〉

C
O

N
`

1
:〈

I,
[ξ

:c
s]
〉

A
P

P
f

:I
→

a
`

f 1
:〈

a,
[f

:c
s,

ξ
:r

s〉
A

P
P

f
:I
→

a
`

p
f 1

:〈
a

cs −→ cs
P

a
a,

[f
:c

s,
ξ

:r
s]
〉

V
A

R
f

:I
→

a
`

f
:〈

I
→

a,
[f

:c
s]
〉

C
O

N
`

2
:〈

I,
[ξ

:c
s]
〉

A
P

P
f

:I
→

a
`

f 2
:〈

a,
[f

:c
s,

ξ
:r

s〉
A

P
P

f
:I
→

a
`

p
f 1

f 2
:〈

P
a

a,
[f

:c
m

,ξ
:c

s]
〉

A
B

S
`

λ
f
·p

f 1
f 2

:〈
(I
→

a)
cm −→ cs

P
a

a,
[]〉

V
A

R
x

:a
`

x
:〈

a,
[x

:c
s]
〉

A
B

S
x

:a
`

λ
y
·x

:〈
I
→

a,
[x

:c
s]
〉

A
P

P
x

:a
`

(λ
f
·p

f 1
f 2

)(
λ

y
·x

)
:〈

P
a

a,
[x

:c
m

,ξ
:c

s]
〉

A
B

S
`

λ
x
·(

λ
f
·p

f 1
f 2

)(
λ

y
·x

)
:〈

a
cm −→ cs

P
a

a,
[]〉

C
O

N
`

p
:a

cs −→
(a

cs −→ cs
P

a
a)

,[
]〉

V
A

R
x

:a
`

x
:〈

a,
[x

:c
s]
〉

A
P

P
x

:a
`

p
x

:〈
a

cs −→ cs
P

a
a,

[x
:c

s]
〉

V
A

R
y

:a
`

y
:〈

a,
[y

:c
s]
〉

A
P

P
x

:a
,y

:a
`

p
x

y
:〈

P
x

y,
[x

:c
s,

y
:c

s,
ξ

:c
s]
〉

A
B

S
x

:a
`

λ
y
·p

x
y

:〈
a

cs −→ cs
P

a
a,

[x
:c

s]
〉

V
A

R
x

:a
`

x
:〈

a,
[x

:c
s]
〉

S
T

R
IC

TA
P

P
x

:a
`

(λ
y
·p

x
y)

x
:〈

P
a

a,
[x

:c
m

,ξ
:c

s]
〉

=
x

:a
`

le
t*

y
=

x
in

p
x

y
:〈

P
a

a,
[x

:c
m

,ξ
:c

s]
〉

A
B

S
`

λ
x
·l

et
*

y
=

x
in

p
x

y
:〈

a
cm −→ cs

P
a

a,
[]〉

A
bb

re
vi

at
io

ns
:I
≡

In
t,

p
≡

pa
ir

,P
≡

Pa
ir

,→
≡

⊥ −→ ⊥
,f

1
≡

f
1

O
nl

y
re

le
va

nt
en

tr
ie

s
in

th
e

en
vi

ro
nm

en
ts

ar
e

sh
ow

n
to

th
e

le
ft

of
th

e
tu

rn
st

ile
.

Fi
gu

re
3.

8:
D

er
iv

at
io

n
fo

rd
u
p

,s
n
e
a
k
y
D
u
p

an
d
s
t
r
i
c
t
D
u
p

99

Chapter 3. Related Work

All three terms have type a cm−→
cs

Pair a a; Figure 3.8 shows the derivations. The attributep. 

cm above the arrow means that applying dup to an argument will cause that argument to be
multi-threaded (we would say, “non-unique”). As alluded to before, it is harder to give an intuition
for the attribute below the arrow; it is cs because the partial application (pair x) in the body of
dup “captures” x in a closure.

The interesting aspect of this example is that the type system somehow notices that x is
duplicated in sneakyDup, even though the system does not reason about the abstract use of the
closure λy · x (nor could it, since abstract uses are only associated with variables). In particular,
functions can always be applied multiple times, and the rule for application does not take the
abstract use of the function that we apply into account. The duplication of x is nevertheless
noticed since the liability associated with λy · x lists the abstract uses of all free variables in
λy · x; that is, the abstract uses of all elements in the closure of λy · x!

The function closeFileTwice is nearly identical to the derivation of sneakyDup. The
type inferred for λy · closeFile x, where we assume

closeFile :: File
ws−→ File

is Int→ File as before, but the inferred liability is [x : ws]. Then the inferred liability of the
body of closeFileTwice is [x : wm]. That is, x is written to but not single-threaded, and the
program is rejected by the type checker.

3.5.3 Strict application

The single-threaded polymorphic lambda calculus is considerably more complicated than unique-
ness typing and linear logic, and so far we have not yet seen any obvious benefits. But its real
chance to shine is the rule for strict application.

We have seen in the introduction to uniqueness typing (Section 3.2) that it may be advantageousp. 

to introduce a “strict let” construct (denoted by let*) which allows one or more read-only
accesses to a term followed by one potentially destructive update (swap is the canonical example).
We have also seen that adding this rule to uniqueness typing or linear logic is less than trivial. The
STPLC however can properly deal with this rule due to the distinction between functions that
merely read their arguments and functions that “capture” their arguments. Compare

strictDup = λx. let* y = x in Pair x y

to

f = λx. let* y = g x in Pair x y

for some function g :: a rs−→ I. The derivation of strictDup is shown in Figure 3.8; thep. 

derivation of f is shown below.

(as for strictDup)
ABS

x : a ` λy · p x y : 〈I cs−→
cs

P a I, [x : cs]〉

CON
` g : 〈a rs−→ I, []〉

APP
x : a ` x : 〈a, [x : xs]〉

APP
x : a ` g x : 〈I, [x : rs]〉

STRICTAPP
x : a ` (λy · p x y) (g x) : 〈P a I, [x : cs, ξ : cs]〉

=
x : a ` let* y = g x in p x y : 〈P a I, [x : cs, ξ : cs]〉

ABS
` λx · let* y = g x in p x y : 〈a cs−→

cs
P a I, []〉

100

3.5. Single-threaded polymorphic lambda calculus

The fact that g only reads its argument (but does not capture it) means that applying f to an
argument does not cause that argument to be multi-threaded (whereas applying strictDup

does). Since there is no distinction between a cs−→ b and a rs−→ b in uniqueness typing or linear
logic, this difference between strictDup and f is more difficult to formalize in those systems.

In the swap example,

swap! arr i j =

let* x = lookup arr i

y = lookup arr j

in update! (update! arr i y) j x

there are two read-only accesses to arr before the array is updated; it is thus crucial that lookup
does not capture the array1:

lookup :: Array a rs−→ Int
rs−→ a

But there is a subtle point to be made here. This type of update also allows us to define the
following function:

fst :: Array a cs−→ Pair (Array a) a
fst arr = let* elem = lookup arr 0 in pair arr elem

The overlap between the array and the array element in the result of fst is lost to the type system,
and it is therefore important to maintain referential transparency that the elements of the array are
immutable. Arrays are therefore not “first-class”: for example, arrays of arrays are not permitted.
Chapter 8 of Guzmán’s thesis briefly discusses how the STPLC must be extended to remove this
restriction, at the cost of additional complexity.

3.5.4 Polymorphic liabilities

So far the inferred abstract uses and liabilities are all monomorphic: there is no support for
polymorphism on the abstract use level. Guzmán extends the type system to support polymorphic
liabilities in his thesis, and this is where the system gets truly complicated. A detailed discussion
of this extended type system is beyond the scope of this dissertation; we show a few example
types only.

A simple example is apply:

apply :: (a ν1−→
ν2

b) cs−→ (a ν1−→
ν2

b)

apply f x = f x

The real complications start appearing when dealing with recursive function definitions, since the
types will now need to include recursive equations between liabilities to maintain principal types.
Here is a relatively simple example:

many :: (a ν1−→ a) cm−→ Int
rs−→ a ν2−→ where ν2 = cs

alt
� ν2 · ν1

many f n a = if (n == 0) a (many f (n - 1) (f a))

We conclude the discussion of STPLC with the principal type of folda, a version of the left fold
operation foldl specialized to arrays. The definition is

folda v i n inc f = if (i == n) v (folda (f i v) (inc i) n inc f)

1Unfortunately, the type of lookup is listed as Array a cs−→ Int rs−→ a in Guzmán’s thesis; however, it is clear from
the discussion in Chapter 8 that this must be a mistake.

101

Chapter 3. Related Work

The principal type of folda is (Guzmán, 1993, Section 5.4)

folda :: τ1
ν7−→ τ2

ν8−→ τ2
rs−→ (τ2

ν1−→
ν2

τ2)
ν9−→ (τ2

ν3−→
ν4

τ1
ν6−→
ν5

τ1)
ν10−→
ν11

τ1

where ν7 = cs
alt
� (ν7 · (ν6 · cs))

ν8 = rs
seq
� ((ν7 · (ν3 · cs))

par
� (ν8 · (ν1 · cs)))

ν9 = (ν8 · cs)
par
� (ν9 · cs)

ν10 = (ν7 · cs)
par
� (ν10 · cs)

ν11 = (ν7 · (ν4
alt
� ν5))

alt
� (ν8 · ν2)

alt
� ν11

where it must be noted that the where clauses are all part of the type of folda. It appears that
the small additional power of the single-threaded polymorphic lambda calculus over uniqueness
typing comes at a steep price indeed.

3.5.5 “How to make destructive updates less destructive”

The type system presented by Odersky in (Odersky, 1991) is a close cousin of the STPLC. It
makes a number of simplifying assumptions, the most important of which is that it considers
a first-order language, thereby sidestepping a number of difficult issues (not the least of which
is partial application). On the other hand, he considers a more complex abstract use domain,
and associates a pair of abstract uses with each variable in a liability. The domain of abstract
uses, along with the parallel and sequential combination operations, is shown in Figure 3.9. Thep. 

system is presented as an abstract interpretation system rather than a type system, so discussing
the technical details of the system is beyond the scope of this dissertation.

The reason for associating a pair of abstract uses with each variable is to distinguish between
the abstract use of the variable and the abstract use of the elements of the variable. For example,
the function head has type

head :: [a] rd.sh−−→ a

This means that head only reads (rd) the list (but the list is not part of the result), but the result
of head is a potential alias (sh) of the elements of the list. This makes the analysis more precise
(and types more complicated), but at the same time the distinction is somewhat arbitrary: the
two-level split may not be sufficient (arrays of arrays) or may be unnatural (what are the elements
of an integer?).

3.5.6 Relevance of linearity

Odersky makes the following observation (without justification):

‘‘We simplify [the approach of the STPLC] in that we are able to drop without loss of
precision their distinction between single- and multiple-threaded accesses.

(Odersky, 1991, Section 1, Related Work)

This is surprising because intuitively the distinction between single-threaded and multiple-threaded
seems to be the most important distinction in the STPLC; after all, a variable may be destructively
updated only when it is single-threaded. Nevertheless, even in the STPLC the distinction between
single-threaded and multiple-threaded is irrelevant for most operators; if there is a “write” use of
a variable parallel with a “read” use, it makes no difference whether that read is once or more than
once—both cases constitute a type error (two parallel writes is always a type error).

102

3.5. Single-threaded polymorphic lambda calculus

A careful analysis of the binary operators shows that u1 t u2 (and thus u1
alt
� u2) never

introduces wm (the “erroneous” use); u1
par
� u2 is wm if either operand is a “write” use, and

u1
seq
� u2 is wm if the first operand is a “write” use; in either case, the linearity of the operands is

irrelevant. The only operator for which single-threaded or multiple-threaded makes a difference is
the projection operator (u · v), which is used to “project” how a function modifies (u) the abstract
use (v) of the argument to the function. The following table shows for which operands an error is
thrown only if one of the operands is multiple-threaded:

Accepted (single-threaded) Rejected (multiple-threaded)
rs · rs rs · rm, rm · rm
rs · cs rs · cm, rm · cm
rm · cs rm · cm
cs · ws cm · ws
cs · ws∨cm cm · ws∨cm

An analysis of whether the pairs of abstract uses in the right column of this table constitute actual
errors would involve re-doing the referential transparency proofs in Guzmán’s thesis, introducing
those pairs one by one as acceptable (or alternatively, rejecting the corresponding pair in the
left column as unacceptable). This is a significant amount of work and beyond the scope of this
dissertation.

A casual inspection of the table seems to indicate that the STPLC is indeed conservative.
It is unclear why any of the combinations on the first three lines of the table should cause an
error—why should an expression f e be rejected if f only reads (rs) its argument and the liability
of e includes [x : rm]? On the other hand, it may be that these abstract use pairs simply never
arise.

However, it is not difficult to construct an example for the fourth line of the table. For example,
given some function f : a ws−→ a which writes to its argument, the following definition is rejected
in the STPLC:

(Figure 3.8)

` dup : a cm−→
cs

Pair a a

` f : 〈a ws−→ a, []〉
VAR

x : a ` x : 〈a, [x : cs]〉
APP

x : a ` f x : 〈a, [x : ws]〉
APP

x : a ` dup (f x) : 〈Pair a a, [x : wm, ξ : cs]
ABS

` λx · dup (f x) : 〈a wm−−→
cs

Pair a a, []〉

Thus it seems that in the STPLC, a variable cannot be duplicated once written to. However, while
we may want to allow this particular program, it is not possible to simply assign a non-error
value to cm · ws, because that would mean that the system would also accept the (higher-order)
closeFileTwice example (Section 3.5.2). Thus, the distinction between single-threaded p. 

and multiple-threaded is in fact important; Odersky can only ignore the distinction because his
language is first-order.

103

Chapter 3. Related Work

Domain lattice and binary operators

>

wr

sh

id el

rd

⊥

>
par
� y = >

x
par
� > = >

⊥
par
� y = y

x
par
� ⊥ = x

x
par
� y = > (x = wr ∨ y = wr)

x
par
� y = x t y

>
seq
� y = >

x
seq
� > = >

⊥
seq
� y = y

x
seq
� ⊥ = wr (x = wr)

x
seq
� ⊥ = rd (x 6= wr)

x
seq
� y = > (x = wr)

x
seq
� y = y (x 6= wr)

> · x.y = >
u1.u2 · > = >
u1.u2 · x.y = (u1.u2 · x).(u1.u2 · y)

⊥.⊥ · x = ⊥
u1.u2 · x = x (x ∈ {⊥, rd, wr})
u1.u2 · id = u1
u1.u2 · el = u2
u1.u2 · sh = u1 t u2

For consistency’s sake we used Guzmán’s notation for the binary operators.

The notation used by Odersky is
par
� ≡ ||,

seq
� ≡ ; ; and · ≡ :

Explanation of the abstract uses
The effect on an entity x of evaluating an expression e:
⊥ x is not used
rs x is read, but is not captured by e (not part of e’s normal form)
id x is a potential alias of e’s value
el x is a potential element of e’s value
sh x is potentially an alias or an element of e’s value
wr x is potentially updated during evaluation of e
> conflicting access to x (error)

Figure 3.9: Abstract use domain from (Odersky, 1991)

104

3.6. Other related work

3.6 Other related work

3.6.1 LFPL

LFPL (Hofmann, 2000) is an extremely simple functional programming language: it is strict,
monomorphic, first-order (functions cannot be stored inside data structures, nor be passed as
arguments or returned as results). Hence, it does not allow currying (functions cannot be partially
applied) and it thus avoids all of the problems of partial application that we have been emphasizing
in this chapter, but at the cost of limiting expressiveness severely. The author describes it as a
“design pattern for writing C-code in a functional style”.

Algebraic data type constructors in LFPL come with an extra argument which essentially
denotes the heap space to be used by the constructor. These arguments can be used to be precise
about memory re-use. For example,

append (l, m) =

case l of

nil → m

cons (d, h, t) → cons (d, h, append (t, m))

The extra argument d of cons denotes the heap space used by the node; since the same argument
d is used on the right hand side to construct a new node, that new node must re-use the memory
space of the old node. Obviously, memory space can only be used once and in the original paper
LFPL is equipped with an affine linear type system to guarantee this.

In (Aspinall et al., 2008) (an extended version of Aspinall and Hofmann, 2002) this type
system is redefined to deal with read-only access in the style of the single-threaded polymorphic
lambda calculus (Section 3.5). Three “aspects” are introduced (Guzmán would call them “abstract p. 

uses”):

1 Modifying use
2 Non-modifying use, but shared with result
3 Non-modifying use, not shared with result

Aspect 2 closely corresponds to cs in the STPLC; like the domain of abstract uses in the
STPLC, the domain of aspects is ordered with 1 ≤ 2 ≤ 3. Surprisingly, the authors claim that this
property of their type system is novel and that something analogous to aspect 2 does not appear in
the functional programming literature (Aspinall et al., 2008, Section 6.1)—Guzmán’s work on the
STPLC is not even cited. Of course, the type system is much simpler than that of the STPLC due
to the simplicity of the language.

One interesting feature of LFPL is that it makes use of the two kinds of products of linear
logic. The tensor product, which allows simultaneous access to both components using a case
analysis-like construct, allows sharing between both components only if they are accessed read-
only; if either component is written to (updated destructively), the components of the product
cannot be shared (since they can both be accessed individually). The cartesian product, which
comes with the two projection functions (fst and snd) but crucially does not allow simultaneous
access to both components of the pair, does allow sharing between the component even if one
of the components is later updated destructively, since only one component of the product can
be accessed (the rules are actually slightly relaxed: access to both components is allowed, but as
soon as one is modified the other can no longer be referenced).

105

Chapter 3. Related Work

Note that Hage and Holdermans (2008) present a similar system (in which users can be explicit
about memory re-use) but with support for higher-order functions and call-by-need evaluation,
and which is therefore much more expressive. The type system used is the uniqueness type system
the authors presented previously (Hage et al., 2007), corrected to deal with the partial application
problem. We discussed this type system in Section 3.2.8.p. 

3.6.2 SAC

SAC (Scholz, 2003; Grelck and Scholz, 1995) is a domain specific purely functional programming
language; its primary focus is high performance numerical array computation. We will mostly
ignore this aspect of SAC, however, and discuss only its use of uniqueness typing for input/output.
Here is a simple example:

use StdIO: all;

use Array: all;

int read_int()

{

success, result = scanint();

return(result);

}

int main()

{

print(reshape([3], [read_int()

, read_int()

, read_int()

]));

return(0);

}

If this looks like C, then that is intentional: the syntax of SAC (Single Assignment C) is designed
to make it accessible to programmers with an imperative background. SAC is nevertheless purely
functional (in the sense described in Section 2.8), and the SAC compiler makes heavy use ofp. 

properties such as definiteness to optimize and parallelize programs.
Definiteness appears not to hold in the example, however. The print statement creates

a single-dimensional array with three elements whose values are determined by reading from
standard input. Given the input

1

2

3

the output of the program is

Dimension: 1

Shape : < 3>

< 3 2 1 >

The contents of the array are shown in the third line (the first two lines describe its shape). As
expected, the various calls to read int returned different results (although the order in which
they were invoked might be surprising)—a clear violation of definiteness.

106

3.6. Other related work

The reason that SAC is nevertheless pure is that the program above is considered syntactic
sugar for

use StdIO: all;

use Array: all;

int read_int(File& stdin)

{

success, result = scanint(stdin);

return(result);

}

int main()

{

print(reshape([3], [read_int(stdin)

, read_int(stdin)

, read_int(stdin)

]));

return(0);

}

where we’ve made the stdin parameter argument explicit; stdin is known as a global object in
SAC. Of course, this program still looks like it has a problem with definiteness: we now have three
occurrences of read int(stdin) rather than three occurrences of read int(). Consider
however the type of the stdin parameter to read int: it looks like a C-style pass-by-reference

parameter. In SAC, this is considered syntactic sugar for

use StdIO: all;

use Array: all;

File, int read_int(File stdin)

{

stdin, success, result = scanint(stdin);

return(stdin, result);

}

int main(File stdin)

{

stdin, a = read_int(stdin);

stdin, b = read_int(stdin);

stdin, c = read_int(stdin);

print(reshape([3], [c,b,a]));

return(0);

}

This now almost looks like a functional program, except for the apparent re-assignment of stdin.
However, when a variable is “re-assigned”, this is considered yet more syntactic sugar for a
scoping rule which introduces a new variable that shadows the previous (Clean supports a similar
rule). Thus, the definition of main really means

107

Chapter 3. Related Work

int main(File stdin0)

{

stdin1, a = read_int(stdin0);

stdin2, b = read_int(stdin1);

stdin3, c = read_int(stdin2);

print(reshape([3], [c,b,a]));

return(0);

}

where we have finally recovered a purely functional program.
Syntactic sugar aside, the uniqueness type system of SAC is rather simple and reminiscent of

Wadler’s first type system (Section 3.3.2). SAC introduces a strict separation between special datap. 

types called classes, instances of which must always be unique, and ordinary data types, instances
of which can never be unique. There is therefore no need for uniqueness attributes on types.

Since SAC does not support polymorphism, functions such as

λx · (x, x)

will be typeable if the type of x is an ordinary data type, and not typeable if the type of x is a class.
Moreover, SAC is first-order: functions are not first-class and cannot be passed as arguments
or returned as results, avoiding the partial application problem (Section 3.2.4). Under thesep. 

restrictions, uniqueness typing reduces to a syntactic check (after type inference and elimination
of syntactic sugar) that every variable with a unique (class) type is used at most once within its
scope (i.e., uniqueness typing reduces to reference count analysis, Section 3.2.7).p. 

3.6.3 Mercury

Mercury comes from the Prolog family of languages which are based on predicate logic rather
than the lambda calculus. A detailed discussion of programming in these languages is beyond the
scope of this dissertation; there are many tutorials on Prolog available online (such as Blackburn
et al., 2006) which will mostly be applicable to Mercury too. The main difference between
Mercury and Prolog is that Mercury is strongly typed (Prolog is untyped) and strongly moded.

In Prolog-like languages, there is no distinction between “input” parameters and “output”
parameters. Instead, a predicate describes relations between parameters; which parameters are
input and which are output is determined by how the predicate is used. For example, given the
definition of append

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

we can use

append([1,2,3],[4,5,6],X)

to append the lists [1, 2, 3] and [4, 5, 6], but equally we can use

append(X,[3,4],[1,2,3,4])

which will bind X to the list [1, 2], or

append(X,Y,[1,2,3])

108

3.6. Other related work

to find all possible ways to split the list [1, 2, 3]. The way a predicate is used is known as its mode.
The fact that predicates can be used in more than one mode is exciting, but designing predicates
in such a way that they can actually be used in every mode imaginable is difficult and an active
research area (for example, see Kiselyov et al., 2008).

It is also one of the reasons that optimizing Prolog code is hard, and a source of programmer
errors when predicates are inadvertently used in the wrong mode. For these reasons, Mercury
uses a mode system where all permissible modes for a predicate must be declared explicitly. For
example, the mode declarations that describe the three example uses of append are

:- mode append(ground >> ground,

ground >> ground,

free >> ground)

is det.

:- mode append(free >> ground,

ground >> ground,

ground >> ground)

is nondet.

:- mode append(free >> ground,

free >> ground,

ground >> ground)

is multi.

A mode declaration describes for each parameter its instantiation before and after the evaluation of
the predicate. For the first mode, the first two parameters must be instantiated when the predicate
is “called”, and the last must be free. After the predicate has been evaluated, the third argument
will be instantiated (ground). The mode declaration also lists the determinism of the predicate; for
example, append is deterministic when used in the first mode (will always succeed with exactly
one result), non-deterministic when used in the second mode (will either fail or else succeed with
exactly one result), and might return more than one answer in the third mode.

As well as a strong mode system, Mercury uses a strong type system based on the Hindley/-
Milner system extended with algebraic data types. For example, the type of append is

:- pred append(list(T), list(T), list(T)).

We are interested in Mercury’s mode system because it is used to reason about uniqueness as well
as “instantiatedness”. Mercury’s uniqueness system is largely based on the work of Henderson
(1992), and formalized and extended in the doctoral thesis of Overton (2003).

Since modes describe many aspects of a predicate, it is not surprising that Mercury’s mode
system is rather complex. However, if we abstract away from the details the uniqueness system is
conceptually very similar to Clean’s and used in similar ways. For example, the predicate that
writes a string to the standard output has type

:- pred write_string(string, io, io).

:- mode write_string(ground >> ground,

unique >> clobbered,

free >> unique) is det.

Here, io corresponds to the World type in Clean; write string takes a world state to a new
world state. The input world state must be unique on input and not referenced again (clobbered)
after the predicate has been evaluated; the output world state must be free on input, and will be
instantiated and unique on output.

109

Chapter 3. Related Work

The type and mode annotation for a predicate are given separately. When algebraic data types
are involved, the structure of the mode annotation follows the definition of the data type. For
example, the function that returns the first non-unique element from a non-unique pair is given by

:- pred fst(pair(A,B),A).

:- mode fst(bound(mk_pair(ground, ground)) >> ground,

free >> ground) is det.

fst(mk_pair(X,_),X).

Here, “bound” means that the attribute on the pair is non-unique. Unfortunately, this concrete
syntax of Mercury limits expressiveness. For example, it does not seem possible to define a
function which acts on algebraic data types with a polymorphic spine uniqueness (something of
the form ∀u · (. . . , . . .)u → . . .) because the only concrete syntax offered by Mercury is

bound(. . .)

or

unique(. . .)

which, according to (Overton, 2003, Table 3.1) denote

bound(shared, . . .)

and
bound(unique, . . .)

in Overton’s abstract syntax; but there is no concrete counterpart to the abstract syntax

bound(u, . . .)

Moreover, it seems that some parts of the mode system described by Overton have not yet
been implemented in the compiler (de Vries, 2008b). Although Overton (2003, Section 3.2.3,
Unique modes, p. 50) prescribes that a subterm cannot be more unique than its parent terms (see
also Section 3.2.3 in this dissertation) and describes a polymorphic mode system with constraintsp. 

to enforce this (much like Clean’s), uniqueness propagation is not enforced by the compiler (latest
stable release as of July 2008). This makes it possible to write a predicate that duplicates arbitrary
unique objects (including the world state), as shown in Figure 3.10; the code takes advantagep. 

of the fact that we can extract a unique element from a non-unique pair. Finally, the standard
library does not make use of uniqueness typing at all (except for I/O), even though it does allow
for destructive updates to objects such as arrays (and is therefore not pure).

Mercury’s uniqueness type diverges from Clean’s when it comes to curried functions, however.
We saw in Section 3.2.4 that we must be careful with partial applications of functions with uniquep. 

elements in their closure (in Clean, such functions must be “necessarily unique”). Mercury
adopts an arguably simpler solution: every variable in a function closure is considered non-unique
Overton (2003, Section 3.2.4, Higher-Order Modes, p. 58). This is an interesting design decision,
and we will come back to it in the conclusions (Chapter 8).p. 

110

3.6. Other related work

The following code shows that due to an incomplete implementation of uniqueness typing in
Mercury, we can write a predicate that duplicates arbitrary unique objects. For comparison, the
comments describe the purpose and type of each predicate in a Clean-style syntax.

% dup_unique(x,y,z) is approximately the same as
% let (y :: a•, z :: a•) = dup_unique(x :: a•) in ..
:- pred dup_unique(A,A,A).
:- mode dup_unique(

unique
>> clobbered,

free
>> unique,

free
>> unique) is det.

dup_unique(X,Y,Z) :- dup(mk_pair(X,1),Ps),
split(Ps,P1,P2),
fst(P1,Y),
fst(P2,Z).

% dup :: (a•,Int×)× → ((a•,Int×)×, (a•,Int×)×)×
:- pred dup(pair(A,int),pair(pair(A,int),pair(A,int))).
:- mode dup(

bound(mk_pair(unique, ground))
>> clobbered,

free
>> bound(mk_pair(bound(mk_pair(unique, ground)),

bound(mk_pair(unique, ground))))) is det.
dup(X,mk_pair(X,X)).

% split(p,a,b) is approximately the same as
% let (a :: (a•,Int×)×, b :: (a•,Int×)×) = p :: ((a•,Int×)×, (a•,Int×)×)×
:- pred split(pair(pair(A,B),pair(A,B)),pair(A,B),pair(A,B)).
:- mode split(

bound(mk_pair(bound(mk_pair(unique, ground)),
bound(mk_pair(unique, ground))))

>> clobbered,
free

>> bound(mk_pair(unique, ground)),
free

>> bound(mk_pair(unique, ground))) is det.
split(mk_pair(X,Y),X,Y).

% fst :: (a•, b×)× → a•

:- pred fst(pair(A,B),A).
:- mode fst(

bound(mk_pair(unique, ground))
>> clobbered,

free
>> unique) is det.

fst(mk_pair(X,_),X).

Figure 3.10: Duplication of unique objects in Mercury

111

Chapter 3. Related Work

3.6.4 Bunched Implications

The logic of Bunched Implications (BI), introduced in (O’Hearn and Pym, 1999), allows reasoning
about local sharing. Its use as a type system is explored in (O’Hearn, 2003) and a PhD thesis
(Armelín, 2002), although the latter focuses exclusively on its use as a type system for a logic

(rather than functional) programming language.
BI distinguishes between two kinds of function spaces (denoted by a→ b and a−∗ b). There

are no restrictions on applying “additive” functions of type a→ b, but a “multiplicative” (linear)
function f of type a−∗ b can only be applied to arguments disjoint from the elements in its closure
(thus, the system guarantees that there is no sharing between f and e in f e). Similarly, the system
distinguishes between additive pairs (a ∧ b) and multiplicative pairs (a ∗ b). For a multiplicative
pair (e1, e2) :: a ∗ b, BI guarantees that there is no sharing between e1 and e2.

However, this local sharing is not sufficient to allow destructive updates in a language, unless
that language is in CPS form (Berdine and O’Hearn, 2006) (not unlike linear logic; see quote
from Wadler in Section 3.3.1). For example, the following function is type correct in BI:p. 

first :: (a→ b)−∗ a→ a ∧ b
first f x = (x, f x)

but if the f passed to first destructively modifies its argument, use of first means loosing
referentially transparency. Although the type of first indicates that there is sharing between the
components of the result pair, we are unable to express in BI that the arguments to a function must
not be shared; thus, we cannot prohibit passing in functions that modify their argument to first.

3.6.5 Separation logic

Separation logic is a general class of logics which can be used to “describe the separation of
storage into disjoint components” in imperative languages (Reynolds, 2002). This can be used for
example to verify that the parallel composition of two assignment statements is well-formed. That
is, we want to allow the parallel assignment to two disjoint variables:

x := 5 || y := 10

but disallow parallel assignment to the same variable:

x := 5 || x := 10

These statements are said to interfere. Interference can be controlled using a substructural type
system without contraction where the rule for parallel composition splits the typing environment
into two. The earliest separation logics were based on linear logic (O’Hearn, 1991); the ! operator
of linear logic is used to type passive terms that cannot have any side effects, and hence can
never interfere. More recent separation logics use the logic of bunched implications instead
(Section 3.6.4). The literature on separation logic is large, and a survey is beyond the scope of this
dissertation; (Reynolds, 2002) is a good starting point for readers who want to know more.

3.6.6 Type and effect systems

Type and effect systems record the type of an expression, as well as the effect of the expression in
a relation that takes the form

Γ ` e : σ, φ

112

3.6. Other related work

for some type σ and effect φ. The exact nature of the effects depends on the specific type system;
typically, the language includes some primitive operations with predefined effects. The typing
rules for the other constructs then simply collect effects, with the exception of the abstraction rule
which is defined as1

Γ, x : σ′ ` e : σ, φ
ABS

Γ ` λx · e : σ′
φ−→ σ, ∅

The effects in the body of the function are recorded in the type of the function and are delayed
until the function is applied:

Γ ` f : σ′
φ′′−→ σ, φ Γ ` e : σ′, φ′

ABS
Γ ` f e : σ, φ ∪ φ′ ∪ φ′′

One common effect is the allocation, modification or deallocation of regions (areas of memory) in
imperative languages such as Cyclone (Grossman et al., 2002) or functional languages such as
SAFE (Peña et al., 2007).

Type and effect types also provide a solution to the well-known problem of polymorphic
references. Impure functional languages such as ML or the recent DDC project (Lippmeier, 2008)
offer modifiable references. Such a reference is created using

let r :: ref Int

r = new 5

in ..

which creates a reference with initial contents “5”. This reference can later be modified (in-place).
It is clear that adding references violates purity, but less obvious is that it may also violate
soundness. For example, consider

let r :: ∀ a. ref [a]

r = new []

in r := [1] ;

if head (deref r) then .. else ..

Since the empty list has type ∀a · [a], this becomes the type of the reference also. Both the update
to r and the dereference of r are therefore type correct; but of course, taken together they will
cause a program error.

The conclusion is that the types of multiple references should not be generalized, but keeping
track of which type variables can and which type variables cannot be generalized is non-trivial.
This is especially true for references inside function closures. As Leroy and Weis (1991) observe:

‘‘The problem is that the types of the free variables of a function do not appear in the
type of the function. In this context, it is useful to think of functions as closures.
Closures, in contrast with any other data structure, are not adequately described
by their (functional) type: we do not know anything about the types of the values
contained in the environment part of the closure.

Our solution is to keep track of what is inside a closure. We associate with any
function type a set of types, the types of all variables in the function.

1We explain only the call-by-value case here; see (Henglein et al., 2005) for the call-by-name case.

113

Chapter 3. Related Work

By recording modification of references as effects, generalization of the “dangerous” type variables
can be avoided:

Γ ` e : σ, φ a /∈ ftv(Γ) ∪ ftv(φ)
GEN

Γ ` e : ∀a · σ
As an aside, note that in a purely functional programming language this problem does not arise.
Even if the language supports arrays that can be modified in-place and even if the language
supports “empty” arrays of a polymorphic type, then a modification of that array would return
a (conceptually) new array of a monomorphic type and the original polymorphic array can no
longer be used.

Type and effect systems are usually not used by pure functional programming languages, and
are not typically regarded as substructural type systems (although they can be, as Fluet (2007)
shows in this doctoral thesis). We included this section mainly because we too will have a need to
be more precise about the types of the elements in a function closure (Chapter 4). A more detailedp. 

discussion is therefore beyond the scope of this dissertation; we refer the reader to (Henglein et al.,
2005) for more information on type and effect systems, or to (Garrigue, 2004) for a brief survey
of solutions to the polymorphic references problem.

114

Scaling Uniqueness Typing to
Arbitrary Rank Types∗

We modify Clean’s uniqueness type system in two ways. First, while Clean functions that are
partially applied to a unique argument are necessarily unique (they cannot lose their uniqueness),
we just require that they must be unique when applied. This ultimately makes subtyping redundant.
Second, we extend the type system to allow for higher-rank types. To be able to do this, we
explicitly associate type constraints (attribute inequalities) with type schemes. Consequently,
types in our system are much more precise about constraint propagation.

Since the typing rules for rank-1 are easier to understand than the typing rules for arbitrary
rank, we first present the rank-1 typing rules in Section 4.1 and then extend them to arbitrary rank
in Section 4.2. We consider a few examples in Section 4.3, outline a type inference algorithm in p. , p. 

Section 4.4, compare our system to the original Clean type system in Section 4.5, and conclude p. , p. 

this chapter in Section 4.6. p. 

4.1 Rank-1 typing rules

We will present a uniqueness type system that allows for rank-1 types only, before showing the
full type system in Section 4.2. Although both the expression language and the type language p. 

must be modified to support arbitrary rank types, the typing rules as presented in this section are
easier to understand and provide a better way to introduce the type system.

4.1.1 The Language

We define our type system over a core lambda calculus:

e ::= expression
x�, x⊗ variable (exclusive, shared)
λx · e abstraction
e e application
i integer

The typing rules assign an attributed type τν to an expression e, given a type environment Γ and a
uniqueness attribute νγ (explained in Section 4.1.4), denoted p. 

Γ, νγ ` e : τν

∗The material in this chapter was published as Uniqueness Typing Redefined in Proceedings of the International Symposium on the
Implementation and Application of Functional Languages (IFL) 2006, Zoltán Horváth, Viktória Zsók and Andrew Butterfield (Eds.),
Lecture Notes in Computer Science volume 4449 (de Vries et al., 2007b).

115

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

The language of types and uniqueness attributes is defined as

τ ::= type ν ::= uniqueness attribute
t, s type variable u, v variable
τν −→

νa
τ′ν
′

function • unique

Int constant type × non-unique

The syntax for arrows (function space constructor) warrants a closer look. The domain and
codomain of the arrow are two attributed types τν and τ′ν

′
. The arrow itself has an additional

attribute νa, whose role will become apparent when we discuss the rule for abstractions. We will
adopt the notational convention of writing (τν −→

νa
τ′ν
′
)ν f , where ν f is “ordinary” uniqueness

attribute of the arrow, as (τν
ν f−→
νa

τ′ν
′
).

As is customary, all type and attribute variables in an attributed type τν are implicitly uni-
versally quantified at the outermost level (of course, this will not be true for the arbitrary rank
system). In this section, a type environment maps variable names to attributed types (in Section
4.2, it will map variable names to type schemes).p. 

4.1.2 Integers

We can choose between three possible rules for integers; we can assume integers are unique
(rule INT•), non-unique (INT×), or we can leave the uniqueness unspecified (INT):

INT•
Γ, νγ ` i : Int•

INT×
Γ, νγ ` i : Int×

INT
Γ, νγ ` i : Intν

A case can certainly be made that unique integers (that is, integers that can be updated in-place)
are not particularly useful; moreover, base types must be considered non-unique if Clean-style
read-only access to unique variables is supported (Section 3.2.6)1,2. However, even if uniquep. 

integers are considered useful, rule INT• is very restrictive, as we shall see in Section 4.1.4. Wep. 

will therefore assume rule INT in the remainder of this chapter.

4.1.3 Variables

To find the type of the variable, we look up the variable in the environment, correcting the type to
be non-unique for shared variables:

(Γ, x : τν), νγ ` x� : τν
VAR�

(Γ, x : τν), νγ ` x⊗ : τ×
VAR⊗

Note that VAR⊗ leaves the uniqueness attribute of the variable in the environment arbitrary. This
means that variables can “lose” their uniqueness. For example, the function dup defined as
λx · (x⊗, x⊗) has type tu → (t×, t×) (assuming a product type); in other words, no matter what
the uniqueness of a on input is, each a in the pair will be non-unique.

1Clean uses type information as a heuristic to detect aliasing (Section 3.2.6): the result of a strict-let-before must be
of primitive type. This heuristic breaks if unique elements of primitives types are supported. See also Section 8.2.9.

2The Clean manual specifies that arguments of a basic type are stored on the stack and therefore is does not make
sense to make them unique (Plasmeijer and van Eekelen, 2002, Section 9.7, Destructive updates using uniqueness typing).
One might consider cases however where integers are used to model areas in memory for low-level hardware interfacing.
In such circumstances it may be useful to offer unique integers, as it is important to update that area of memory in-place.

116

4.1. Rank-1 typing rules

4.1.4 Abstractions

Consider the following function that writes two characters to a file:

f file = (write_char⊗ file⊗ ’a’, write_char⊗ file⊗ ’b’)

The reference count analysis (Section 3.2.7) has marked the two uses of file as shared, which p. 

will cause its type to be inferred as non-unique by rule VAR⊗. Since write char expects a
unique file, the type checker can reject this program. But what happens if we partially apply
write char?

f file = let g = write_char� file� in (g⊗ ’a’, g⊗ ’b’)

Both programs are semantically equivalent, so the type-checker should reject both. However,
the argument file to write char is in fact exclusive in the second example, so how can we
detect the type error? This is of course the partial application problem we discussed before in
Section 3.2.4. To recap, the general principle is p. 

when a function accesses unique objects from its closure, that closure (i.e., the

function) must be unique itself (∗)

In the example above, g accesses a unique file from its closure, and must therefore be unique
itself—but is not, resulting in a type error. We can approximate1 (∗) by

if a function is partially applied, and the supplied argument is unique, the resulting

function must be unique when applied (∗′)

In the lambda calculus, functions only take a single argument, and the notion of currying translates
into lambda abstractions returning new lambda abstractions. Thus, we can rephrase (∗′) as

if a lambda abstraction returns a new lambda abstraction, and the argument to the

outer lambda abstraction is unique, the inner lambda abstraction must be unique

when applied (∗′′)

In our type language, the additional “closure” attribute νa in the arrow type τν1
1 −→νa

τν2
2 indicates

whether the function is required to be “unique when applied”. It is essentially a form of closure
typing (Leroy and Weis, 1991; Garrigue, 2004), except that we do not need to be quite so precise:
we do not need to know the types of all the variables in the closure of the function, but only
require to know whether any of those variables is unique.

The purpose of νγ in the typing rules is to indicate whether we are currently in the body of an
(outer) lambda abstraction whose argument must be unique. Thus we arrive at rule ABS:

(Γ, x : τν), νγ′ ` e : τ′ν
′

νa ≤ νγ, νγ′ ≤ ν, νγ′ ≤ νγ

Γ, νγ ` λx · e : τν
ν f−→
νa

τ′ν′
ABS

This rule is very similar to the conventional rule for abstractions in a Hindley/Milner type system,
with the exception of the attribute inequalities in the premise of the rule. The u ≤ v operator can
be read as an implication: if v is unique, then u must be unique (v implies u, u← v).

1This is an approximation since the function may not use the curried argument. In λx · λy · y�, x is not used in the
body of the function, so its uniqueness need not affect the type of the function.

117

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

The first constraint establishes the conclusion of (∗′′): if we are in the body of an outer
lambda abstraction whose argument must be unique (νγ), then the inner lambda abstraction must
be unique when applied (νa). The second constraint νγ′ ≤ ν1 is a near direct translation of the
premise of (∗′′). Finally, νγ′ ≤ νγ simply propagates νγ: if the premise of (∗′′) already holds
(νγ), it will continue to do so in the body of the abstraction (νγ′). ABS is the only rule that changes
the value of νγ; all the other rules simply propagate it. When typing an expression, νγ is initially
assumed to be non-unique.

It is instructive to consider an example at this point. We show the type derivation for λx · λy ·
x�, the function that returns the first of its two arguments:

(x : tu, y : sv), uγ′′ ` x� : tu ua′ ≤ uγ′ , uγ′′ ≤ v, uγ′′ ≤ uγ′
VAR�

(x : tu), uγ′ ` λy · x� : sv
u f ′−→
ua′

tu ua ≤ ×, uγ′ ≤ u, uγ′ ≤ ×
ABS

∅,× ` λx · λy · x� : tu
u f−→
ua

(sv
u f ′−→
ua′

tu)
ABS

Since ua ≤ × and uγ′ ≤ × are vacuously true, uγ′′ ≤ v and uγ′′ ≤ uγ′ are irrelevant as uγ′′

does not constrain any other attributes, and ua′ ≤ uγ′ and uγ′ ≤ u imply that ua′ ≤ u (by
transitivity), we can simplify this type to

λx · λy · x� : tu u f−→
ua

(sv
u f ′−→
ua′

tu) ua′ ≤ u

where the constraint ua′ ≤ u says that if we curry the function (specify x but not y), and x
happens to be unique, the result function must be unique on application (ua′ must be •).

If we now consider rule INT•, which says that integers are always unique, this definition of
ABS would imply that if we curry a function by passing in an integer, the result function must be
unique on application, which is unnecessary. For example, we want the following expression to
be type correct:

let fst = λx · λy · x in let one = fst 1 in (one 2, one 3)

For the same reason, nothing in ABS constrains ν f , and the actual uniqueness of the function is left
free. In summary, assigning a unique type to an expression that does not need one is unnecessarily
restrictive.

4.1.5 Application

The rule for function application is relatively straightforward. The only difference between the
rule as presented here and the usual definition is that APP enforces the constraint that functions
that must be unique when applied, are unique when applied (ν f ≤ νa):

Γ, νγ ` e : τν
ν f−→
νa

τ′ν
′

Γ, νγ ` e′ : τν ν f ≤ νa

Γ, νγ ` e e′ : τ′ν′
APP

4.2 Arbitrary Rank Types

As explained in Section 2.4.4, the rank of a type is the depth at which universal quantifiers appearp. 

in the domain of functions. In most cases, universal quantifiers appear only at the outermost level.

118

4.2. Arbitrary Rank Types

For example,
id : ∀a.a→ a

is a type of rank 1. In higher-rank types, we have nested universal quantifiers. For example
(Peyton Jones et al., 2007),

g : (∀a.[a]→ [a])→ ([Bool], [Int]) = λ f . (f [True, False], f [1, 2, 3])

In this example, g requires a function f that works on lists of type [a] for all a (the rank of the
type of g is 2). Type inference is undecidable for types with rank n > 2 (Wells, 1999), but we can
support type inference by combining type inference with type checking. Thus, higher-rank types
are only supported when function arguments are given an explicit type signature. We extend the
expression language with annotated lambda expressions1:

e += expression (ctd.)

λ(x :: σ) · e annotated abstraction

In the rank-1 system presented in Section 4.1 (as well as in Clean’s system), constraints are never p. 

explicitly associated with types but are left implicit in the typing rules. This makes the types
simpler but this approach does not scale to higher rank types. When we generalize a type τν to
a type scheme σ, τν may be constrained by a set of constraints C. Those constraints should be
associated with the type scheme σ, because if at a later stage we instantiate σ to get a type τ′ν

′
,

the same set of constraints should apply to τ′ν
′
. This makes the types more complicated, but it

also makes them more precise (see Sections 4.5 and 4.6). So, we define a type scheme as p. , p. 

σ ::= ∀a.τν, C type scheme

where a is a set of type and uniqueness variables, and C is set of constraints or a constraint variable.
We modify the type language to allow for type schemes in the domain of the arrow. We follow
(Peyton Jones et al., 2007) and do not allow for type schemes in the codomain:

τ ::= type
t, s type variable
σ −→

νa
τν arrow type (functions)

Int constant type

Typing derivations now have the structure

Γ, νγ ` e : τν | C

which says that e has type τν, given an environment Γ and uniqueness attribute νγ (see Sec-
tion 4.1.4), provided constraints C are satisfied (where environments now map variable names to p. 

type schemes). The full typing rules are listed in Fig. 4.1; we will explain them separately below. p. 

1The paper also gives a rule for let expressions, but unfortunately the rule as shown is wrong. Since the let
expression introduces a new variable into a function closure, the variable bound by the let expression must be taken into
account when determining νγ (in a similar vein to the rule for abstraction). However, rather than correcting the rule, we
will delay a discussion of let expressions until the next chapter.

119

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

Γ, νγ ` i : Intν |∅ INT

`inst
σ � τν | C

(Γ, x : σ), νγ ` x� : τν | C VAR�

`inst
σ � τν | C

(Γ, x : σ), νγ ` x⊗ : τ× | C VAR⊗

(Γ, x : ∀.τν, C1), νγ′ ` e : τ′ν
′ | C2

Γ, νγ ` λx · e : (∀.τν, C1)
ν f−→
νa

τ′ν′ | C2, νa ≤ νγ, νγ′ ≤ νγ, νγ′ ≤ ν
ABS

Γ, νγ ` e : σ1
ν f−→
νa

τν | C Γ, νγ `gen e′ : σ2 `subs
σ2 � σ1

Γ, νγ ` e e′ : τν | C, ν f ≤ νa
APP

(Γ, x : σ), νγ′ ` e : τν | C

Γ, νγ ` λ(x :: σ) · e : σ
ν f−→
νa

τν | C, νa ≤ νγ, νγ′ ≤ νγ, νγ′ ≤ dσe
ANNOT

Γ, νγ ` e : τν | C a = ftuv(τν)− ftuv(Γ)
Γ, νγ `gen e : ∀a.τν, C

GEN

`inst ∀a.τν, C � Sxτν | SxC
INST

b /∈ ftuv(∀a.τν) `subs Sxτν � τ′ν
′

C2 � SxC1

`subs ∀a.τν, C1 � ∀b.τ′ν′ , C2

SUBSσ

`subs
σ2 � σ1 `subs ∀.τν1

1 , ∅ � ∀.τν2
2 , ∅

`subs
σ1 → τν1

1 � σ2 → τν2
2

SUBS→

`subs
τν � τν

SUBSτ

Figure 4.1: Uniqueness Typing Rules

120

4.2. Arbitrary Rank Types

4.2.1 Variables

Because the type environment now associates variable names with type schemes rather than types,
to find the type of a variable we must look up the associated type scheme in the environment, and
instantiate it. Instantiation is defined as

`inst ∀a.τν, C � Sxτν | SxC
INST

where Sx is some substitution [a 7→ . . .] mapping all variables a to fresh variables. Since we
associate a set of constraints C with a type scheme, a type Sxτν is only an instance of a type
scheme σ if those constraints are satisfied.

4.2.2 Abstraction

The rule for abstraction remains unchanged except for the domain of the arrow operator which
is now a type scheme. However, since we can only infer rank-1 types, the type scheme for
unannotated lambda expressions must be a “degenerate” type scheme with no quantified variables
(∀.τν, C)—in other words, a type.1

4.2.3 Application

The rule for application looks slightly different from the rank-1 version. Previously, with APP the
type of the actual parameter had to equal the type of the formal parameter of the function:

Γ, νγ ` e : τν
ν f−→
νa

τ′ν
′

Γ, νγ ` e′ : τν ν f ≤ νa

Γ, νγ ` e e′ : τ′ν′
APP1

In the rank-n case, the only requirement is that the type of the actual parameter is an instance of
the type of the formal parameter. To this end, we infer a type scheme for the actual parameter, and
do a subsumption check:

Γ, νγ ` e : σ1
ν f−→
νa

τν | C Γ, νγ `gen e′ : σ2 `subs
σ2 � σ1

Γ, νγ ` e e′ : τν | C, ν f ≤ νa
APP

(We will explain subsumption separately in Section 4.2.5.) To infer a type scheme, we first infer a p. 

type, and then generalize over all the free variables in the type, excluding the free variables in the
environment:

Γ, νγ ` e : τν | C a = ftuv(τν)− ftuv(Γ)
Γ, νγ `gen e : ∀a.τν, C

GEN

1In (Peyton Jones et al., 2007) the arrow→ is overloaded; there is an arrow τ → τ and an arrow σ→ τ. Since we do
not use the notion of ρ–types, our arrows always have type σ→ τν. Strictly speaking this makes our inference algorithm
incomplete (though not unsound): while the typing rules allow to instantiate a type variable by a type of the form σ → τ
for a non-degenerate type scheme σ, the type inferencer will never do this. We show the type system without ρ-types only
to simplify the presentation.

121

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

4.2.4 Annotated Lambda Abstractions

The rule for annotated lambda abstractions is similar to the rule for “ordinary” lambda abstractions,
except that programmers can now specify a type scheme manually, allowing for higher-rank types:

(Γ, x : σ), νγ′ ` e : τν | C

Γ, νγ ` λ(x :: σ) · e : σ
ν f−→
νa

τν | C, νa ≤ νγ, νγ′ ≤ νγ, νγ′ ≤ dσe
ANNOT

We have to be careful defining d∀a.τνe, used to constrain νγ′ . The obvious answer (ν) is only
correct if ν is not itself universally quantified. For example, consider the rank-2 type

λ(x :: ∀u.tu) · λy · x� : (∀u.tu)
u f−→
ua

sv
u f ′−→
ua′

tu, ?

What should the constraint at the question mark be? One possible solution is

∀u · ua′ ≤ u

but that is equivalent to saying
ua′ ≤ •

So, to avoid unnecessary complication by introducing universal quantification into the constraint
language, we define d e as

d∀a.τνe =

ν if ν /∈ a

• otherwise

4.2.5 Subsumption

The rules for subsumption are defined as in (Peyton Jones et al., 2007), except that we have
collapsed rules SKOL and SPEC into one rule (SUBSσ) and added one additional premise. SUBSσ

is the main rule that checks whether one type scheme is a (generic) instance of another.

b /∈ ftuv(∀a.τν) `subs Sxτν � τ′ν
′

C2 � SxC1

`subs ∀a.τν, C1 � ∀b.τ′ν′ , C2

SUBSσ

In a standard type system, as here, a type scheme σ1 = ∀a.τ1 is at least as polymorphic as
another type scheme σ2 = ∀b.τ2 if a unifier Sx can be found that instantiates τ1 to an arbitrary

instantiation of τ2 (guaranteed by b /∈ ftuv(∀a.τν1
1)). In our system, however, we need an

additional constraint C2 � SxC1, which is best explained by example. Consider

f : (∀u, v · tu u f−→
ua

sv)→ . . .

g : tu u f−→
ua

sv, [u ≤ v]

Should the application f g type-check? Intuitively, f expects to be able to use the function it is
passed to obtain an s with uniqueness v (say, a unique s), independent of the uniqueness of t.
However, g only promises to return a unique s if t is also unique! Thus, the application f g should
be disallowed.

122

4.3. Examples

Conversely, if we instead define f ′ and g′ as

f ′ : (∀u, v · tu u f−→
ua

sv, [u ≤ v])→ . . .

g′ : tu u f−→
ua

sv

the application f ′ g′ should be allowed because the type of g′ is more general than the type
expected by f ′. The condition C2 � SxC1, where the � symbol stands for logical entailment from
propositional logic, means that if constraints C2 are satisfied, constraints C1 must also be satisfied1.
In other words, the constraints of the offered type must be the same or less restrictive than the
constraints of the requested type.

4.3 Examples

In this section we consider a few example expressions and their associated types. We start with
very simple expressions and slowly build up from there. First, we consider a single integer:

5 : ∀u.Intu, ∅

Rule INT says that integers have type Int with an arbitrary uniqueness, hence the universally
quantified u. Next we consider the identity function id:

λx.x� : ∀t, u, u f , ua, c.(∀.tu, c)
u f−→
ua

tu, c

This type may appear more complicated than it really is, because we show top-level attributes and
degenerate type schemes; we can be slightly less formal:

λx.x� : (tu, c)
u f−→
ua

tu, c

Either way, this is the type one would expect an identity function to have. Note that this function
is polymorphic in the constraints of its argument: if the argument has type tu under constraints c,
then the result has type tu only if the same set of constraints is satisfied.

The function apply ($ in Haskell) behaves like id restricted to function types:

λ f .λx. f� x� ::
(

(tu, c1)
u f ′′−−→
ua′′

sv, c2

)
u f−→
ua

(
(tu, c1)

u f ′−→
ua′

sv
)

, [c2,

ua′ ≤ ua′′ , ua′ ≤ u f ′′ , u f ′′ ≤ ua′′]

This is a complicated type, and in later chapters we will consider how to simplify the type system.
For now, we consider each constraint in turn:

c2 If f has type (tu, c1)
u f ′′−−→
ua′′

sv only when constraints c2 are satisfied, then

apply f also has that type only when those constraints are satisfied (cf. the
constraint c in the type of id).

1If either C1 or C2 in C1 � C2 is a constraint variable, we apply unification instead of the entailment check.

123

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

ua′ ≤ ua′′ If f can only be executed once (in other words, if f must be unique on
application, if ua′′ is unique), then apply f can also only be executed once.

ua′ ≤ u f ′′ If f is unique, then apply f can only be executed once; this is a direct
consequence of the “partial application” from Section 4.1.4.

u f ′′ ≤ ua′′ Finally, apply f applies f , so if f must be unique on application, we require
that it is unique.

The next example emphasizes a point with respect to the reference count analysis. Suppose
that we have a primitive type Array and two functions resize to (destructively) resize the array,
and size to return the current size of the array:

resize : Array•
u f−→
ua

Intv
u f ′−→
•

Array•

size : Arrayu u f−→
ua

Intv

Then the following expression is correctly marked and type correct:

λarr · if size� arr⊗ < 10 then resize⊗ arr� 20 else resize⊗ arr� 30

This expression is marked correctly, because only one of the two branches of the conditional
expression will be executed, and the shared mark arr⊗ in the condition guarantees that the
condition cannot modify arr (we are taking advantage of read-only access; see Section 3.2.6).p. 

To conclude this section, we consider two examples that contain a type error, which in both
cases will be detected in the subsumption check (although for different reasons). The first example
shows a simple case of an argument not being polymorphic enough:

let idf = λ(f :: ∀u.tu u f−→
ua

tu) · f�

in let idint = λ(i :: Int•) · i�

in id�f id�int

Here, idf demands that its argument is polymorphic in u, but idint is not (it works only on unique
integers). The problem is detected when we do the subsumption check

∀.Int•
u f−→
ua

Int•
?
� ∀u.tu

u f ′−→
ua′

tu

We have to check that we can unify Int• and tu for an arbitrary instantiation of u, but that will
clearly fail1. The second “incorrect” example that we consider fails due to the entailment check
explained in Section 4.2.5:p. 

let first = λ(f :: tu u f−→
ua

sv
u f ′−→
ua′

tu) · λx · λy · f� x� y�

in first� (λx · λy · x�)

1The implementation of SUBSσ will have instantiated u with a fresh “skolem constant”: an unknown, but fixed,
uniqueness attribute. These skolem constants are the “rigid variables” known from, for example, ghc, and the type error
the user will get is Cannot unify rigid attribute u and •.

124

4.4. Type Inference

The function that is passed as an argument to first has type1

λx · λy · x� : tu u f−→
ua

sv
u f ′−→
ua′

tu, [ua′ ≤ u]

whereas the type specified for the argument f of first does not allow for the constraint ua′ ≤ u;
so, the type-checker will fail with

[] does not entail [ua′ ≤ u]

4.4 Type Inference

We have written a prototype implementation of the type system presented in this chapter. The
typing rules as presented in Fig. 4.1 allow for a relatively straightforward translation to an p. 

algorithmW style (Figure 2.11) type-checker (our prototype is just under a thousand lines long) p. 

once the following subtleties have been observed.

When doing unification, a unification goal τν ?≈ τ′ν
′

should be expanded into two subgoals

τ
?≈ τ′ and ν

?≈ ν′. In other words, the base types and the uniqueness attributes should be unified
independently.

Unification should not be used to unify functions because, as far as unification is concerned,

σ1 → τν1
1

?≈ σ2 → τν2
2 is the same as σ2 → τν2

2
?≈ σ1 → τν1

1 , but to compare two type
schemes we need to use subsumption, which clearly gives different answers for `subs

σ1 � σ2

and `subs
σ2 � σ1. However, when properly implemented, by the time we need unification, the

subsumption rules (in particular, SUBS→) will have taken care of all arrows2.
To implement the subsumption check, the technique suggested by Peyton Jones (Peyton Jones

et al., 2007) of using skolem constants can be applied, introducing skolem constants both type
and uniqueness variables (see Section 2.5.3).

Logical entailment of two sets of constraints C1 and C2 can be implemented as a validity
check for the propositional logic formula C1 → C2, where the u ≤ v operator is regarded as an
implication v→ u. Although the complexity of checking the validity of functions in propositional
logic is exponential, that will not matter much in practice since the formulae generated by the
type-checker will be small (most type schemes will not have many associated constraints). A
simple algorithm (the one we have implemented) to check the validity of a formula in propositional
logic is to convert the formula to conjunctive normal form, inspect every conjunct and search for
atoms in the conjunct such that the conjunct contains the atom and its negation. If such a match is
found for all conjuncts, the formula is valid (see Huth and Ryan, 2004, Section 1.5, for details).

Finally, when generalizing a type τν with respect to a set of constraints C, the set should be
checked for inconsistencies; these should be reported as type errors. For improved readability
of types, it is also useful to take the transitive closure of C instead of C itself, and add only
the “relevant” inequalities to the type scheme (rule ABS might generate unnecessary constraints
[νγ′ ≤ νγ, νγ′ ≤ ν1] if νγ′ is never used to constrain other attributes); this is demonstrated in the
example in Section 4.1.4. p. 

1There are additional “polymorphic” constraint variables in these types that we are leaving out for conciseness.
2In (Peyton Jones et al., 2007), due to the distinction between ρ functions and τ functions, unification must still deal

with arrows τ → τ; since we only have one arrow type, this is unnecessary in our approach.

125

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

4.5 Comparison with Clean

The uniqueness type system presented here is based on that of the programming language Clean

(Barendsen and Smetsers, 1993a, 1996), which is in turn strongly related to substructural logics
(see (Wadler, 1993) for an accessible introduction to linear logic; (Walker, 2005) is a good
introduction to substructural type systems). However, there are a number of important differences,
one being that Clean’s system is defined over graph rewrite rules rather than the lambda calculus;
this gives the type system a very different “feel”.

A rather more important difference is the treatment of partially applied functions. In Clean,
a function that is (partially) applied to a unique argument, is itself unique. Moreover, unique
functions are necessarily unique: they cannot lose their uniqueness. In the curry example in
Section 4.1.4, there are two references to the partially applied function (g), which is therefore
marked as ⊗. The type correction in rule VAR⊗ (a trivial operation in our system) must check
whether the variable represents a function, and if so, reject the program. While this solves the
curried function problem, it has far reaching consequences for the type system.

The first is that type variables, as well as functions, are not allowed to lose their uniqueness,
since a type variable can be instantiated to a function type. In Clean, for example, the function
dup has type

λx · (x⊗, x⊗) : t× → (t×, t×)

and not
λx · (x⊗, x⊗) : tu → (t×, t×)

The type assigned by Clean is not as restrictive at is seems, however, due to Clean’s subtyping
relation: a unique type is considered to be subtype of its non-unique counterpart. For example, the
following is a correct Clean program:

five :: Int•

five = 5

dup :: t× → (t×, t×)
dup x = (x, x)

Start = dup five

where Start is assigned the type (Int×, Int×). Of course, the subtyping relation is adapted for
arrows (Section 3.2.2):p. 

τνa
a

ν−→ τ
νb
b ≤ τνc

c
ν′−→ τ

νd
d ⇔ ν = ν′ and τνa

a ≤	 τνc
c and τ

νb
b ≤

⊕ τ
νd
d

There are two things to note about this definition: a unique function is never a subtype of its
non-unique version (condition ν = ν′), since functions are not allowed to lose their uniqueness
(a similar restriction applies to type variables); and subtyping is contravariant in the function
argument. Although this is not surprising, it complicates the type system—especially in the
presence of algebraic data types. We have not discussed ADTs in this chapter (see Section 4.6),p. 

but they are easy to add to our system. However, algebraic data constructors can include arrows,
for example

data Fun a b = Fun (a → b)

126

4.5. Comparison with Clean

which means that arguments to constructors must be analyzed to check whether they have
covariant, contravariant or invariant subtyping behaviour. An additional complication is that Clean
supports abstract data types, where the types of the constructors are hidden. Unfortunately, the
contravariant/covariant behaviour of the data type cannot be independently specified, breaking the
abstraction boundary.

By contrast, in our system we do not have the notion of “necessarily unique”; instead we
add a single additional attribute νa as explained before, and the condition that (some) curried
functions can only be executed once becomes a local constraint ν f ≤ νa in the rule for function
application. There are no global effects (for example, type variables are unaffected) and we do not
need subtyping1.

That last point is worth emphasizing. The subtyping relation in Clean is very shallow. The
only advantage of subtyping is that we can pass in a unique object to a function that expects a
non-unique object. So, in Clean, marking a formal parameter as non-unique really means, “I do
not care about the uniqueness of this parameter”. However, in our system, we can always use
an attribute variable to mean the same thing.2 That is not always possible in Clean, since type
variables are not allowed to lose their uniqueness (the type we assign to the function dup above
would be illegal in Clean).

Since we do not have subtyping, functions can specify that their arguments must be unique
(t•), non-unique (t×), or indicate that the uniqueness of the input does not matter (tu). In Clean,
it is only possible to specify that arguments must be unique (t•) or that the uniqueness of an
argument does not matter (tu or, due to subtyping, t×). Experience will tell whether this extra
functionality is useful.

Another consequence is mentioned in (Barendsen and Smetsers, 1996, Section Uniqueness

Type Inference):

‘‘However, because of our treatment of higher-order functions (involving a restriction

on the subtype relation w.r.t. variables), it might be the case that lifting this most gen-

eral solution fails, whereas some specific instance is attributable. [...] Consequently,

there is no “Principal Uniqueness Type Theorem”.

Since we can correct the type of a shared variable to be non-unique, no matter what the type
of that variable is, our approach does not suffer from this drawback. This also facilitates type
inference: when we see a variable marked as shared, we can immediately return the correct type
for that variable. In Clean, we might not yet know what that type is, as the type of the variable
may still be a meta-variable. If that meta-variable is later instantiated with a base type (such as an
array of integers), then the uniqueness correction will succeed, but if it is bound to a function type
or if the variable is universally quantified (when generalization a type), the uniqueness correction
must fail.

1One might argue that subsumption introduces subtyping between type schemes; however, due to the predicative
nature of our type system, this does not have an effect on algebraic data type arguments; see the discussion in (Peyton
Jones et al., 2007, Section 7.3).

2Note that while the use of type variables to model subtyping has precedent in the literature (e.g., Leijen, 2004,
2007b), the situation in Clean is particularly simple due to the shallow depth of the subtyping relation.

127

Chapter 4. Scaling Uniqueness Typing to Arbitrary Rank Types∗

4.6 Notes

We have designed a uniqueness type system for the lambda calculus that can be used to add side
effects to a pure functional language without losing referential transparency. This type system
is based on the type system of the functional programming language Clean, but modifies it in a
number of ways. First, it is defined over the lambda calculus rather than a graph rewrite system.
Second, our treatment of curried functions is completely different and makes the type system
much simpler; in particular, there is no need for subtyping. Third, our system supports arbitrary
rank types, associating constraints with type schemes.

The system as presented in this chapter deals only with the core lambda calculus; however,
extensions to deal with algebraic data types and recursive definitions are straightforward. For
recursive definitions µ · e, the type of e is corrected to be non-unique (this is the same approach as
taken in (Barendsen and Smetsers, 1996) for letrec expressions). The main principle in dealing
with algebraic data types is that if a unique object is extracted from an enclosing container, the
enclosing container must in turn be unique (this is a slightly more permissive definition than the
one used in Clean, which requires that a container must be unique when it is constructed if any of
its elements are unique; we will come back to this point in Section 8.1.4).p. 

The inference algorithm described briefly in Section 4.4 is based on algorithmW and inheritsp. 

its associated problems, in particular unhelpful error messages. An investigation into better
approaches is future work; the constraint based algorithm proposed by Heeren looks promising
(Heeren et al., 2002).

The formalization of the constraint language in this chapter is not as precise as it could be.
A better approach might be to recast the type system in terms of the qualified types framework
(Section 2.9.2). However, that will still not help to give precise definitions of the constraintp. 

simplification step shown in Section 4.1.4. Moreover, the constraints significantly complicate thep. 

types. In the next two chapters will we will see how to remove the need for constraints completely.
In the explanation of the rule for abstractions ABS in Section 4.1.4 we mentioned that our

method of constraining νa is conservative. For example, the constraint ua′ ≤ u in

λx · λy · y� : (tu, c1)
u f−→
ua

(sv, c2)
u f ′−→
ua′

sv, [c2, ua′ ≤ u]

is not actually necessary since x is not referenced in λy · y�. Hence, it may be possible to relax
the rules to be less conservative. This would only affect how νa in ABS is established; it would
not change the type language. This too will be considered in the next chapter.

128

Removing Inequality
Constraints∗

Uniqueness types often involve implications between uniqueness attributes, which complicates
type inference and incorporating modern extensions such as arbitrary rank types. In this chapter
we show how to avoid these difficulties by recoding attribute inequalities as attribute equalities.

5.1 Typing the core λ−calculus

We present a uniqueness type system for the lambda calculus which does not involve implications.
The expression and type language are defined in Figure 5.1. The expression language is the p. 

standard lambda calculus, except that variables are marked as exclusive (x�) or shared (x⊗).
The type language includes base types, type variables and the function space, all of which get a
uniqueness attribute indicating whether there is more than one reference to a term. The domain
and codomain of the arrow (function space constructor) are both attributed types, and the arrow
itself gets two attributes: the “normal” uniqueness attribute ν (indicating whether there is more
than one reference to the function) and an additional “closure attribute” νc, which is the disjunction
of all attributes on the types of the elements in the closure of the function (Section 5.1.2).

We treat a uniqueness attribute as a boolean expression, reading True (unique) for “•” and False
(not unique) for “×”, and allow for arbitrary boolean expressions involving variables, negation,
conjunction and disjunction1. This definition of attributes is different from their definition in
Chapter 4 where (like in Clean, Section 3.2) we only allow for unique, non-unique and variables. p. , p. 

It may not be immediately obvious why this is useful, but the improvements of the system as
presented in this chapter over the previous are made possible by this one change.

The typing relation itself takes the form

Γ ` e : τν|fv

which reads as “in environment Γ, expression e has attributed type τν; the attributes on the types
of the free variables in e are fv”. We represent fv as a relation Var×Attribute; its purpose will
become clear when we discuss the rule for abstraction in Section 5.1.2. The environment maps p. 

expression variables to attributed types.
Note the conspicuous absence of constraints in the type language. We will explain how we

deal with this when we discuss the individual typing rules.

1Although the typing rules only introduce disjunctions, unification may introduce more complicated types also
involving conjunctions and negation; we will come back to this point in Section 8.2.1.

∗The material in this chapter was presented as Equality-Based Uniqueness Typing at the Eighth Symposium on Trends in Functional
Programming, 2007 (de Vries et al., 2007a).

129

Chapter 5. Removing Inequality Constraints∗

e ::= expression ν ::= attribute
x� variable (exclusive) u attribute variable
x⊗ variable (shared) • unique
λx · e abstraction × non-unique
e e application ¬ν negation

ν1 ∧ ν2 conjunction
τ ::= base type ν1 ∨ ν2 disjunction

B constant type
t, s type variable
τν −→

νc
τ′ν
′

function space

Figure 5.1: Expression and type language for the core system

5.1.1 Variables

To check that a variable x marked as exclusive has attributed type τν, we simply look up the
variable in the environment1. For shared variables, we need to correct the type found in the
environment to be non-unique. In both cases we also record the uniqueness attribute of the type of
the variable (see Section 5.1.2).

Γ, x : τν ` x� : τν|(x,ν)
VAR�

Γ, x : τν ` x⊗ : τ×|(x,×)
VAR⊗

VAR⊗ does not require the type in the environment to be non-unique. As we saw in Section 4.1.3p. 

in the previous chapter, this effectively means that variables can lose their uniqueness. Consider
again the function dup = λx · (x⊗, x⊗). Both components of the pair point to the same element,
which is therefore non-unique by definition. Thus the type of dup is

dup :: tu u f−→
×

(t×, t×)v

The attributes on the arrow will be explained in the next section.

5.1.2 Abstraction

Once again (Section 3.2.4, Section 4.1.4) we must consider the problem of partial application.p. , p. 

Consider the function that returns the first of its two arguments:

const = λx · λy · x�

Temporarily ignoring the attributes on arrows, const has type

const :: tu → sv → tu

Given const, what would be the type of

sneakyDup = λx · let f = const x� in (f⊗ 1, f⊗ 2)
1When a variable usage is marked as exclusive, that does not automatically make its type unique; for example, the

identity function λx · x� has type tu → tu, not t• → t• (or even tu → t•). In other words, reference count analysis just
notes that there is only one reference to x in the body of the identity function; however, when a non-unique argument is
passed to id, it will still be non-unique when it is returned again.

130

5.1. Typing the core λ−calculus

It would seem that since f has type bv → au, this term has type

sneakyDup :: tu → (tu, tu)w

but this is clearly wrong: the elements in the result pair are shared and should be non-unique.
Recall from the Section 3.2.3 that if we want to extract a unique element from a container, the p. 

container must be unique itself. When we execute a function, the function can extract elements
from its closure (the environment which binds the free variables in the function body). If any of
those elements is unique, executing the function will involve extracting unique elements from
a container (the closure), which must therefore be unique itself. Since we do not distinguish
between a function and its closure in the lambda calculus, this means that the function must be
unique. Thus a function needs to be unique on application (that is, a function can be applied only
once) if the function can access unique elements from its closure.

The function type must therefore be modified to indicate whether there are any unique elements
in the closure of the function; this is the purpose of the second uniqueness attribute on arrows (νc).
We described this in the previous chapter (Section 4.1.4), but needed to use constraints to define p. 

the closure attribute. Using boolean attributes, however, we can simply use the disjunction of all
the attributes on the types of the (used) elements in the closure of the function.

Going back to the example, the full type of f in the definition of sneakyDup is therefore

f :: sv u f−→
u

tu

One way to read this type is that if you want a unique a to be returned from f , f must be unique
on application. In the definition of sneakyDup, f is not unique (u f = ×) when applied since it is
marked as shared, so the actual type of sneakyDup is (see also Section 5.1.5): p. 

sneakyDup :: t×
u f−→
×

(t×, t×)w

It should now be clear why the typing rules record the attributes on the free variables in an
expression: we need this information to determine νc. Using

∨
fv to denote the disjunction of all

attributes in the range of fv, and x fv (domain subtraction) to denote fv with x removed from its
domain, we obtain

Γ, x : τν ` e : τ′ν
′ |fv

Γ ` λx · e : τν
ν f−−−−→∨

(x fv)
τ′ν′ |

x fv

ABS

We must remove x from fv because x is not free in λx · e1.

5.1.3 Application

As we have seen, some functions must be unique on application; this is enforced in the typing rule
for application. In Section 4.1.5, we used an inequality constraint: p. 

Γ ` e1 : τν
ν f−→
νc

τ′ν
′ |fv Γ ` e2 : τν|fv′ ν f ≤ νc

Γ ` e1 e2 : τ′ν′ |fv∪ fv′
CONSTRAPP

1We use the Barendregt convention and assume that all bound variables are distinct.

131

Chapter 5. Removing Inequality Constraints∗

The implication [ν f ≤ νc] (νc implies ν f) expresses the requirement that the function must be
unique (ν f) if it has any unique elements in its closure (νc). How can we model the requirement
ν f ≤ νc without using constraints? The easiest solution is to require that ν f = νc:

Γ ` e1 : τν νc−→
νc

τ′ν
′ |fv Γ ` e2 : τν|fv′

Γ ` e1 e2 : τ′ν′ |fv∪ fv′
APP

While this rule is technically more restrictive than CONSTRAPP, in practice the programmer will
not notice the difference. We will discuss this issue in more depth in Section 5.1.5.

5.1.4 Examples

We discuss two examples. First, we consider the type of apply = λ f · λx · f�x�:

apply :: (tu uc−→
uc

sv)
u f−→
×

tu
u f ′−→
uc

sv

Unsurprisingly, apply takes a function f from a to b, and a term of type a, and returns a term
of type b. Since apply f applies f , if f must be unique on application, it must be unique when
passed as an argument to apply (in the type of apply, this requirement is encoded by specifying
that f must have the same attribute below and above the arrow). Finally, if f is unique, then apply

f must be unique on application, since it can extract a unique element from its closure (to wit, f).
As a second example, consider the definition of split (M)

f M g = λx · (f x, g x)

The type of M is

M:: (t×
u1−→
u1

sv)
u f−→
×

(t×
u2−→
u2

rw)
u f ′−→
u1

tu
u f ′′−−−→

u1∨u2
(sv, tw)z

In words, M wants two functions f and g which return a bv and a cw given a non-unique a, and
returns a pair of type (bv, cw)z. If either f or g must be unique on application, they must be
unique when they are passed as arguments to M as M applies them. Finally, f M g must itself be
unique on application when either f or g is unique, because f M g will then be able to extract
unique elements from its closure (i.e., f and g) when it is applied. A function such as

clearArray :: Array•
u f−→
×

Array•

cannot be passed as an argument to M since Array• does not unify with a×.

5.1.5 Reflection on the core system

In general, we can always recode a type of the form

. . .�u . . .�v . . . , [u ≤ v]

using a disjunction
. . .�u∨v . . .�v . . .

132

5.1. Typing the core λ−calculus

This faithfully models the implication: when v is unique, u ∨ v reduces to unique, but when v
is non-unique, u ∨ v reduces to u. For example, in Clean the function fst that extracts the first
element of a pair has the type

fst :: (tu, sv)w → tu, [w ≤ u]
fst (x, y) = x

which we can recode as

fst :: (tu, sv)w∨u → tu

However, in many cases we can do slightly better. For example, suppose the typing rule for pairs
is

Γ ` e1 : τν|fv Γ ` e2 : τ′ν
′ |fv′

Γ ` (e1, e2) : (τν, τ′ν′)ν′′ |fv∪fv′
PAIR

then for every derivation of e :: (τν, τ′ν
′
)•, there is also a derivation of e :: (τν, τ′ν

′
)× (because

the typing rule leaves the attribute on the pair free). That means that we can simplify the type of
fst to

fst’ :: (tu, sv)u → tu

The only pairs accepted by fst but rejected by fst’ are unique pairs, but since the type checker
will never infer a pair to be unique (but always either non-unique or polymorphic in its uniqueness),
that situation will never arise.

In Section 5.1.3, we removed the implication from CONSTRABS by replacing the implication p. 

[ν f ≤ νc] by [ν f = νc]. Again, it is possible to remove the implication without giving a more
restrictive rule by using disjunction with a free variable:

Γ ` e1 : τν1
1

ν f∨νc
−−−→

νc
τν2

2 |fv Γ ` e2 : τν1
1 |fv′

Γ ` e1 e2 : τν2
2 |fv∪ fv′

APP′

We nevertheless prefer rule APP (requiring that ν f = νc), since it leads to more readable types.
For example, based on rule APP′, split would have the type

M :: (t×
u f1
∨ut1−−−−→

ut1

sv)
u f−→
×

(t×
u f2
∨ut2−−−−→

ut2
rw)

u f ′−−−−→
u f1
∨ut1

tu
u f ′′−−−−−−−−−→

u f1
∨ut1∨u f2

∨ut2

(sv, rw)z

We claimed that rule APP is not as restrictive as it may seem; the argument proceeds along the
same lines as the argument for the simplified type of fst. An expression will be rejected by APP

but allowed by APP′ if and only if the function that we are applying is unique, but does not have
any unique elements in its closure; so, if we have an expression f x where f has type

f :: tu •−→
×

sv

Clearly • does not unify with ×, so rule APP will reject this application. The corresponding error
message will be a bit mystifying: “The function you are applying is too unique. Use it more often.”
Of course, this is a consequence of replacing the implication by an equality. However, barring
type annotations, that type will never be assigned to a term. Instead, the following type would be
inferred:

f :: tu u f−→
×

sv

133

Chapter 5. Removing Inequality Constraints∗

That is, the function will be polymorphic in its uniqueness rather than actually be unique; none of
the typing rules even mention • anywhere. The typing rules force terms to be non-unique if they
are shared, but they never force them to be unique. Given the latter type of f , rule APP has no
difficulty typing the application, since u f trivially unifies with ×.

The reader might wonder why it is useful to distinguish between the uniqueness of the function
and the (disjunction of) the uniqueness of the elements in the closure of the function, if we insist
that they must be the same on application. It is possible to collapse these two attributes, and use
the uniqueness attribute of the function for both. Then a function must be unique if it has any
unique elements in its closure, and must remain unique. This is the approach taken in Clean, but it
complicates the type system. For example, the function dup from Section 5.1.1 must be assignedp. 

the type t×
u f−→
×

(t×, t×)v instead of tu u f−→
×

(t×, t×)v, because the latter type would allow us to
duplicate a function with unique elements in its closure (and then apply that function twice). To
make this type less restrictive, Clean then introduces subtyping, but that brings complications
of its own (this is discussed in more detail in Section 4.5). By distinguishing between the twop. 

attributes (which really do represent different properties of the function), the requirement that
a function with unique elements in its closure must be unique on application becomes a local
requirement in the rule for application, and does not complicate the rest of the type system.

Finally, the reader may have expected the type of sneakyDup to be the same as the type of dup.
The reason that it is not (but is more restrictive) is due to rule VAR�. When a variable usage is
marked as exclusive, rule VAR� states that the type of the variable is equal to the type listed for
the variable in the environment. It is possible to relax this rule to

Γ, x : τν∨ν′ ` x� : τν|(x,ν)
VAR′�

With this rule a variable whose type is listed as non-unique in the environment must be non-unique
(as before), but when the type of the variable in the environment is listed as unique, this rule
places no restrictions on the attribute of the type derived for x (if ν ∨ ν′ = •, either ν or ν′ must
be unique, but they do not both have to be unique). With VAR′� sneakyDup will indeed have
the same type as dup, but at a cost: types become more complicated. For example, the identity
function would have the type

λx · x� :: tu∨v u f−→
×

tu

which is correct, but perhaps more difficult to understand than the type derived for the identity

function using rule VAR� (tu u f−→
×

tu).
In Chapter 6 we will consider an alternative approach which enables us to use a simple rulep. 

for variables and still get identical types for dup and sneakyDup, and which will make it possible
to remove the closure attribute on arrows without reintroducing the need for subtyping.

5.1.6 Type inference

One advantage of removing constraints from the type language is that standard inference algo-
rithms such as algorithmW (Damas and Milner, 1982) can be applied without any modifications.
The inference algorithm uses a unification algorithm, which must be modified in two ways.

• It must be adapted to deal with boolean expressions (boolean unification was explained in
Section 2.2.4).p. 

134

5.2. Arbitrary Rank Types

• It must treat a unification goal τν1
1

?≈ τν2
2 as two separate goals τ1

?≈ τ2 and ν1
?≈ ν2 (in

other words, base types and their attributes must be unified independently).

In Chapter 6 we will remove the distinction between types and uniqueness attributes so that we p. 

regard an attributed type τν as syntactic sugar for the application of a special type constant Attr
to two variables (Attr τ ν). This will make the second modification redundant.

5.2 Arbitrary Rank Types

We claim that our core uniqueness system is sufficiently similar to a standard Hindley/Milner type
systems that modern extensions can be added without much difficulty. To substantiate this claim
we show in this section how to extend the core type system to support arbitrary rank types using
the techniques described in a recent paper by Peyton Jones et al. (Peyton Jones et al., 2007); in
Section 5.3, we will show how to support GADTs too. p. 

Section 5.2.1 recalls what arbitrary rank types are and outlines how they are dealt with. Section
5.2.2 explains how we must modify the typing rules from (Peyton Jones et al., 2007) to deal with p. 

uniqueness, and Section 5.2.4 explains why these modifications are much simpler in a system p. 

without inequalities than in a system with inequalities.

5.2.1 Arbitrary rank types

The core type system described in Section 5.1 does not have an explicit notion of universal p. 

quantification. When we say that the identity function has the type

id = λx · x :: tu u f−→
×

tu

what we mean is that for any instantiation of t, u and u f , the identity function has that (instantiated)
type. But this is a meta-level notion: the type language defined in Figure 5.1 does not allow p. 

universal quantification over type or uniqueness variables.
We can make universal quantification an object-level notion by introducing “type schemes”:

(attributed) types together with a list of universally quantified type (and uniqueness) variables.

σ ::= ∀t, u.τν type scheme

The typing rules can then be modified to assign a type scheme, rather than a type, to an expression.
For example, the type scheme assigned to id would be

λx · x :: ∀t u u f .tu u f−→
×

tu

So far we have not gained much by introducing type schemes, but we can go one step further. We
can modify the type language so that the domain of the function type constructor becomes a type
scheme σ, rather than an (attributed) type τν:

τ ::= base type
B constant type
t type variable
σ −→

νc
τν function space

135

Chapter 5. Removing Inequality Constraints∗

`instσ
δ σ ≤ τν

Γ, x : σ `δ x� : τν|(x,ν)
VAR�

`instσ
δ σ ≤ τν

Γ, x : σ `δ x⊗ : τ×|(x,×)
VAR⊗

Γ, x : ∀.τν `⇑ e : τ′ν
′ |fv

Γ `⇑ λx · e : ∀.τν
u f−−−−→∨

x fv
τ′ν′ |

x fv

ABSτ
Γ, x : σ `⇓ e : τν|fv

Γ `⇓ λx : σ · e
u f−−−−→∨

x fv
τν|

x fv

ABSσ

Γ `⇑ e : σ
νc−→
νc

τ′ν
′ |fv Γ `gen

⇓ e′ : σ|fv′ `instτ
δ τ′ν

′ ≤ τν

Γ `δ e e′ : τν|fv∪ fv′
APP

Γ `gen
⇓ e : σ|fv `instσ

δ σ ≤ τν

Γ `δ (e :: σ) : τν|fv
ANN

Γ `gen
⇑ e : σ|fv Γ, x : σ `δ e′ : τν|fv′

Γ `δ let x = e in e′ : τν|
fv∪(x fv′)

LET

(t, u) = ftuv(τν)− ftuv(Γ, f v) Γ `δ e : τν|fv
Γ `gen

δ e : ∀t, u.τν|fv
GEN

Γ `δ e : τν|fv∪(x,u)

Γ `δ e : τν|fv∪(x,•)
FV

`instρ
δ [t 7→ τ][u 7→ ν]τν ≤ τ′ν

′

`instσ
δ ∀t, u.τν ≤ τ′ν′

INSTσ

`instρ
⇑ τν ≤ τν

INST⇑
`subs τν ≤ τ′ν

′

`instρ
⇓ τν ≤ τ′ν′

INST⇓

(t, u) /∈ ftuv(σ) `subs σ ≤ τν

`subs σ ≤ ∀t, u.τν
SKOL

`subs [t 7→ τ][u 7→ ν]τν1
1 ≤ τν2

2

`subs ∀t, u.τν1
1 ≤ ρν2

2
SPEC

`subs σ2 ≤ σ1 `subs τν1
1 ≤ τν2

2

`subs (σ1
ν f−→
νc

τν1
1) ≤ (σ2

ν f−→
νc

τν2
2)

FUN `subs τν ≤ τν
MONO

Figure 5.2: Arbitrary rank typing rules

As explained in Section 4.2, this change gives us a lot more expressive power in the typep. 

system. We saw that type inference for higher rank types (types with nested universal quantifiers)
is undecidable, but we can support higher rank types by combining type inference with type
checking. We therefore use a slightly modified typing relation

Γ `δ e : τν|fv

This is different from the typing relation in Section 5.1 in two ways: the environment Γ now mapsp. 

expression variables to type schemes (not types), and we introduce a “typing mode” δ: ⇑ for
type inference or ⇓ for type checking. The full typing rules are shown in Figure 5.2. A detailed
discussion of the arbitrary rank typing rules was given in Section 2.5.3. Here we emphasize onlyp. 

that the typing rules shown in Figure 5.2 (which support uniqueness) closely resemble the original
typing rules (which do not). We highlight the differences in the next section.

5.2.2 Modifications to deal with uniqueness

Our starting point is the “bidirectional” typing rules from (Peyton Jones et al., 2007, Fig. 8),
except for simplicity of presentation we do not show the rules for annotated lambda abstractions
(rules AABS1 and AABS2), and we require types to be in prenex form: we allow for type schemes
in the domain of the function type but not in the codomain. This choice is discussed in (Peyton
Jones et al., 2007, Section 4.6.2), and simplifies the type system (skolemization in particular).

136

5.2. Arbitrary Rank Types

We make the following modifications:

1. We refer to an attributed type τν wherever the original rules refer to a type τ.

2. We add a rule VAR⊗ to deal with sharing.

3. We record fv, the attributes on the free variables in a term, and remember to remove a
variable from fv at all binding sites (rules ABSτ , ABSσ and LET).

4. Any rule that mentions the function space constructor (
ν f−→
νc

) is modified to deal with ν f and

νc. The modifications to rules ABSτ , ABSσ and APP follow directly from the core system.
Rule FUN compares two attributed types to check if one is at least as polymorphic as the
other. For attributed types this is generally only true if both are equal (rule MONO), except
rule FUN deals with the type schemes in the domain of the function type. However, the
attributes on the arrow are simply part of the attributed types, and must therefore be equal
(like in rule MONO).

5. All the rules that deal with type schemes are modified to allow for universal quantification
of attribute variables in addition to universal quantification over type variables (rules GEN,
INSTσ, SKOL and SPEC). The function ftuv returns the free type and uniqueness variables
in its argument.

6. The rule for generalization must be adapted so that it does not allow generalization over
variables in fv.

7. The only new rule we add is rule FV, which we discuss in Section 5.2.3.

We argue that these modifications (with the exception of the final one) follow in a straightforward
way given the core system we presented in Section 5.1 and do not change the type system presented p. 

by Peyton Jones et al. (2007) in any essential way: the structure of the type system (with the
exception of rule VAR⊗) is still the exact same. Moreover, the implementation of the type system,
including techniques such as skolemization as described in (Peyton Jones et al., 2007, Sections 5
and 6) can be applied without any major modifications.

The typing rules do not include a rule for recursive let expressions. It is possible to add such a
rule, but the current presentation of the rules makes it a bit awkward to express. It is not difficult to
reorganize the rules to solve that problem, but that would make a superficial comparison between
the type system presented in this chapter and the original type system in (Peyton Jones et al.,
2007) more difficult, so we opted not to. Either way, the rule for recursive let expressions must
make sure that a term which is defined recursively gets a non-unique type (Section 3.2.5). p. 

5.2.3 Polymorphic uniqueness and closure typing

In this section we explain the need for and purpose of rule FV. Suppose we define a function

f (x :: ∀u · tu) = . . .

Function f requires that its argument must have a polymorphic uniqueness; this makes it possible
to use x at two different uniqueness levels in the body of f (we will see an example of when this
would be useful in Section 6.3). Let us suppose that f treats x as unique (instantiates the type of x p. 

to t•)—possibly by modifying x in-place.
Now suppose we define another function g which calls f :

137

Chapter 5. Removing Inequality Constraints∗

g (x :: ∀u · tu) y = f x

The difference between f and g is that g does not instantiate the type of x, but uses x at a

polymorphic uniqueness. When typing the body of g, rule VAR will have instantiated the type of
x to a monomorphic type tv, but without rule FV we cannot generalize this type back to ∀u · tu

since v will be mentioned in fv. This is important, because otherwise we could give g the type

g :: (∀u · tu)→ sv −→
×

. . .

(only the relevant parts of the type are shown). Note that this type neglects to mention that
g x for some x will have a unique element in its closure. For this reason, rule GEN disallows
generalization over type variables that are mentioned in fv, but we can use rule FV to assume for
any variable that it is unique. Using this rule, we can give g the (correct) type

g :: (∀u · tu)→ sv −→
•

. . .

As an aside, this is comparable to the definition of the ceiling d·e operator we defined in Sec-
tion 4.2.4, but slightly modified to support arbitrary boolean expressions. Note that simplyp. 

substituting • in fv for all uniqueness variables that we are generalizing over is not correct. For
example, this would give the wrong type to h:

h (x :: ∀u · t¬u) y = f x

5.2.4 Complications due to inequalities

We have shown in the previous section that it is straight-forward to extend our core system with
support for arbitrary rank types. This extension is not so trivial when the type system involves
inequalities (constraints). In this section we explain why, and compare the type system in this
chapter with the system presented in Chapter 4.p. 

In Clean constraints are never explicitly associated with types in the typing rules. Rather, the
typing rules simply list the constraints as additional premises. However, that approach does not
scale up to arbitrary rank types. When we generalize a type τνa

a to a type scheme σ, τνa
a may be

constrained by a set of constraints C. Those constraints should be associated with the type scheme
σ, because if at a later stage we instantiate σ to get a type τ

νb
b , the same set of constraints should

apply to τ
νb
b as well. Thus in Section 4.2 we defined a type scheme σ asp. 

∀x.τν, C

In other words, a type scheme is an attributed type τν, together with a set of universally quantified
(type and uniqueness) variables x, and a set of constraints C. The typing rules then are careful to
manipulate constraint sets. For example, the rule for instantiating a type scheme reads

∀x.τν, C ≤ Sxτν | SxC
OLDINST

With this rule we can instantiate a type scheme to a type using a substitution Sx, but only if the
constraints associated with the type scheme are satisfied.

If we want to allow for arbitrary rank types we must modify the domain of the arrow (the
function type constructor) to be a type scheme. Unfortunately that means that we now have
constraints appearing in multiple places in type schemes. For example, we might have

138

5.2. Arbitrary Rank Types

id′ :: ∀ t u u f .(∀.tu, ∅)
u f−→
×

tu, ∅ = λx · x

We could add some syntactic sugar to make this type more readable (to get tu u f−→
×

tu or even

tu → tu), but that hides a more fundamental problem: the type of id′ only accepts arguments of
type tu, if those arguments have type tu under the empty set of constraints. If a term has type tu

only if a particular set of constraints is satisfied, that term cannot be used as an argument to id′.
To get around this problem we need to introduce types that are polymorphic in their constraint
sets. This is what we did in the previous chapter. The type of id would then be

id :: ∀ t u u f c.(∀.tu, c)
u f−→
×

tu, c

which says that id accepts terms that have type tu under the set of constraints c; the result then
also has type tu, if the same set of constraints is satisfied. This becomes particularly cumbersome
for functions with many arguments, and especially for higher order functions (functions taking
functions as arguments).

The definition of subsumption (checking whether one type scheme is at least as general
as another) is also complicated by the presence of the constraint sets and constraint variables
associated with type schemes. To check whether a type scheme σ1 subsumes σ2, we need to
check whether the constraints associated with σ2 logically entail σ1. Recall the examples from
Section 4.3: p. 

f :: (∀ u v.tu u f−→
uc

sv, ∅)→ . . .

g :: tu u f−→
uc

sv, [u ≤ v]

Should the application f g type-check? Intuitively, f expects to be able to use the function it
is passed to obtain an s with uniqueness v (say, a unique s), independent of the uniqueness of
t. However, g only promises to return a unique s if t is also unique; the application f g should
therefore be disallowed. Conversely, if we instead define f ′ and g′ as

f ′ :: (∀ u v.tu u f−→
uc

sv, [u ≤ v])→ . . .

g′ :: tu u f−→
uc

sv, ∅

the application f ′ g′ should be allowed because the type of g′ is more general than the type
expected by f ′. But it is not completely clear how to define subsumption in a completely general
fashion. For example, suppose f was defined as

f :: (∀ u v.tu u f−→
uc

sv, c1 ∪ c2)→ . . .

(Recall that c1 and c2 are constraint sets.) Then should the application f g be allowed? Intuitively
it should, since we can instantiate c1 to u ≤ v and c2 to the empty constraint (the constraint that
is vacuously satisfied), but it is not easy to define this formally. When constraints are remodelled
as boolean expressions, however, this problem is taken care of by boolean unification.

139

Chapter 5. Removing Inequality Constraints∗

The use of qualified types would have solved some of these problems, but even within a
qualified types framework we need to define logical entailment between constraint sets (see
Section 4.2.5). Moreover, to keep types readable, it is necessary to take the transitive closure of ap. 

set of constraints and only add those constraints to a type scheme that constrain some attributes in
the type scheme (as explained in Section 4.3).p. 

The fact that we do not have to do anything special to define subsumption—in particular, we
do not need any definition of logical entailment between sets of constraints—in this chapter is
interesting, and further evidence for our claim that the core system is sufficiently similar to the
Hindley/Milner type system that modern extensions can easily be incorporated. It is instructive to
reconsider the last two examples. Recast in the new type system, the types of f and g are

f :: (∀ u v.tu u f−→
uc

sv)→ . . .

g :: tu∨v u f−→
uc

sv

where we have remodelled the implication u ≤ v as a disjunction u ∨ v. Of course, by the same
argument as the one used above, the application f g should still be disallowed. This will be

detected by the subsumption check. Part of the subsumption check will try to solve u
?≈ u ∨ v

and v
?≈ v (where u and v are skolem constants, that is, fixed but unknown attributes). Taken

individually, each equation can be solved. However, as soon as we solve one, the other becomes
insoluble and the subsumption check fails with an error message such as

Cannot unify u and u ∨ v

On the other hand, given the types of f ′ and g′

f ′ :: (∀ u v.tu∨v u f−→
uc

sv)→ . . .

g′ :: tu u f−→
uc

sv

subsumption will need to solve the equations u∨ v
?≈ u and v

?≈ v, which have a trivial solution
[u 7→ u ∨ v, v 7→ v], and the application f ′ g′ is therefore accepted. So, where we needed to
check for logical entailment before, the technique of skolemization (which we needed anyway)
will suffice in the new system.

5.3 Generalized algebraic data types

The higher rank type system from (Peyton Jones et al., 2007) that we used as a basis in the
last section combines easily with the GADT extension proposed in (Peyton Jones et al., 2006).
Modifying the typing rules of the combined system to support uniqueness is a straight-forward
exercise and follows the same pattern that was explained in the previous section. We therefore
do not show the full typing rules, as they are reasonably complicated (even without support for
uniqueness) and provide little additional insight.

The only new modification is in the rule that types the branch of a case analysis statement,
which must be modified to do uniqueness propagation (Section 3.2.3): when extracting elementsp. 

from a container, the container must be at least as unique as the extracted elements.

140

5.3. Generalized algebraic data types

As a simple example, the function fst that extracts the first element of a pair has type

fst :: (tu, sv)u∨w u f−→
×

tu

Note that we are again using a disjunction to model an implication: the pair itself must be unique
when t is unique (when u = •), but if t is non-unique, the pair itself may or may not be unique
(w). Alternatively, following a similar argument to the one in Section 5.1.5, we can simplify this p. 

type to

fst :: (tu, sv)u u f−→
×

tu

Apart from the usual arguments for GADTs, supporting GADTs has an additional benefit in a
uniqueness type system. Consider the algebraic data type Rose of trees with an arbitrary number
of branches. In Clean, this type is defined as

:: Rose a = Rose a [Rose a]

The problem with this definition is that it is unclear how the uniqueness of the list of rose trees
relates to the uniqueness of the overall rose tree. Clean provides some hooks to influence this, but
with a GADT, the problem disappears altogether since we can explicitly specify the type of the
constructor:

data Rose :: * → * where

Rose :: tu u f−→
×

Listv (Rosev tu)
u′f−→
u

Rosev tu

With the definition as given, the list of rose trees must have the same uniqueness attribute as the
overall rose tree (which can be accomplished in Clean by adding a dot, as in .[Rose a]), but
other options are also possible.

Note that we do not require outwards propagation in the type of the constructor; it is possible
to construct a unique rose tree with non-unique elements. This is impossible in Clean where
the constructors enforce outwards propagation, but that is unnecessary. It suffices that the case
statement enforces outwards propagation, as explained above. We will discuss this in more detail
in Section 8.1.4. p. 

141

Chapter 5. Removing Inequality Constraints∗

5.4 Notes

Uniqueness types in the type system of Clean or in the system we proposed in Chapter 4 oftenp. 

involve inequalities (implications) between uniqueness attributes. This complicates type inference
and makes incorporating modern extensions such as arbitrary rank types difficult; Clean for
example does not fully support arbitrary rank types. We have shown how to avoid these difficulties
by recoding attribute inequalities as attribute equalities. The new type system is sufficiently similar
to the standard Hindley/Milner type system that standard inference algorithms can be applied,
and modern extensions such as arbitrary rank types or GADTs can be incorporated using existing
techniques (Peyton Jones et al., 2006). In the next chapter we will consider how we can further
simplify the type system.

142

Simplifying the Type System∗

So far we have regarded types and uniqueness attributes as separate entities. In this chapter we
show that we can regard uniqueness attributes as type constructors of a special kind. This increases
the expressive power of the type system and simplifies the presentation and implementation of
uniqueness typing. In Chapter 4 we showed how to avoid subtyping by adding a second uniqueness
attribute to the function arrow. In this chapter we propose an alternative way to avoid subtyping
without requiring this second uniqueness attribute, further simplifying the type system.

We describe our implementation in Morrow. Morrow supports higher rank types and impred-
icativity, but adding support for uniqueness typing to Morrow required only a few changes to
the compiler. This provides strong evidence for our claim that retrofitting uniqueness typing to
an existing compiler and extending uniqueness typing with advanced features is straightforward
using the techniques in this chapter.

Finally, we outline a soundness of our type system with respect to the call-by-need lambda
calculus (Maraist et al., 1998). The full formal proof is described in Chapter 7. p. 

6.1 Attributes Are Types

In this section, we show that we can regard types and attributes as one syntactic category. This
simplifies both the presentation and implementation of a uniqueness type system and increases the
expressive power of the type system. If we regard types and attributes as distinct, we need type
variables and attribute variables, and we need quantification (∀) over type variables and attribute
variables. In addition, the status of arguments to algebraic data types (such as List a) is unclear:
are they types, attributes, or types with an attribute?

These issues are clarified when we regard types and attributes as a single syntactic category.
Thus Int and Bool are types, and so are • (unique) and × (non-unique). We regard Int× as
syntactic sugar for the application of a special type constructor Attr to two arguments, Int and
×. There are no values of type ×, nor are there values of type Int, because Int is lacking a
uniqueness attribute (there are however values of type Int×).

Types that do not classify values are not a new concept. For example, they arise in Haskell as
type constructors such as the list type constructor ([]). We can make precise which types do and
do not classify values by introducing a kind system (Jones, 1993). Kinds can be regarded as the
“types of types”. By definition, the kind of types that classify values is denoted by ∗. In Haskell,
we have Int :: *, Bool :: *, but [] :: * → *. The idea of letting the language
of vanilla types and additional properties coincide is not new either (e.g., Sheard, 2005; Sulzmann
et al., 2007), but as far as we are aware it is new in the context of substructural type systems.1

1Fluet (2007, Section 4.2) mentions the possibility in a footnote, but dismisses it as not useful.

∗The material in chapters 5 and 6, with the exception of sections 6.4.2 and 6.6 which were written later, was published as Uniqueness
Typing Simplified in Proceedings of the International Symposium on the Implementation and Application of Functional Languages (IFL)
2007, Olaf Chitil, Zoltán Horváth and Viktória Zsók (Eds.), Lecture Notes in Computer Science volume 5083 (de Vries et al., 2008).

143

Chapter 6. Simplifying the Type System∗

Kind language
κ ::= kind

T base type
U uniqueness attribute
∗ base type together with a uniqueness attribute
κ1 → κ2 type constructors

Type constants
Int, Bool :: T base type
→ :: ∗ → ∗ → T function space
•, × :: U unique, non-unique
∨, ∧ :: U → U → U disjunction, conjunction
¬ :: U → U negation
Attr :: T → U → ∗ combine a base type and attribute

Syntactic conventions
tu ≡ Attr t u
a u−→ b ≡ Attr (a→ b) u

Figure 6.1: The kind language and some type constructors with their kinds

Since we do not regard Int as a type classifying values, its kind cannot be ∗ in our type
system. Instead, we introduce two new kinds, T and U , classifying “base types” and uniqueness
attributes. Since Attr combines a base type and an attribute into a type of kind ∗, its kind is
T → U → ∗. The kind language and some type constructors along with their kinds are listed in
Fig. 6.1. At this point it is useful to introduce the following convention.

(Syntactic convention.) Type variables1 of kind T and U will be denoted by t, s and
u, v. Type variables of kind ∗ will be denoted by a, b.

One advantage of treating attributes as types is that we can use type variables to range over base
types, uniqueness attributes or types with an attribute, simply by varying the kind of the type
variable. This gives more expressive power when defining algebraic data types:

data X a = MkX a

data Y t = MkY t×

data Z u = MkZ Intu

Since the type of a constructor argument must have kind ∗, the first data type is parametrized by
an attributed type (a type of kind ∗), the second by a base type (a type of kind T), and the third
by an attribute (a type of kind U). The kinds of X, Y and Z are therefore ∗ → T , T → T and
U → T , respectively. The codomain is T since X Int× still lacks an attribute; (X Int×)• on
the other hand, which we denote by (X• Int×), is a unique X containing a non-unique Int. So,
assuming (5 :: Int×), we have (MkX 5 :: Xu Int×), (MkY 5 :: Yu Int) and (MkZ 5 :: Zu ×).

In Clean, we can only define the first of these three data types, so we have gained expressive
power. Similarly, type synonyms in Clean are restricted to types without an attribute (types of
kind T). With the “attributes are types” approach, we can introduce type synonyms for base types,
attributes, or types with an attribute. Moreover, although we have used syntactic conventions to
give a visual clue about the kinds of the type variables, the kinds of these types can automatically
be inferred by the kind checker, so the expressive power comes at no cost to the programmer.

1Strictly speaking, these are meta-variables since our core language does not support universal quantification.

144

6.2. The core system

e ::= expression
x� variable (used once)
x⊗ variable (used more than once)
λx · e abstraction
e e application

τk, ν ::= type
ck constant
τ(k′→k) τk′ type application

Figure 6.2: Expression and type language for the core system

Γ, x : τν ` x� : τν|x:ν
VAR�

Γ, x : τ× ` x⊗ : τ×|x:×
VAR⊗

Γ, x : τ ` e : τ′|fv fv′ = x fv

Γ ` λx · e : τ
∨

fv′−−→ τ′|fv′
ABS

Γ ` e : τ
ν−→ τ′|fv1

Γ ` e′ : τ|fv2

Γ ` e e′ : τ′|fv1 ∪ fv2

APP

Figure 6.3: Typing rules for the core lambda calculus

There are two possible variations to the kind system we propose. We could treat Int× as the
application of (Int :: U → ∗) to (× :: U), or as the (reverse) application of (× :: T → ∗) to
(Int :: T), avoiding the need for Attr. We prefer distinguishing between T , U and ∗, but if
the reader feels otherwise they should feel free to read T as syntactic sugar for (U → ∗), or U as
syntactic sugar for (T → ∗). In all three variations only types of kind ∗ are inhabited, as usual.

6.2 The core system

Although the core system we present in this chapter is similar to the one presented in Section 5.1, p. 

it is subtly different in a number of aspects. We explain the rules in this section, and discuss the
differences in Section 6.3. p. 

The expression language and type language are defined in Fig. 6.2 (types have been indexed
by their kind k). Both are almost entirely standard, except that—as in the previous chapters—we
assume that a sharing analysis has annotated variable uses with � or ⊗. A variable x marked
as x� is used only once within its scope; a variable marked as x⊗ is used more than once. The
typing rules are listed in Fig. 6.3. As in the previous chapter, the typing relation takes the form

Γ ` e : τ|fv

which reads as “in environment Γ, expression e has type τ; the attributes on the types of the free
variables in e are fv”. Both Γ and fv are mappings from term variables to types; the only difference
is that Γ maps variables to types of kind ∗ and fv maps variables to types of kind U (in other
words, to uniqueness attributes).

6.2.1 Variables

We need to distinguish variables that are used once in their scope and variables that are used
multiple times. The rule for variables that are used only once (VAR�) is identical to the normal
Hindley/Milner rule, and we simply look up the type of the variable in the environment.

145

Chapter 6. Simplifying the Type System∗

Even when a variable is used only once, that does not automatically make its type unique. For
example, there is only one use of x in the identity function:

id x = x�

but when a shared term is passed to id, it will still be shared when it is returned from id. On
the other hand, if a variable is used more than once (rule VAR⊗), its type must be non-unique
(shared). Note that we no longer allow variables to lose their uniqueness (Section 6.3).

6.2.2 Partial Application

We will consider the problem of partial application one final time, as the approach in this chapter
is subtly different from the approach in the previous two chapters. Temporarily ignoring the
attributes on arrows, the type of dup is

dup :: t× → (t×, t×)u

dup x = (x⊗, x⊗)

Since dup duplicates its argument, it only accepts non-unique arguments. The type checker can
easily recognize that dup duplicates x because there is more than one use of x in the function
body, which is therefore marked as ⊗. However, what if we rewrite dup as

sneakyDup x = (\f -> (f⊗ ⊥, f⊗ ⊥)) (const x�)

Now there is only one reference to x, which is therefore marked as �. Still ignoring the attributes
on arrows, the function const is defined as

const :: tu → sv → tu

const x y = x

It would therefore seem that the type of sneakyDup is

sneakyDup :: tu → (tu, tu)v

But that cannot be correct, because this type tells us that if we pass a single unique t to
sneakyDup, it will return a pair of two unique ts. However, the full type of const in our type
system is

const :: tu ×−→ sv u−→ tu

If you pass in a unique t, you get a unique function from s to t: a function that can only be used
once. Conversely, if you use a partial application of const more than once, the argument to
const must be non-unique. The type of sneakyDup is therefore

sneakyDup :: t× ×−→ (t×, t×)u

Reassuringly, this is the same type as the type of dup. In general, a function must be unique (and
can be applied only once) if it has any unique elements in its closure (the environment that binds
the free variables in the function body).

Section 6.3 will describe the difference between this approach to partial application and the
approach described in Sections 4.1.4 and 5.1.2.p. , p. 

146

6.3. On Subtyping

6.2.3 Abstraction and Application

The rule for abstractions must determine the value of the attribute on the arrow. As discussed in
Section 6.2.2, a function must be unique if it has any unique elements in its closure. The closure
of a function λx · e consists of the free variables in the body e of the function, minus x. The
attributes on the free variables in the body of the function are recorded in fv; using fv′ = x fv
(domain subtraction) to denote fv with x removed from its domain, we use the disjunction

∨
fv′ of

all the attributes in the range of fv′ as the uniqueness attribute on the arrow (recall that we treat
uniqueness attributes as boolean expressions).

The rule for application is the normal one, except that we collect the free variables. The
attribute on the arrow is ignored (we can apply both unique and shared functions).

6.3 On Subtyping

In this section we compare our approach to subtyping with the approach of Clean (Barendsen and
Smetsers, 1996) and the approach proposed in Chapter 4. Consider again the function dup: p. 

dup :: t× ×−→ (t×, t×)u

dup x = (x, x)

In Clean dup has the same type, but that type is interpreted differently. Clean’s type system uses
a subtyping relation: a unique type is considered a subtype of a non-unique type. That is, we
can pass in something that is unique (such as a unique Array) to a function that is expecting a
non-unique type (such as dup).

The fact that a unique array can become non-unique is an important feature of a uniqueness
type system. A non-unique array can no longer be updated, but can still be read from. However,
adding subtyping to a type system leads to considerable additional complexity, especially when
considering a contravariant/covariant system with support for algebraic data types (such as
Clean’s). It becomes simpler when considering an invariant subtyping relation, but we feel that
subtyping is not necessary at all.

In Chapter 4, we argued that the type of dup should be

dup :: tu u f−→
×

(t×, t×)v

The (free) uniqueness variable on the t in the domain of the function indicates that we can pass
unique or non-unique terms to dup. Since it is always possible to use a uniqueness variable in
lieu of a non-unique attribute, an explicit subtyping relation is not necessary.

But there is a catch. As we saw in Section 6.2.2, functions with unique elements in their
closure must be unique, and must remain unique: they should only be applied once. In Clean,
this is accomplished by regarding unique functions as necessarily unique, and the subtyping is
adjusted to deal with this third notion of uniqueness: a necessarily unique type is not a subtype of
a non-unique type. Hence, we cannot pass functions with unique elements in their closure to dup.

Unfortunately, when dup gets the type from our previous chapter it can be used to duplicate
functions with unique elements in their closure. Therefore we introduced a second attribute on
the function arrow, indicating whether the function had any unique elements in its closure. The
typing rule for application enforced that functions with unique elements in their closure (second
attribute) were unique (first attribute). That means that functions with unique elements in their
closure can be duplicated, but once duplicated can no longer be applied.

147

Chapter 6. Simplifying the Type System∗

This removed the need for subtyping, but that advantage was offset by the additional complex-
ity introduced by the second uniqueness attribute on arrows: the additional attribute made types
more difficult to read (especially in the case of higher order functions).

An important contribution of this chapter is the observation that this additional complexity
can be avoided if we are careful when assigning types to primitive functions1. For example, a
function that returns a new empty array should get the type

newArray :: Int
×−→ Arrayu

rather than

newArray :: Int
×−→ Array•

Similarly, the function that clears all elements of an array should get the type

resetArray :: Array•
×−→ Arrayu

rather than

resetArray :: Array•
×−→ Array•

An Array that is polymorphic in its uniqueness can be passed to resetArray as easily as it
can be passed to dup (of course, a shared array still cannot be passed to resetArray). If we
are careful never to return a unique array from a function, we will always be able to share arrays.
We still do not have an explicit subtyping relation but we get the same functionality: the subtyping
is encoded in the type of Array, rather than in the type of dup.

Not all functions should be so modified. For example, many functions with side effects in
Clean have a type such as

fun :: · · · → (World• → World•)

where the World is a token object representing the world state. It never makes sense to duplicate
the world, which can be enforced by returning a unique World (rather than a World which is
polymorphic in its uniqueness).

It may seem that a disadvantage of our approach is that we can no longer take advantage of
more advanced reference count analysis. For example, given

isEmpty :: Arrayu ×−→ Bool×

shrink, grow :: Array•
×−→ Arrayu

reference count analysis has been applied correctly to the following definition (Barendsen and
Smetsers, 1996):

f arr = if isEmpty arr⊗

then shrink arr�

else grow arr�

Even though there are three uses of arr within f, only one of the two branches of the if-
statement will be executed. Moreover, the condition is guaranteed to be evaluated before either of
the branches, and the shared (⊗) annotation on arr means that the array will not be modified
when the condition is evaluated.

1Functions that cannot be defined within the language but must be defined within the compiler, or in a different
language such as C.

148

6.4. Implementation in Morrow

However, this example uses arr at two different types: Array× within the condition and
Array• within both branches. This works in Clean because Array• is a subtype of Array×.
In the systems proposed in Chapters 4 and 5, this works because a unique term can always be p. , p. 

considered as a non-unique term. In our new proposal however, this program would be rejected
(since Array• does not unify with Array×).

However, we can take advantage of the fact that we have embedded our core system in an
advanced type system that supports first class polymorphism (Section 6.4). We want to use
a polymorphic value (arr :: ∀u.Fileu) at two different types within a function: the classic
example of a higher rank type (Peyton Jones et al., 2007). Our example above typechecks if we
provide the following type annotation:

f :: ∀v. (∀u.Arrayu) ×−→ Arrayv

The function f now demands that the array that is passed in is polymorphic in its uniqueness.
That is reasonable when we consider that we are using the array at two different types in the body.
Moreover, since we regard all unique objects as necessarily unique, it is also reasonable that we
cannot pass in a truly unique array to f.

Of course there is a trade-off here between simplicity (and ease of understanding) of the type
system on the one hand and usability on the other. Since the user must provide a type annotation
in order for the definition of f to typecheck, the type system has arguably become more difficult
to use. However, this case is rare enough that the additional burden on the programmer is small,
and a case can be made that it is useful to require a type annotation as it is non-obvious why the
function definition is accepted.

Moreover, since rank-2 type inference is decidable (Kfoury and Wells, 1994; Lushman, 2007)
(although at the cost of losing principal types) it may be possible to modify the inference algorithm
so that the type of f can be inferred. An investigation into this possibility is future work.

6.4 Implementation in Morrow

We have integrated our type system in Morrow, an experimental functional language developed
by Daan Leijen.1 Morrow’s type system is HMF (Leijen, 2008a), which is a Hindley/Milner-like
type system that supports first class polymorphism (higher rank types and impredicativity). As
such, it is an alternative to both Boxy Types (Vytiniotis et al., 2006) and MLF (Botlan and Rémy,
2003). However, unlike boxy types, it is presented as a small logical system which makes it easier
to understand, and at the same time it is much simpler than MLF. Although HMF is quite a good
fit with our type system, we have also experimented with integrating it into other type systems.
For example, we have a prototype implementation of the arbitrary rank type system by Peyton
Jones et al. (2007) extended with uniqueness typing.

As it turns out, the implementation of our type system in Morrow is agreeably straightforward.
This provides strong evidence for our claim that adding uniqueness typing to an existing compiler,
and more importantly, extending uniqueness typing with advanced features such as higher rank
types poses little difficulty when using the techniques from this chapter.

6.4.1 Modifying the type system

We outline the most important changes we had to make to Morrow:
1Unfortunately we cannot currently make the source available due to licensing issues.

149

Chapter 6. Simplifying the Type System∗

1. We modified the kind checker to do kind inference for our new kind system (mostly a matter
of changing the kinds of type constants)

2. We implemented reference count analysis, annotating variables with information on how
often they are used within their scope (once or more than once)

3. We modified the rules for variables and abstraction, so that shared variables must be non-
unique, and abstractions become unique when they have unique elements in their closure.
To be able to do the latter, all the typing rules had to be adapted to return the fv structure
from Section 6.2. Variables that are used at a polymorphic uniqueness (a type of the form
∀u.tu for some t) must be treated as if they were unique for the purposes of fv (see also
Section 5.2.3).p. 

4. Let bindings had to be adapted to remove the variables bound from fv. Moreover, as is
standard in a uniqueness type system (Barendsen and Smetsers, 1996), the type of every
binding in a recursive binding group must be non-unique.

5. Most of the work was in modifying the types of the built-in functions and the kinds of the
built-in types, and adding the appropriate type constants (such as Attr) and kind constants
(T , U). However, all of these changes were local and did not affect the rest of the type
checker.

6. Unification had to be adapted to do boolean unification, as explained in Section 2.2.4.
In addition, it is necessary to simplify boolean expressions; for example, tu∨× must
be simplified to tu. This is important because if no simplification is used the boolean
expressions can quickly get complicated. Fortunately, we can use an independent module

for boolean unification and simplification.1 When unifying a
?≈ b, it suffices to check

the kinds of a and b, and if they are U , to call the boolean unification module. Therefore,
boolean unification does not in any way complicate the unification algorithm of the type
checker.

7. Morrow uses System F (with pattern matching) as its typed internal language. Although
the “attributes are types” approach of Section 6.1 means that the internal language does not
need to change, Morrow also includes a System F type checker to ensure that the various
phases of the compiler generate valid code. This type checker had to be adapted in a similar
way to the main type checker.

The majority of these changes were local (did not require any significant refactoring of the
compiler), and none of the changes were complicated. The fact that we can treat both vanilla types
and uniqueness attributes as types (of different kinds) really helped: modifying the kind checker
was straightforward, we got the additional expressive power described in Section 6.1 virtually
for free, we did not have to introduce an additional universal quantifier for uniqueness attributes
(and thus avoided having to modify operations on types such as capture avoiding substitution or
pretty-printing), etc.

1The complexity of boolean simplification—like that of type checking (Kfoury et al., 1994; Mairson, 1990)—is
exponential (Umans et al., 2006) and our implementation is rather slow. However, there has been a lot of work on fast
algorithms for boolean optimization in the context of hardware synthesis (for example, see Coudert, 1994, for a survey). It
should be possible to adopt this work in the type checker.

150

6.4. Implementation in Morrow

6.4.2 Supporting records and variants

Morrow’s support for extensible records and variants is mostly based on the work of Gaster
(Gaster and Jones, 1996; Gaster, 1998).1 The core concept is the notion of a row, which is a list of
types. The empty row is denoted by LM, and the row with a field x of type a and tail r′ is denoted
by Lx : a | r′M. As usual, the row Lx : a |Ly : b |Lz : c |LMMMM will be denoted by Lx : a, y : b, z : cM.

A row is a type-level object with kind row. Given a row r, we can interpret the fields of the
row as a product to obtain the record {r}, or interpret the fields of the row as a sum to obtain the
variant 〈r〉. That is, we have two type-level operators

{} : row→ ?

〈〉 : row→ ?

In addition, there are the following basic operations on records:

(.l) : r \ l ⇒ {Ll : a | rM} → a selection

{ − l} : r \ l ⇒ {Ll : a | rM} → {r} restriction

{l = | } : r \ l ⇒ a→ {r} → {Ll : a | rM} extension

The qualifier (r \ l) (pronounced “r lacks l”) in these types prohibits repeated occurrences of a
label l in the same record. Given these operations we can define two derived operators to update a
field or rename a field:

{l := | } : r \ r ⇒ a→ {Ll : b | rM} → {Ll : a | rM} update

[l ← m] : r \ l, r \m⇒ {Ll : a | rM} → {Lm : a | rM} rename

We have a similar set of basic operations on variants:

〈l = 〉 : r \ l ⇒ a→ 〈Ll : a | rM〉 injection

〈l | 〉 : r \ l ⇒ 〈r〉 → 〈Ll : a | rM〉 embedding

case : 〈r〉 → {to a r} → a pattern matching

This definition of records is much more powerful than the support for records found in most
programming languages: record selection can select a record l from any record that contains l,
and fields can be added to or removed from records at will. Nevertheless, all record operations are
fully statically checked and moreover the additional power does not incur any runtime overhead:
it will always be known at compile time where in a record a field can be found, so that it can be
accessed in constant time. We refer the reader to Gaster’s papers for more information.

Most of the types of these basic operations are self-explanatory, with the exception of the type
for pattern matching. The function case requires a variant for a row r and a record for a row
(to a r). The to operator in this type is a type-level operator defined such that

to a Lx : b, y : c | rM
1Although Morrow used to support scoped labels (Leijen, 2007b), the version we worked with did not.

151

Chapter 6. Simplifying the Type System∗

evaluates to
Lx : b→ a, y : c→ a | rM

In other words, the case function requires a record with a function for each of the alternatives of
the variant from its type to the type of the result of the pattern match. This means that the body
of a pattern becomes a first-class object, since it is simply another record—which can be passed
around, modified, etc.

To support these operations in our modified version of Morrow with support for uniqueness,
we need to adapt the types of these operations. The kinds of the type operators change to

{} : row→ T

〈〉 : row→ T

to signify that {r} and 〈r〉 are still missing a top-level uniqueness attribute. The basic idea is that
if we select a field from a record, the record must be unique if the field is unique (uniqueness
propagation; Section 3.2.3) and that the uniqueness must be invariant along the spine of a recordp. 

(these requirements are similar to the requirements for algebraic data types in Clean). The
modifications for most of the operations are straightforward:1

(.l) : r \ l ⇒ {Ll : tu | rM}u∨v ×−→ tu selection

{ − l} : r \ l ⇒ {Ll : a | rM}u ×−→ {r}u restriction

{l = | } : r \ l ⇒ tu ×−→ {r}v u−→ {Ll : tu | rM}v extension

〈l = 〉 : r \ l ⇒ a ×−→ 〈Ll : a | rM〉u injection

〈l | 〉 : r \ l ⇒ 〈r〉u ×−→ 〈Ll : a | rM〉u embedding

The only surprise here might be that we did not simplify the type for selection to

(.l) : r \ l ⇒ {Ll : tu | rM}u ×−→ tu selection (simplified)

which may be the type the reader might have expected based on Section 5.1.5. We will discussp. 

why we need the more general type in Section 6.4.3.p. 

The type for pattern matching is slightly more tricky to modify. As for field selection, we need
to express uniqueness propagation. For example:

select :: 〈Ll : tuM〉u∨v ×−→ tu

select v = case v {l = λx → x}

However, recall that the type for pattern matching is expressed in terms of a “to” operator. Hence,
we need something of the form

case : 〈r〉u → {to u a r}v → a (6.1)

Since the to operator acts on the types of the fields in the record, but cannot modify u, it is
difficult to see how to modify this type to express outwards uniqueness propagation.

1Due to the invariance of Morrow’s type system, the type of selection limits the fields of records to monomorphic
type. We will come back to this point in Section 8.2.3.

152

6.4. Implementation in Morrow

Fortunately, there is an alternative way to express propagation. So far, we have encoded a type

∀t u v · tu → tv, [u ≤ v]

as
∀t u v · tu∨v → tv (6.2)

where we have modified the attribute that was the target of the implication using a disjunction.
However, (6.2) is isomorphic to the type

∀t u v · tu → tu∧v

in the sense that both types subsume each other. In this encoding, we have modified the attribute
that was the source of the implication using a conjunction. We can take advantage of this
alternative encoding to replace the type of select by the alternative (isomorphic) type

select :: 〈Ll : tu∧vM〉v ×−→ tu∧v

We can now define the type of pattern matching as in (6.1), with a modified to operator which is
defined so that

to u a Lx : tv, y : sw | rM

evaluates to
Lx : tv∧u → a, y : sw∧u → a | rM

6.4.3 Multiple field accesses

We mentioned that based on Section 5.1.5 we might have expected to give the following type to p. 

field selection:
(.l) : r \ l ⇒ {Ll : tu | rM}u ×−→ tu

This type for field selection is more restrictive than it needs to be, since it requires the record to be
non-unique if the field that we are extracting has a non-unique type—even though it is perfectly
sound to extract a non-unique element from a unique container. Nevertheless, since (barring type
annotations) records will never be unique, but will either be non-unique or have a polymorphic
uniqueness, this will not cause any type errors and result in simpler types.

But there is a catch. Morrow does not offer a special syntax for accessing more than one field
of a record. Consider the function that swaps the two components of a pair. A pair in Morrow is
syntactic sugar for a record with two fields called field1 and field2. Hence, we can define
swap as:

swap p = (p.field2, p.field1)

Provided that the reference count analysis correctly recognizes this as a single access to p (since
both fields can be extracted simultaneously) and marks this program as

swap p = (p�.field2, p�.field1)

then the inferred type of swap will be

swap :: (tu, su)u ×−→ (su, tu)v

153

Chapter 6. Simplifying the Type System∗

This type demands that the two components of the pair have the same uniqueness1. This is
a consequence of the fact that field selection requires the fields of the record to have the same
uniqueness as the record, and therefore as each other. This is unnecessarily restrictive, and in the
absence of a special syntax for accessing more than one field of a record, we are therefore forced
to relax the type of record selection to

(.l) : r \ l ⇒ {Ll : tu | rM}u∨v ×−→ tu

where we no longer require the record to be non-unique if we are extracting a non-unique field
(although of course the record must still be unique when we are extracting a unique field). The
type of swap now becomes

swap :: (tu, sv)u∨v∨w ×−→ (sv, tu)w′

6.5 Soundness

To prove soundness we use a slightly modified but equivalent set of typing rules.2 Rather than
giving different typing rules for variables marked as used once or used more than once, we do
not mark variables at all but enforce that unique variables are used at most once by splitting the
environment into two in rule APP. Non-unique variables can still be used more than once because
the context splitting operation collapses multiple assumptions about non-unique variables (rule
SPLIT×). This presentation of the type system is known as a substructural presentation because
some of the structural rules (in this case, contraction) do not hold. The presentation style we have
used, using a context splitting operation, is based on that given in (Walker, 2005), where it is
attributed to (Cervesato and Pfenning, 2002).3

The soundness proof for a type system states that when a program is well-typed it will not “go
wrong” when evaluated with respect to a given semantics. We are interested in a lazy semantics;
often the call-by-name lambda calculus is used as an approximation to the lazy semantics, but it
is not hard to see that we will not be able to prove soundness with respect to the call-by-name
semantics. For example, consider

(\x. (x, x)) (f y)

In the call-by-name semantics, this term evaluates to

(f y, f y)

But when we allow for side effects, these two terms have a different meaning. In the first, we
evaluate f y once and then duplicate the result; in the second, we evaluate f y twice (and so have
the potential side effect of f twice).

1The uniqueness of the result tuple is free as it will be newly created by swap.
2The syntax-directed presentation using sharing marks is easier to understand and more suitable for type inference.

However, it is not usable for a soundness proof. Such a distinction between a syntax-directed and a logical presentation is
not uncommon, and has been used before in the context of uniqueness typing (Barendsen and Smetsers, 1996).

3One subtle aspect of the definition of the context splitting operation is that it does not allow weakening: when an
environment Γ is split into two environments Γ1 and Γ2, every assumption in Γ must occur in either Γ1 or Γ2 (or possibly
both for non-unique assumptions). Weakening on the typing environment Γ is implicit in the definition of Var, but
weakening on fv is not allowed; this is important since weakening on fv might affect the type of an expression (it could
force a function to be unique). A function such as λx · λy · x is nevertheless typeable, since fv = xfv if x /∈ fv: the rule
for abstraction does not require to add the variable to environment fv when typechecking the function body.

154

6.5. Soundness

Term language
e ::= x | λx · e | e e term

A ::= λx · e | let x = e in A answer
E ::= [] | E e | let x = e in E | let x = E0 in E1[x] evaluation context

Syntactic convention
(let x = e1 in e2) ≡ (λx · e2) e1

Evaluation rules
7→ is the smallest relation that contains VALUE, COMMUTE, ASSOC and is closed under the
implication M 7→ N implies E[M] 7→ E[N].

(VALUE) let x = λy · e in E[x] 7→ {(λy · e)/x} E[x]
(COMMUTE) (let x = e1 in A) e2 7→ let x = e1 in A e2
(ASSOC) let y = (let x = e in A) in E[y] 7→ let x = e in let y = A in E[y]

Substructural typing rules

Γ, x : τν ` x : τν|x:ν
VAR

Γ, x : τ ` e : τ′|fv fv′ = x fv

Γ ` λx · e : τ
∨

fv′−−→ τ′|fv′
ABS

Γ ` e : τ
ν−→ τ′|fv1

∆ ` e′ : τ|fv2

Γ ◦ ∆ ` e e′ : τ′|fv1◦fv2

APP

Context splitting

∅ = ∅ ◦∅
SPLIT∅ Γ = Γ1 ◦ Γ2

Γ, x : τ× = (Γ1, x : τ×) ◦ (Γ2, x : τ×)
SPLIT×

Γ = Γ1 ◦ Γ2

Γ, x : τν = (Γ1, x : τν) ◦ Γ2
SPLITν

1
Γ = Γ1 ◦ Γ2

Γ, x : τν = Γ1 ◦ (Γ2, x : τν)
SPLITν

2

Figure 6.4: Call-by-Need Semantics

Accordingly, the types of both terms in a uniqueness type system are also different. In the first,
f may or may not be unique, and must have a non-unique result (because the result is duplicated).
In the second, f cannot be unique (because it is applied twice) and may or may not return a unique
result.

Traditionally (Barendsen and Smetsers, 1996) a graph rewriting semantics is used to prove
soundness, but this complicates equational reasoning. Fortunately, it is possible to give an
algebraic semantics for lazy evaluation. Launchbury’s natural semantics for lazy evaluation

(Launchbury, 1993) is well-known and concise, but is a big-step semantics which makes it less
useful for a soundness proof (see Section 2.7.5). The call-by-need semantics by Maraist et al. p. 

(Maraist et al., 1998) is slightly more involved, but is a small-step semantics and fits our needs
perfectly. The semantics is shown in Fig. 6.4.

We only give an outline of the proof here; the full formal proof is described in Chapter 7. p. 

Theorem 4 (Progress) Suppose e is a closed, well-typed term (∅ ` e : τ|fv for some τ and fv).

Then either e is an answer or there exists some e′ such that e 7→ e′.

155

Chapter 6. Simplifying the Type System∗

The easiest way to prove progress is to prove a weaker property first: for every term e, e is an
answer, there exists some e′ such that e 7→ e′, or e = E[x] for some x. This weaker property can
be proven by a complete structural induction on e; the proof is laborious but not difficult. To prove
progress using the weak progress property, we just need to rule out the last possibility. However,
if e = E[x] for some x, and ∅ ` e : τ|fv, then we must have x ∈ ∅, which is impossible. �

The proof of preservation is more involved and we only give a brief outline here. The main
lemma that we need to be able to prove preservation is the substitution lemma:

Lemma 1 (Substitution) If Γ, x : τa

∨
fv2−−→ τb ` e1 : τ|fv1,x:

∨
fv2

, x is free in e1, and ∆ ` λy · e2 :

τa

∨
fv2−−→ τb|fv2 , then Γ ◦ ∆ ` {(λy · e2)/x} e1 : τ|fv1◦fv2

.

The proof is by induction on Γ, x : τa

∨
fv2−−→ τb ` e1 : τ|fv1,x:

∨
fv2

and is not trivial. The essence
of the proof is that if (λx · e1)(λy · e2) is well-typed, then either x occurs once in e1, in which
case we can substitute λy · e2 for x without difficulty, or x occurs more than once in e1. In that
case, x must have a non-unique type, which means that λy · e2 must be non-unique, and therefore
the function cannot have any unique elements in its closure—or equivalently, that e2 be typed in
an environment where every variable has a non-unique type. Since ∆ = ∆ ◦ ∆ if all assumptions
in ∆ are non-unique, this means that we can type the result term even when λy · e2 is duplicated.

Armed with the substitution lemma, we can prove preservation:

Theorem 5 (Preservation) If Γ ` e : τ|fv and e 7→ e′ then Γ ` e′ : τ|fv.

By induction on e 7→ e′. The cases for COMMUTE, ASSOC, and the three closure rules (one for
each of the non-trivial evaluation contexts) are reasonably straightforward. The case for VALUE

relies on the substitution lemma. � A full formalization of the calculus extended with (let-bound
or first-class) polymorphism is future work.

6.6 Metatheoretical musings

There are some subtle metatheoretical advantages of the approach we advocate in this chapter over
the one suggested in the previous chapter. Recall the following definitions from Section 5.1.2:p. 

dup :: tu u f−→
×

(t×, t×)v

dup x = (x, x)

sneakyDup :: t×
u f−→
×

(t×, t×)w

sneakyDup x = let f = const x in (f 1, f 2)

It is unfortunate that dup and sneakyDup do not get the same type. We mentioned in Sec-
tion 5.1.5 that this is a consequence of the rule for variables:p. 

Γ, x : τν ` x� : τν|(x,ν)
VAR�

This rule says that variables marked as exclusive (not shared) have the type that is listed in the
environment; we can relax this rule to one that requires the type in the environment to be at least
as unique as the type of the variable:

156

6.6. Metatheoretical musings

Γ, x : τν|ν′ ` x� : τν|(x,ν)
VAR′�

This gives dup and sneakyDup the same type, but at the cost of complicating other types; for
instance, the identity function now has the type

id :: tu∨v u f−→
×

tu

id x = x

We preferred to avoid this additional complexity, which is why we opted for the first rule instead.
However, this approach makes it impossible to give an equivalent presentation of the type system
with explicit rules weakening and contraction without giving up principal types.

In particular, if we have the rules from the previous chapter

Γ, x : τν ` x� : τν|(x,ν)
VAR�

Γ, x : τν ` e : τ′ν
′ |fv

Γ ` λx · e : τν
ν f−−−−→∨

(x fv)
τ′ν′ |

x fv

ABS

together with the substructural rules

Γ, y : τ×, z : τ× ` e : τ′ν
′

CONTR
Γ, x : τν ` e[y := x, z := x] : τ′ν

′
Γ ` e : τ′ν

′

WEAK
Γ, x : τν ` e : τ′ν

′

then we can assign two types to the identity function:

id :: au u f−→
×

au

or

id :: au u f−→
×

a×

(by applying contraction immediately followed by weakening). Unfortunately, these two types are
incomparable and with the rule for variables as it stands, there is no other type that is more general
than both. Hence, we have lost principal types. They can be recovered by using rule VAR′�, but
again at the cost of introducing more complexity.

Whether or not this is an important issue is debatable—in our formalization we make no use
of an explicit contraction rule (and prefer to rely on a context splitting operation instead; see
Section 6.5) so it does not affect us. However, it is good to know that the type system we propose p. 

in this chapter (without a coercion from unique to non-unique) does not suffer from this problem.
Another advantage of the type system we propose in this chapter (where coercion from unique

to non-unique is disallowed) and the previous (which used an additional closure attribute on
arrows) is that we can potentially prove a stronger soundness result. We have proven soundness
with respect to the standard reduction rules from the call-by-need calculus. From our perspective,
the most important difference between the standard reduction rules and the general call-by-
need reduction rules is in the treatment of lambda abstractions. In the standard rules, a lambda
abstraction will only be duplicated if it is applied. For example,

(λf. (f, f)) (λy. . . .)

will not reduce to

(λy. . . ., λy. . . .)

157

Chapter 6. Simplifying the Type System∗

because the function is not applied. This is important in a type system such as the one from the
previous chapter where functions with unique elements in their closure (that is, variables on the
“dots” in λy · . . .) can be duplicated—because in that case, the first program would be typeable
but the second would not and we have lost preservation. If an abstraction does get applied, as in

(λf. (f 1, f 2)) (λy. . . .)

the function will be duplicated, but now the typing rules (in particular, the rule for application)
will make sure that there are no unique variables in the function closure and all is well.

In the type system of this chapter, however, a function with unique elements in its closure
must be unique itself. Moreover, unique elements cannot be duplicated. Hence, we know that if

(λf. (f, f)) (λy. . . .)

is type correct, there cannot be any variables of a unique type in the function closure (“on the
dots”) and hence we can duplicate the function without difficulty.

To paraphrase, if the type system verifies that functions with unique elements in their closure
are unique when they are applied (as in Chapters 4 and 5) it is important that the semantics willp. , p. 

duplicate functions only if they are applied. If on the other hand the type system guarantees
that functions with unique elements in their closure are unique when they are created (as in this
chapter), we can duplicate functions irrespective of how they are used. We nevertheless used the
standard reduction rules because it is the more difficult proof, and more easily adapted to the type
system of the previous chapter if necessary.

6.7 Notes

By treating uniqueness attributes as types of a special kind U , the presentation and implementation
of a uniqueness type system is simplified, and we gain expressiveness in the definition of algebraic
data types. Moreover, no explicit subtyping relation is necessary if we are careful when assigning
types to primitive functions: we require that unique terms must never be shared, and make sure that
functions never return unique terms (but rather terms that are polymorphic in their uniqueness).

Together with observation from the previous chapter that we can recode inequality constraints
as equality constraints if we allow for arbitrary boolean expressions as attributes, these observations
lead to an expressive yet simple uniqueness type system, which is sound with respect to the call-
by-need lambda calculus. The system can easily be extended with advanced features such as
higher rank types. We have integrated our type system in Morrow, an experimental programming
language with an advanced type system. The implementation required only minor changes to
the compiler, providing strong evidence for our claim that retrofitting our type system to existing
compilers is straightforward.

158

Formalization∗

This chapter describes the full formal proof of soundness that was briefly outlined in the previous
section. The proof itself is available as Coq sources and can be downloaded from the author’s
homepage1.

In sections 7.2 and 7.3 we highlight some of the difficulties we faced when developing the p. , p. 

proof, and discuss some of its more subtle aspects. In Section 7.4 we define the notion of an p. 

environment, various operations on environments, the kinding and typing relations, and the
operational semantics for our language. Sections 7.5 and 7.6 prove numerous auxiliary lemmas p. , p. 

that will be necessary in the main proof, which is described in Section 7.7. Appendix A.1 finally p. , p. 

gives a formalization of boolean algebra based on Huntington’s Postulates (Huntington, 1904).

7.1 Note on the proofs

Every lemma in this chapter is preceded by a brief description of the lemma in informal language
(English), followed by a precise statement of the lemma (in the syntax of Coq) and a brief
description (again in English) of how the lemma can be proven. For most lemmas, this description
will begin with “By induction on. . . ” or “By inversion on. . . ”; many descriptions will also include
the most important other lemmas that the proof relies on. Coq verifies a proof strictly from top
to bottom, so if a lemma B relies on lemma A, A must have been proven before lemma B; this
therefore applies equally to the structure of this chapter. When the description of the proof does
not mention induction or inversion, then these techniques are not necessary and the lemma can be
proven by direct application of other lemmas.

What we do not show is the actual proofs themselves: there would be little point. The proofs
have been verified by Coq, a widely respected proof assistant. If the reader nevertheless prefers to
verify the proofs by hand, he will want to redo them himself; the short description of the proof
should provide enough information to get started.

Besides, the proofs are written in the syntax of Coq. Coq is based on the calculus of construc-
tions, a powerful version of the dependently typed lambda calculus (Section 2.3.5). As such, a p. 

proof in Coq is a program (a term of the lambda calculus) that, given the premises, constructs a
proof of the conclusion. However, in all but the most simple cases, these programs are too difficult
to write by hand, and instead the proof consists of a list of calls to tactics which build up the
program step-by-step.

Consider a simple example. Suppose we want to prove that n + 0 is equal to n for all natural
numbers n. Here is a full Coq proof of this property (this proof comes from the Coq standard
library):

1http://www.cs.tcd.ie/Edsko.de.Vries

∗The material in this chapter was published as Uniqueness Typing Simplified—Technical Appendix, Department of Computer Science,
Trinity College Dublin, Technical Report TCD-CS-2008-19 (de Vries, 2008a).

159

Chapter 7. Formalization∗

Lemma plus_n_O : forall n:nat, n = n + 0.

Proof.

induction n; simpl in |- *; auto.

Qed.

Although it should be clear what induction n does, the purpose of the other tactics (such
as simpl or auto) is less obvious, even to an experienced Coq user. Tactics interact with
the current state of the proof assistant, which includes information such as which lemmas are
available, the types of all variables, etc. Trying to interpret a Coq proof without Coq is akin to
hearing one part of a telephone conversation: half the script is missing.

Phrased another way, tactics provide an imperative specification of a declarative program.
Consequently, it is difficult to understand a proof without being able to see how the imperative
program changes the state of the proof assistant. Recently, there has been some work on a
declarative proof language for Coq (Corbineau, 2008), but support for this language is still
experimental in Coq and we make no use of it. The actual proof constructed by these tactics is

λ(n : nat) · nat ind (λ(m : nat) ·m = m + 0) (refl equal 0)

(λ(m : nat)(IHm : m = m + 0) · f equal S IHm) n

which makes use of various other lemmas, such as induction on natural numbers (nat ind—
essentially a fold operation), the fact that equality is reflexive (refl equal) and a lemma that
states that if x = y, then for all f , f x = f y (f equal). The details do not matter; the point is
that this is hardly more readable than the original proof. In this chapter, we would simply describe
this proof as “By induction on n”.

7.2 Equivalence

Suppose we have a set C of objects together with an equivalence relation ≈ on C, and some
characterization P of objects of C. We want P to have the property that if P x and x ≈ y, then
P y. There are three different ways in which we can guarantee that P has this property.

• We can prove that P has the required property.

• We can define P over the quotient set C/≈ instead. This will give us the desired property
by definition.

• It may be possible to choose an alternative representation C′ of the objects in C, such that
every equivalence set in C′/≈ is a singleton set. In other words, so that the equivalence
relation is the identity relation. The desired property of P then holds trivially.

For example, take the set of lambda terms together with alpha-equivalence, and the property of
being well-typed. Then,

• We can prove that well-typedness is equivariant: if λx · x is well-typed, so is λy · y.

• We can define the well-typedness over the set of alpha-equivalent terms.

• We can represent lambda terms using De Bruijn notation, in which case λx · x and λy · y
are both represented as λ · 0.

160

7.2. Equivalence

Not all options are always practical, and each option has its advantages and disadvantages. For the
specific example of alpha-equivalent terms, the first option may be possible, but cumbersome as
we may have many properties over lambda-terms; we will have to prove equivariance for each one.
The second approach is inconvenient when we need to refer to the name of the bound variable in
an abstraction, for example in the typing rule for abstraction. The final approach does not have
these shortcomings, but introduces new ones: many operations on lambda terms in De Bruijn
notation must juggle with the indices, leading to additional complexity in proofs.

In informal proofs, we tend to gloss over this issue:

‘‘In this situation the common practice of human (as opposed to computer) provers
is to say one thing and do another. We say that we will quotient the collection
of parse trees by a suitable equivalence relation of alpha-conversion, identifying
trees up to renaming of bound variables; but then we try to make the use of alpha-
equivalence classes as implicit as possible by dealing with them via suitably chosen
representatives. How to make good choices of representatives is well understood,
so much so that it has a name—the “Barendregt Variable Convention”: choose a
representative parse tree whose bound variables are fresh, i.e., mutually distinct and
distinct from any (free) variables in the current context. This informal practice of
confusing an alpha-equivalence class with a member of the class that has sufficiently
fresh bound variables has to be accompanied by a certain amount of hygiene on the
part of human provers: our constructions and proofs have to be independent of which
particular fresh names we choose for bound variables. Nearly always, the verification
of such independence properties is omitted, because it is tedious and detracts from
more interesting business at hand. Of course this introduces a certain amount of
informality into “pencil-and-paper” proofs that cannot be ignored if one is in the
business of producing fully formalized, machine-checked proofs.

—Pitts (2001), Nominal logic, a first order theory of names and binding

(See also Berghofer and Urban, 2008.) In the remainder of this section, we detail how we tackle
this issue for the specific examples of terms under alpha-equivalence, typing environments under
substructural rules and boolean expressions under Huntington’s Postulates.

7.2.1 Lambda terms

We discussed the problem of dealing with terms under alpha-equivalence as an example in the
introduction to this section. There are various proposed solutions in the literature; we will adopt the
locally nameless approach suggested by (Aydemir et al., 2008) in Engineering Formal Metatheory

(we refer the reader to the same paper for an overview of alternatives).
In the locally nameless approach, bound variables are represented by De Bruijn indices, but

free variables are represented by ordinary names. This means that alpha-equivalent terms are
represented by the same term (and so we do not have to reason explicitly about alpha-equivalence),
but we do not have to perform any arithmetic operations on terms. We do however have to solve
one problem.

Consider the typing rule for application. In the locally nameless style, the rule is

Γ, x : τ ` ex : τ′ fresh x
Γ ` λ · e : τ → τ′

ABS

161

Chapter 7. Formalization∗

When we typecheck the body e, we “open it up” using a fresh variable x, and then record the type
of the variable as normal. That is, we replace bound variable 0 (the variable that was bound by the
lambda) by a fresh variable (for some definition of “fresh”). This is a consequence of the locally
nameless approach: every time a previously bound variable becomes free, we have to invent a
fresh name for it. Without the freshness condition, we would be able to derive

...
x : τ, x : τ′ ` (x, x) : (τ′, τ′)

x : τ ` λ · (0, x) : τ′ → (τ′, τ′)

where the (original) free variable x has suddenly changed type (the typing environment acts as a
binder, and the variable x has been “captured”). The minimal freshness condition is therefore that
the variable that is used to open up a term, does not already occur free in the term:

Γ, x : τ ` ex : τ′ x /∈ fv e
Γ ` λ · e : τ → τ′

M-ABS

A weak premise (x /∈ fv e) is good when using rule ABS to prove the type of a term since we only
have to show that Γ, x : τ ` ex holds for one particular x. It is however not so good when doing
induction on a typing relation. In that case, we know that the ex has type τ′ for one particular x.
But that x may not be fresh enough for our purposes, at which point we need to rename the term
to avoid name clashes. To circumvent this problem, Aydemir et al. (2008, Section 4) propose to
use cofinite quantification1:

∀x /∈ L · Γ, x : τ ` ex : τ′

Γ ` λ · e : τ → τ′
C-ABS

To use C-ABS, we have to show that the ex has type τ′ for all x not in some finite set L (that is,
x is chosen from a cofinite set), but using this rule is no more difficult than using M-ABS: we
simply pick an arbitrary variable not in L. The induction principle however is now much stronger:
we now know that ex has type τ′ for any x not in some set L′. Then when we have to prove that
λ · e has type τ → τ′, knowing that ex has type τ′ for all x not in L′, and we need x to be distinct
from some other variable y, we can simply apply rule ABS choosing L′ ∪ {y} for L. We still
occasionally need renaming lemmas, but they too become much more straightforward to prove
when using cofinite quantification (we prove a number of renaming lemmas in Section 7.5.2).p. 

Arthur Charguéraud, one of the authors of the Engineering Formal Metatheory paper, has
developed a Coq library (Charguéraud, 2007) which facilitates the use of the locally nameless
representation of terms and the use of cofinite quantification. The proofs in this chapter will make
extensive use of this library, which we will dub the Formal Metatheory library. As an example,
here is a trivial lemma that we can always pick a variable that is distinct from all other variables
in a typing environment:

Lemma fresh_from_env : forall E e T fvars,

E |= e ~: T | fvars -> exists x, x \notin dom E.

intros.

pick_fresh x.

exists x ; auto.

Qed.

1A cofinite subset of a set X is a subset Y whose complement in X is a finite set.

162

7.2. Equivalence

The proof is essentially just a call to the pick fresh from the Formal Metatheory library.
This tactic collects all variables in the environment, and then chooses a variable that is distinct
from all these variables. The proof that x satisfies the necessary freshness condition is also
handled automatically. The use of the locally nameless approach, and in particular the use of the
Formal Metatheory library, meant that little of our soundness proof needs to be concerned with
alpha-equivalence or freshness.

7.2.2 Environments

Consider this definition of a simple linear lambda calculus:

x : τ ` x : τ
VAR

Γ, x : τ ` e : τ′

Γ ` λx · e : τ → τ′
ABS

Γ ` f : τ → τ′ ∆ ` e : τ

Γ, ∆ ` f e : τ′
APP

Suppose we want to prove an exchange lemma:

Lemma (Exchange). If Γ, ∆ ` e : τ, then ∆, Γ ` e : τ.

In informal practice, we might not even consider proving this lemma, because we might represent
environments as (multi-)sets so that Γ, ∆ and ∆, Γ are the same environment. In a formal (construc-
tive) proof, however, we must choose a concrete representation. If we represent environments by
lists, we must prove Exchange, since Γ, ∆ and ∆, Γ are certainly not the same list. Unfortunately,
the definition of the typing relation above does not permit Exchange: Exchange does not hold.

One solution is to choose a different concrete representation. For example, if we choose to
represent environments by sorted lists of pairs of variables and types (for some arbitrary ordering
relation) then Γ, ∆ and ∆, Γ again denote the same environment. Although this approach may
work well, our definition of an environment is actually taken from the Formal Metatheory library
(discussed in Section 7.2.1), which we preferred to use unmodified. p. 

We must therefore explicitly allow for exchange in the type system. The traditional way is to
include the exchange lemma as an axiom1:

Γ, ∆, Θ ` e : τ

Γ, Θ, ∆ ` e : τ
EXCH

The downside of this approach is that the inversion lemmas for the typing relation become more
difficult to state. For example, in the original type system we could prove

Lemma (Inversion lemma for application). If Γ ` f e : τ, then there exists ∆, Θ
such that Γ = ∆, Θ, and there exists τ′ such that ∆ ` f : τ′ → τ and Θ ` e : τ′.

In the modified type system, however, this lemma no longer holds. Instead, we would have to
allow for an application of the exchange rule, which makes the inversion lemma harder to state.
This problem is amplified by the presence of other substructural rules:

Γ ` e : τ

Γ, x : τ′ ` e : τ
WEAK

Γ, y : τ′, z : τ′ ` e : τ

Γ, x : τ′ ` e[y := x, z := x] : τ
CONTR

1It is often presented as
Γ, ∆ ` e : τ

∆, Γ ` e : τ
EXCH′

but that rule is not strong enough. In particular, we cannot show EXCH from EXCH′.

163

Chapter 7. Formalization∗

With these two rules, the inversion lemma for application becomes very difficult to state indeed.
Fortunately, for an affine (as opposed to linear) substructural type system such as ours, weakening
is unrestricted so that rule WEAK can easily be integrated into the typing rule for variables. We do
however need to control contraction (only unique variables can be used more than once), and it is
not so obvious how to integrate CONTR into the other rules.

The solution we adopt is the one described in (Walker, 2005), where it is attributed to
(Cervesato and Pfenning, 2002). We define a generic context splitting operation as follows:

∅ = ∅ ◦∅
SPLIT-EMPTY

E = E1 ◦ E2

E, x : τ = E1, x : τ ◦ E2
SPLIT-LEFT

E = E1 ◦ E2 non-unique τ

E, x : τ = E1, x : τ ◦ E2, x : τ
SPLIT-BOTH

E = E1 ◦ E2

E, x : τ = E1 ◦ E2, x : τ
SPLIT-RIGHT

We can use the context splitting operation in the rule for application as follows:

Γ ` f : τ → τ′ ∆ ` e : τ

Γ ◦ ∆ ` f e : τ′
APP′

With this rule, lemma Exchange becomes admissible because we can prove an auxiliary result
that if E = E1 ◦ E2 then E = E2 ◦ E1. This approach is attractive for two reasons. First, the
inversion lemma is straightforward to state and prove. Second, we can reason about context
splitting as a separate notion, and we will do so extensively (Section 7.5.10). This means that inp. 

those proofs where we need to reason about reordering of the environment (in particular lemmas
preservation commute and preservation assoc, Section 7.7), this reasoning is explicit and usuallyp. 

done in separate lemmas.

7.2.3 Boolean expressions

In our type system, we allow for arbitrary boolean expressions as uniqueness attributes: t•, t×,
tu, tu∨v, tu∧v and t¬u are all valid types. Moreover, we want to identify “equivalent” boolean
expressions: tu∨v and tv∨u are the same type. In other words, we want to identify uniqueness
attributes (boolean expressions) that are equivalent under the usual set of axioms (Huntington’s
Postulates; see Appendix A.1).p. 

Perhaps the most obvious solution is to quotient boolean expressions by Huntington’s Pos-
tulates, and formally regard uniqueness attributes as equivalence classes of boolean expressions
rather than boolean expressions. Since the equivalence class [u ∨ v] and [v ∨ u] are the same
class (since both expressions are equivalent), the types t[u∨v] and t[v∨u] are then also identified.

Unfortunately, this solution is difficult to adopt for two reasons. First, since the equivalence
class of a boolean expression is infinite, we would need to use co-induction to define the classes—
not difficult conceptually, but technically awkward nevertheless. The other complication is that
in our type system, and hence in the formalization, we do not distinguish between types and
attributes (this is a key contribution of the Chapter 6). An attributed type tu is syntactic sugarp. 

for the application of a special type constant Attr to two arguments (Attr t u); a kind system
weeds out ill-formed types. This approach does not combine well with treating uniqueness
attributes as equivalence classes.

Instead, we explicitly allow to replace a type by an equivalent type as a non-syntax directed
rule:

164

7.3. Inversion

Γ ` e : τ|fv τ ≈ τ′

Γ `: e : τ′|fv
EQUIV

As it turns out, adding this lemma does not make the inversion lemmas more difficult to state (we
prove the inversion lemmas in Section 7.6.6; see also Section 7.2.2). Moreover, adding this rule is p. , p. 

(almost) sufficient to be able to replace a type anywhere in a typing derivation1; in particular, it is
sufficient to be able to replace a type in an environment (lemma typ equiv env, Section 7.6.5). p. 

We will discuss the type equivalence relation proper in Section 7.3.2. p. 

7.3 Inversion

As we saw in the previous section, adding additional typing rules makes forward reasoning easier,
but backward reasoning more difficult. For example, if we add a contraction rule to the type
system, it becomes trivial to prove Γ, x : τ′ ` e[y := x, z := x] : τ from Γ, y : τ′, z : τ′ ` e : τ

(forward reasoning), but the inversion lemma for application becomes more difficult to state
(backward reasoning). Generally, we want to make the definition of the type system permissive
enough to facilitate forward reasoning, but not too permissive to avoid complicating backward
reasoning. We already saw one example of this: rather than adding a separate contraction rule, it
is better to integrate contraction into the other rules (by introduction a generic context splitting
operation; see Section 7.2.2). In this section, we will see a number of other examples of this p. 

tension between forward and backward reasoning.

7.3.1 Domain subtraction

In the definition of the type system we make use of a domain subtraction operation, denoted x fv,
which removes x from the domain of fv. In this section we discuss how we should define this
operation. In particular: if x occurs more than once in the domain of fv, should domain subtraction
remove all of them, or only the first? Using an example, we will see that we will need to choose
the latter option to be able to use backwards reasoning.

We will need a few definitions first. An environment is well-formed if it is ok and well-kinded:
that is, if every variable occurs at most once in its domain and all the types in the codomain of the
environment have the same kind. Two environments are equivalent, denoted Γ ∼=k Γ′, if they are
both well-formed and map the same variables to the same types (k denotes the kind of the types in
the codomain of the environments; these definitions are given formally in Section 7.4). p. 

An important lemma is that if Γ ` e : τ|fv, Γ ∼=∗ Γ′ and fv ∼=U fv′, then Γ′ ` e : τ|fv′ (Lemma
env equiv typing, Section 7.6.5). This lemma is important because it allows to change the order p. 

of the assumptions in the environment (Lemma exchange) or replace a type by an equivalent type
in an environment (Lemma typ equiv env). The proof of the lemma is by induction on the typing
relation.

Consider the case for the rule for abstraction. We know that Γ ∼=∗ Γ′ and fv′ ∼=U fv′′. The
induction hypothesis gives us2

1In the typing rule for variables, we must also be careful to allow for a different (but equivalent) attribute in E and fv.
2This is a minor simplification of the proof; in the actual proof, we need to distinguish between the case where the

bound variable of the abstraction is used in the body (the case which is shown here), and the case where it is not used. We
do not discuss the second (easier) case.

165

Chapter 7. Formalization∗

(Γ, x : τ ∼=∗ Γ′, x : τ)→ (fv′, x : ν ∼=U fv)→ (Γ′, x : τ ` ex : τ′|fv)

and we have to show that
Γ′ ` λ · e : τ

∨
fv′−−→ τ′|fv′′

Replacing the attribute on the arrow by an equivalent one gives Γ′ ` λ · e : τ
∨

fv′′−−→ τ′|fv′′ , at
which point we can apply the typing rule for abstraction. Remains to show that

Γ′, x : τ ` ex : τ′|fv

where we know that fv′′ = x fv and x /∈ Γ ∪ fv′′. We can use the induction hypothesis to
complete the proof, but only if we can prove its two premises. The first one is straightforward, but
the second is more tricky:

fv′, x : ν ∼=U fv

To be able to show this equivalence, we need to be able to show that fv is well-formed; in particular,
we need to be able to show that it is ok (every variable occurs at most once in its domain). Since

x fv = fv′′, we know that x fv is ok because fv′′ ∼=U fv′, and we know that x /∈ x fv because
x /∈ fv′′. However, it now depends on the definition of domain subtraction () whether we can
show that fv is ok.

If x fv removes all occurrences of x from fv, then we will be unable to complete the proof:
even if x fv is ok, that does not allow us to conclude anything about the well-formedness of fv.
On the other hand, if x fv only removes the first occurrence of x, then fv can contain at most
one more assumption about x than x fv; if additionally we know that x /∈ x fv, then we can
conclude that fv must be ok.

Hence, we conclude that domain subtraction must remove the first occurrence of a variable
only. This makes forward reasoning slightly more difficult, since where before we could prove a
lemma that x /∈ x fv, now that only holds if fv is ok. Fortunately, we always require environments
to be well-formed, so this is no problem in practice. On the other hand, backwards reasoning
(proving that fv is ok given that x fv is ok and x /∈ x fv) is impossible if domain subtraction
removes all variables from the domain of an environment.

7.3.2 Type equivalence

Huntington’s Postulates give us an equivalence relation ≈B on types. For example, we have that
u ∨ v ≈B v ∨ u (commutativity of disjunction) or u ∧ • ≈B u (identity element for conjunction).
We want to extend this equivalence relation to a more general equivalence relation (≈T), which is
effectively (≈B) extended with a closure rule for type application:

τ ≈B τ′

τ ≈T τ′
τ1 ≈T τ′1 τ2 ≈T τ′2

τ1 τ2 ≈T τ′1 τ′2

This allows us to derive that τu∨v ≈T τv∨u or that if a ≈T a′, then a u−→ b ≈T a′ u−→ b (recall
that a u−→ b is syntactic sugar for Attr (Arr a b) u). However, we also occasionally need to
reason backwards on the typing equivalence relation: if we know that τν ≈T τν′ , we would like
to be able prove that ν ≈T ν′.

166

7.3. Inversion

It would seem that the easiest way to prove that would be to prove the following inversion
lemma: if τ1 τ2 ≈T τ′1 τ′2, then τ1 ≈T τ′1 and τ2 ≈T τ′2. Unfortunately, that lemma does not
hold. Recall that we do not distinguish between types and attributes in our type system. That
is, the “attribute” ν ∨ ν′ is a type (which happens to have kind U). Moreover, ν ∨ ν′ is really
syntactic sugar for the application of a special type constant Or of kind U → U → U to two
arguments (Or ν ν′). By Huntington’s Postulates we have that ν ∨ ν′ ≈T ν′ ∨ ν, or desugared:
Or ν ν′ ≈T Or ν′ ν for all ν and ν′. If the inversion lemma were true, we would thus be able to
conclude that ν ≈T ν′, for any ν and ν′.

So, to make backwards reasoning possible, we need to redefine ≈T slightly:

ν ≈B ν′ ν : U , ν′ : U
ν ≈T ν′

τ1 ≈T τ′1 τ2 ≈T τ′2 (τ1τ2) :/U ,
τ1 τ2 ≈T τ′1 τ′2

(In addition, we need to introduce reflexivity, commutativity and transitivity rules; they were
previously implied by (≈B)). We can now prove the following inversion lemma: if τ1 τ2 ≈T τ′1 τ′2,
and (τ1 τ2) does not have kind U , then τ1 ≈T τ′1 and τ2 ≈T τ′2. Restricting the closure rule
to types of kind other than U is not strictly necessary to prove this inversion lemma, but makes
proving other lemmas easier (for example, Lemma typ equiv BA equiv, Section 7.5.11) without p. 

reducing the relation: closure for types of kind U is already implied by Huntington’s Postulates.
This modification to the type equivalence relation has an additional benefit. Recall the

following rule for context splitting:

E = E1 ◦ E2 non-unique τ

E, x : τ = E1, x : τ ◦ E2, x : τ
SPLIT-BOTH

Since the context splitting operation is applied both to typing environments (Γ) and the lists of
free variables (fv), we give the following two axioms to prove “non-unique”:

ν ≈T ×
non-unique(τν)

NU∗
ν ≈T ×

non-unique(ν)
NUU

Now consider proving the following lemma: if τ
ν−→ τ′ is non-unique, then ν ≈T ×. The

proof proceeds by inversion on non-unique(τ
ν−→ τ′). The case for rule NU∗ is trivial, but

how can we dismiss the case for rule NUU ? Without the kind requirements added to the type
equivalence relation, we would have to show that it is impossible that τ

ν−→ τ′ is equivalent to ×
by Huntington’s Postulates; not an easy proof!1

7.3.3 Evaluation contexts

The operational semantics we use is the call-by-need semantics by Maraist et al. (Maraist et al.,
1998). In this semantics, the definition of evaluation depends on the notion of an evaluation

context, which is essentially a term with a hole in it (the difference between an evaluation context
and the more general notion of a “context” (Barendregt, 1984) is that in an evaluation context we
restrict where the hole can appear in the term). There are various ways in which we can formalize
an evaluation context in Coq.

1If the proof seems trivial, perhaps the reader would like to attempt an even easier proof: prove that it is impossible to
construct a proof using Huntington’s postulates that “true” is equivalent to “false” without using an interpretation function,
as it is not clear how to define an interpretation function for the broader class of types (rather than just the types of kind U).

167

Chapter 7. Formalization∗

In simple cases, we can follow informal practice and define a context E inductively, followed
by a definition of plugging a term M into the hole in the context E[M]. This is the approach taken
in (Biernacka and Biernacki, 2007), for instance, but it does not apply here because we need the
definition of E[M] when defining E[].

Another approach (Dubois, 2000) is to define a context as an ordinary function on terms, and
then (inductively) define which functions on terms can be regarded as evaluation contexts. This is
an attractive and elegant approach, but does not work so well in the locally-nameless approach:
since some evaluation contexts place a term within the scope of a binder but others do not, we
must distinguish between binding contexts which have the property that if tx is a term for some
fresh x, then E[x] is also a term, and regular contexts (which do not have this property).

For example, consider the proof that reduction is regular:

Lemma (Regularity of reduction). If e 7→ e′, then both e and e′ are locally closed1.

The proof is by induction on e 7→ e′. In the case for the closure rule, we know that E[e] and E[e′]
are locally closed, and we have to show that e and e′ are locally closed. However, we may or may
not be able to show this (depending on whether E is a regular or a binding context). Thus, we
need to distinguish the “closing” evaluation contexts from the others, at which point the elegance
of the approach starts disappearing. We now need two closure rules (one for closing and one for
regular contexts) and we have introduced a new characterization of evaluation contexts that we
will need to reason about.

To avoid having to reason about closing contexts and regular contexts, we instead inline
the definition of the evaluation contexts into the definition of the reduction relation. This gives
only one more rule than when giving a closure rule for regular contexts and a closure rule for
closing contexts, and moreover, the resulting closure rules correspond to intuitive notions about
the semantics.

We still need to define the notion of an evaluation context, because the reduction relation
depends on it in the other rules too. As mentioned before, we cannot define the notion of a context
separately from plugging a term into the hole. The solution we adopt is to define E as a binary
relation between a term and a free variable, where E t x should be read as t evaluates x (there is
an evaluation context E such that t = E[x]). This gives good inversion principles (suitable for
backwards reasoning) and combines well with the locally nameless approach.

1We mentioned before that in the locally nameless approach to formal metatheory we distinguish between bound
variables, represented by De Bruijn indices, and free variables, represented by ordinary names. A term is locally closed
if it does not contain any “unbound bound variables”; that is, if it does not contain any De Bruijn indices without a
corresponding binder.

168

7.4. Definitions

7.4 Definitions

7.4.1 Types

A type is either a type constant or the application of one type to another.

Inductive typ : Set :=

| typ app : typ→ typ→ typ

| ARR : typ

| ATTR : typ

| UN : typ

| NU : typ

| OR : typ

| AND : typ

| NOT : typ.

For convenience, we define a number of functions to denote commonly used types, and some
custom notation for attributed types.

Definition bi app (f a b : typ) : typ := typ app (typ app f a) b.

Definition arr (a b : typ) : typ := bi app ARR a b.
Definition attr (t u : typ) : typ := bi app ATTR t u.
Definition or (u v : typ) : typ := bi app OR u v.
Definition and (u v : typ) : typ := bi app AND u v.
Definition not (u : typ) : typ := typ app NOT u.

Notation "t ’ u" := (attr t u) (at level 60).
Notation "a 〈 u 〉 b" := ((arr a b) ’ u) (at level 68).

(A subset of the) language of types forms a boolean algebra.

Module TypeAsBooleanAlgebra <: BooleanAlgebraTerm.

Definition trm := typ.
Definition true := UN.
Definition false := NU.
Definition or := or.
Definition and := and.
Definition not := not.

End TypeAsBooleanAlgebra.

Module BA := BooleanAlgebra TypeAsBooleanAlgebra.

169

Chapter 7. Formalization∗

7.4.2 Kinding relation

The definition of kinds.

Inductive kind : Set :=
| kind T : kind

| kind U : kind

| kind star : kind

| kind arr : kind→ kind→ kind.

Kinding relation.

Inductive kinding : typ→ kind→ Prop :=
| kinding app : ∀ t1 t2 k1 k2,

kinding t1 (kind arr k1 k2)→
kinding t2 k1→
kinding (typ app t1 t2) k2

| kinding ARR : kinding ARR (kind arr kind star (kind arr kind star kind T))
| kinding ATTR : kinding ATTR (kind arr kind T (kind arr kind U kind star))
| kinding UN : kinding UN kind U

| kinding NU : kinding NU kind U

| kinding OR : kinding OR (kind arr kind U (kind arr kind U kind U))
| kinding AND : kinding AND (kind arr kind U (kind arr kind U kind U))
| kinding NOT : kinding NOT (kind arr kind U kind U).

Hint Constructors kinding.

Equivalence between types

Inductive typ equiv : typ→ typ→ Prop :=

| typ equiv attr : ∀ u v,
kinding u kind U→
kinding v kind U→
BA.equiv u v→
typ equiv u v

| typ equiv app : ∀ s t s’ t’,
¬ kinding (typ app s t) kind U→
typ equiv s s’→
typ equiv t t’→
typ equiv (typ app s t) (typ app s’ t’)

| typ equiv refl : ∀ t,
typ equiv t t

| typ equiv sym : ∀ t s,
typ equiv t s→ typ equiv s t

| typ equiv trans : ∀ t s r,
typ equiv t s→ typ equiv s r→ typ equiv t r.

Hint Constructors typ equiv.

170

7.4. Definitions

7.4.3 Environment

The definition of an environment comes from the Formal Metatheory library; we just need to
instantiate it with our definition of a type.

Definition env : Set := Env.env typ.

An environment is well-formed if it is ok and well-kinded.

Definition env kind (k : kind) : env→ Prop :=
env prop (fun t⇒ kinding t k).

Definition env wf (E : env) (k : kind) : Prop :=
ok E ∧ env kind k E.

Two environments are considered equivalent if they both bind the same variables to equivalent
types, and both are well-formed. For clarity, we introduce a special syntax to denote equivalence.

Definition env equiv (E1 E2 : env) (k : kind) : Prop :=
env wf E1 k ∧ env wf E2 k ∧
(∀ x t, binds x t E1→ ∃ t’, binds x t’ E2 ∧ typ equiv t t’) ∧
(∀ x t, binds x t E2→ ∃ t’, binds x t’ E1 ∧ typ equiv t t’).

Notation "E1 ∼= E2" := (env equiv E1 E2) (at level 70).

The definition of the context split operation, as explained in the introduction. The context split
is used both to split E, the typing environment and fvars, the list of free variables and their
uniqueness attributes in the typing rules. For this reason, we introduce a separate “non unique”
property of types, which applies to types of kind ∗ when they have a non-unique attribute, and to
attributes (types of kind U) when they are non-unique themselves.

Reserved Notation "’split context’ E ’as’ (E1 ; E2)".

Inductive non unique : typ→ Prop :=
| NU star : ∀ t u,

typ equiv u NU→ non unique (t ’ u)
| NU U : ∀ u,

typ equiv u NU→ non unique u.

Inductive context split : env→ env→ env→ Prop :=
| split empty :

split context empty as (empty ; empty)
| split both : ∀ E E1 E2 x t, split context E as (E1 ; E2)→ non unique t→

split context (E & x ¬ t) as (E1 & x ¬ t; E2 & x ¬ t)
| split left : ∀ E E1 E2 x t, split context E as (E1 ; E2)→

split context (E & x ¬ t) as (E1 & x ¬ t ; E2)
| split right : ∀ E E1 E2 x t, split context E as (E1 ; E2)→

split context (E & x ¬ t) as (E1 ; E2 & x ¬ t)
where

"’split context’ E ’as’ (E1 ; E2)" := (context split E E1 E2).

Hint Constructors non unique context split.

171

Chapter 7. Formalization∗

7.4.4 Operations on the typing context

Disjunction of all types on the range of the environment
Fixpoint rng (E : env) : typ :=

match E with

| nil⇒ NU

| (x, u) :: tail⇒ or u (rng tail)
end.

Remove the first occurrence of x in E

Fixpoint dsub (x : var) (E : env) {struct E} : env :=
match E with

| nil⇒ nil

| (y, t) :: tail⇒ if x == y then tail else (y, t) :: dsub x tail

end.

Call dsub for every x in xs.
Fixpoint dsub list (xs : list var) (E : env) : env :=

match xs with

| nil⇒ E

| x :: xs’⇒ dsub list xs’ (dsub x E)
end.

Variation on dsub list working on sets xs rather than lists.
Definition dsub vars (xs : vars) (E : env) : env := dsub list (S.elements xs) E.

7.4.5 Typing relation

The rule for variables typing var is subtle in two ways: since it only requires that binds x (t ’ u)
E, and therefore allows for other assumptions in E, it implicitly allows weakening on E. However,
it is much more strict on fvars (the only assumption in fvars must be the assumption x : u; hence,
no weakening is allowed on fvars). This is important, because while additional assumptions in E

cannot affect the type of a term, additional assumptions in fvars can (by unnecessarily forcing an
abstraction to be unique). The typing rule for abstraction uses the cofinite quantification discussed
in the introduction.

Reserved Notation "E ` t : T | fvars" (at level 69).

Inductive typing : env→ trm→ typ→ env→ Prop :=
| typing var : ∀ E x t u v,

env wf E kind star→
binds x (t ’ u) E→
typ equiv u v→
E ` (trm fvar x) : t ’ u | x ¬ v

| typing abs : ∀ L E a b e fvars’,
(∀ x fvars, x \notin L→ fvars’ = dsub x fvars→

172

7.4. Definitions

(E & x ¬ a) ` e ˆ x : b | fvars)→
E ` (trm abs e) : a 〈 rng fvars’ 〉 b | fvars’

| typing app : ∀ E E1 E2 fvars fvars1 fvars2 e1 e2 a b u,
E1 ` e1 : a 〈 u 〉 b | fvars1→
E2 ` e2 : a | fvars2→
split context E as (E1 ; E2)→ env wf E kind star→
split context fvars as (fvars1 ; fvars2)→ env wf fvars kind U→
E ` (trm app e1 e2) : b | fvars

| typing equiv : ∀ E e a b fvars,
E ` e : a | fvars→
typ equiv a b→
E ` e : b | fvars

where "E ` t : T | fvars" := (typing E t T fvars).

Hint Constructors typing.

7.4.6 Semantics

We treat “let x = y in z” as syntactic sugar for (λx · z) y.
Notation "’lt’ x ’in’ y" := (trm app (trm abs y) x) (at level 70).

Definition of answer, eval and red as in Maraist et al. (1998); again, we’re using cofinite
quantification.

Inductive answer : trm→ Prop :=
| answer abs : ∀ M, term (trm abs M)→

answer (trm abs M)
| answer let : ∀ L M A, term (lt M in A)→

(∀ x, x \notin L→ answer (A ˆ x))→
answer (lt M in A).

Definition of an evaluation context

Inductive evals : trm→ var→ Prop :=
| evals hole : ∀ x,

evals (trm fvar x) x

| evals app : ∀ x E M, evals E x→
evals (trm app E M) x

| evals let : ∀ L x E M,
(∀ y, y \notin L→ evals (E ˆ y) x)→
evals (lt M in E) x

| evals dem : ∀ L x E M, evals E x→
(∀ y, y \notin L→ evals (M ˆ y) y)→
evals (lt E in M) x.

Hint Constructors evals.

As mentioned before, the reduction relation we use is the standard reduction from Maraist et al.
(1998), except that red value is defined as in (Maraist et al., 1998, Section “On types and logic”, p.

173

Chapter 7. Formalization∗

38) (adapted for standard reduction). None of these rules adjust any of the bound variables (which
are after all De Bruijn variables); this is justified by lemma red regular, given in Section 7.5.7,
which states that the reduction relation is defined for locally closed terms only (that is, they may
contain free variables, but no unbound De Bruijn indices).

Inductive red : trm→ trm→ Prop :=

| red value : ∀ L M N, term (lt (trm abs M) in N)→
(∀ x, x \notin L→ evals (N ˆ x) x)→
red (lt (trm abs M) in N) (N ˆˆ trm abs M)

| red commute : ∀ L M A N, term (trm app (lt M in A) N)→
(∀ x, x \notin L→ answer (A ˆ x))→
red (trm app (lt M in A) N) (lt M in trm app A N)

| red assoc : ∀ L M A N, term (lt (lt M in A) in N)→
(∀ x, x \notin L→ answer (A ˆ x))→
(∀ x, x \notin L→ evals (N ˆ x) x)→
red (lt (lt M in A) in N) (lt M in lt A in N)

| red closure app : ∀ E E’ M, term (trm app E M)→
red E E’→
red (trm app E M) (trm app E’ M)

| red closure let : ∀ L E E’ M, term (lt M in E)→
(∀ x, x \notin L→ red (E ˆ x) (E’ ˆ x))→
red (lt M in E) (lt M in E’)

| red closure dem : ∀ L E0 E0’ E1, term (lt E0 in E1)→
red E0 E0’→
(∀ x, x \notin L→ evals (E1 ˆ x) x)→
red (lt E0 in E1) (lt E0’ in E1).

Hint Constructors answer red.

7.5 Preliminaries

7.5.1 Some additional lemmas about ok and binds

Every variable occurs at most once.
Lemma ok mid : ∀ (E2 E1 : env) x t,

ok (E1 & x ¬ t & E2)→ x # E1 ∧ x # E2.
By induction on E2.

If two environments are both ok and their domains are disjoint, then their concatenation is also
ok.

174

7.5. Preliminaries

Lemma ok concat : ∀ (E2 E1 : env),
ok E1→ ok E2→
(∀ x, x \in dom E1→ x \notin dom E2)→
(∀ x, x \in dom E2→ x \notin dom E1)→
ok (E1 & E2).

By induction on E2.

If the concatenation of two environments is ok, then their domains must be disjoint.
Lemma ok concat inv 2 : ∀ (E2 E1 : env),

ok (E1 & E2)→
(∀ x, x \in dom E1→ x \notin dom E2) ∧
(∀ x, x \in dom E2→ x \notin dom E1).

By induction on E2.

We can change the order of the assumptions in an environment without affecting ok.
Lemma ok exch : ∀ (E1 E2 : env),

ok (E1 & E2)→ ok (E2 & E1).
By induction on E1.

Generalization of ok exch.
Lemma ok exch 3 : ∀ (E1 E2 E3 : env),

ok (E1 & E2 & E3)→ ok (E1 & E3 & E2).
Follows from ok concat inv 2 and ok exch.

If an environment binds a variable x, then x must be in the domain of the environment.
Lemma binds in dom : ∀ (A : Set) x (T : A) E,

binds x T E→ x \in dom E.
By induction on E.

Inverse of binds in dom: if a variable x is in the domain of an environment, then the environment
must bind x.
Lemma in dom binds : ∀ (E : env) x,

x \in dom E→ ∃ t, binds x t E.
By induction on E.

Binds is unaffected by the order of the assumptions in an environment.
Lemma binds exch : ∀ (E1 E2 : env) x t, ok (E1 & E2)→

binds x t (E1 & E2)→
binds x t (E2 & E1).

Follows from ok concat inv 2.

Generalization of binds exch.
Lemma binds exch 3 : ∀ (E1 E2 E3 : env) x t, ok (E1 & E2 & E3)→

binds x t (E1 & E2 & E3)→
binds x t (E1 & E3 & E2).

Trivial.

A variable can only be bound to one type.
Lemma binds head inv : ∀ (E : env) x a b,

binds x a (E & x ¬ b)→ a = b.
Trivial.

175

Chapter 7. Formalization∗

7.5.2 Renaming Lemmas

All these renaming lemmas are proven in the same way. We first prove a substitution lemma
which states that the names of the free variables do not matter, and then we prove the renaming
lemma using the substitution lemma and the fact that t ˆˆ u = [x u] t ˆ x, as long as x \notin fv t.

If e is an answer, then it will still be an answer when we rename any of its free variables.
Lemma subst answer : ∀ e x y,

answer e→ answer ([x trm fvar y] e).
By induction on answer e.

If t ˆ x is an answer, then t ˆ y will also be an answer for any y.
Lemma answer rename : ∀ x y t,

x \notin fv t→
answer (t ˆ x)→ answer (t ˆ y).

Follows from subst answer.

If M evaluates x (by the evaluation context relation defined previously) then if we rename y to z

in M, M will still evaluate x if x 6= y, or M will evaluate z otherwise.
Lemma subst evals : ∀ M x y z,

evals M x→ evals ([y trm fvar z] M) (if x == y then z else x).
By induction on evals M x.

If M ˆ x evaluates x, then M ˆ y will evaluate y for any y.
Lemma evals rename : ∀ M x y,

x \notin fv M→
evals (M ˆ x) x→ evals (M ˆ y) y.

Follows from subst evals.

Specialization of subst evals, excluding the case that x = y.
Lemma subst evals 2 : ∀ M x y z, x 6= y→

evals M x→ evals ([y trm fvar z] M) x.
Follows from subst evals.

Generalization of evals rename.
Lemma evals rename 2 : ∀ M x y z,

x \notin fv M→ z 6= x→
evals (M ˆ x) z→ evals (M ˆ y) z.

Follows from subst evals 2.

If e reduces to e’, then if we rename a free variable by another in both terms the reduction relation
will still hold.
Lemma subst red : ∀ e e’ x y ,
red e e’→ red ([x trm fvar y] e) ([x trm fvar y] e’).

By induction on red e e’; uses subst evals 2.

If M ˆ x reduces to N ˆ x, then M ˆ y will reduce to N ˆ y for any y.
Lemma red rename : ∀ x y M N,

x \notin fv M→ x \notin fv N →

176

7.5. Preliminaries

red (M ˆ x) (N ˆ x)→ red (M ˆ y) (N ˆ y).
Follows trivially from subst read.

7.5.3 Term opening

Auxiliary lemma used to prove in open, below.
Lemma in open aux : ∀ M x y k l, x 6= y→

x \in fv ({k trm fvar y} M)→ x \in fv ({l trm fvar y} M).
By induction on M.

If x is free in M ˆ y and y 6= x, then x is free in M.
Lemma in open : ∀ M x y,

x \in fv (M ˆ y)→ y 6= x→ x \in fv M.
By induction on M; uses in open aux.

If x is free in e, then x will still be free when we substitute any bound variable in e.
Lemma in open 2 : ∀ e e’ k x,

x \in fv e→ x \in fv ({k e’} e).
By induction on e.

If x is not free in t, then if we replace a bound variable k by y (where x 6= y) in t, x will still not be
free in t.
Lemma open rec fv : ∀ t x y k,

x \notin fv t→ x 6= y→ x \notin fv ({k trm fvar y} t).
By induction on t.

If t ˆ x is locally-closed, then substituting for any bound variables larger than 0 in t has no effect.
Lemma open rec term open : ∀ t x,

term (t ˆ x)→ ∀ k t’, k ≥ 1→ t = {k t’} t.
Trivial.

7.5.4 Domain subtraction

Subtracting an element x from the domain of an environment fvars has no effect when x was not
in the domain of fvars to start with.
Lemma dsub not in dom : ∀ (fvars : env) x, x # fvars→

fvars = dsub x fvars.
By induction on fvars.

x removes x from a domain
Lemma not in dom dsub : ∀ fvars x, ok fvars→

x # dsub x fvars.
By induction on fvars.

Removing x from E & x ¬ t gives E.

177

Chapter 7. Formalization∗

Lemma dsub head : ∀ E x t, dsub x (E & x ¬ t) = E.
Trivial.

() distributes over (++).
Lemma dsub app : ∀ E1 E2 x, ok (E1 ++ E2)→

dsub x (E1 ++ E2) = dsub x E1 ++ dsub x E2.
By induction on E1.

() distributes over (&).
Corollary dsub concat : ∀ fvars1 fvars2 x, ok (fvars1 & fvars2)→

dsub x (fvars1 & fvars2) = dsub x fvars1 & dsub x fvars2.
Follows trivially from dsub app.

If removing x from fvars is the empty environment, then y cannot be in the domain of fvars.
Lemma not in dom empty : ∀ fvars x y,

dsub x fvars = empty→ x 6= y→ y \in dom fvars→ False.
By case analysis on fvars.

If E binds x and x 6= y, then (yE) binds x.
Lemma binds dsub : ∀ E x y T,

binds x T E→ x 6= y→ binds x T (dsub y E).
By induction on E.

Inverse property of binds dsub inv.
Lemma binds dsub inv : ∀ E x y T,

binds x T (dsub y E)→ x 6= y→ binds x T E.
By induction on E.

If x is in the domain of E and x 6= y, then x is in the domain of dsub y E.
Lemma in dom dsub : ∀ E x y,

x \in dom E→ x 6= y→ x \in dom (dsub y E).
By induction on E.

Inverse property of in dom dsub.
Lemma in dom dsub inv : ∀ E x y,

x \in dom (dsub y E)→ x \in dom E.
By induction on E.

If x is in the domain of E and yE is the empty environment, then x must be y.
Lemma in dom dsub empty : ∀ E x y,

x \in dom E→ dsub y E = empty→ x = y.
By induction on E.

If an environment is ok, it will still be ok if we remove a variable from its domain.
Lemma ok dsub : ∀ E x,

ok E→ ok (dsub x E).
By induction on ok E.

If an environment is ok, it will still be ok if we add a single assumption about x to the environment,
provided that x was not already in the domain of E.
Lemma ok dsub inv : ∀ E x,

ok (dsub x E)→ x # dsub x E→ ok E.

178

7.5. Preliminaries

By induction on E.

If removing x from an environment yields the empty environment, then either the environment
was empty to start with, or it is the singleton environment binding x.
Lemma dsub empty : ∀ E x,

dsub x E = empty→ E = empty ∨ ∃ t, E = x ¬ t.
By induction on E.

7.5.5 Kinding properties

An attributed type consists of a base type and an attribute.
Lemma kinding star inv : ∀ t u, kinding (t ’ u) kind star→

kinding t kind T ∧ kinding u kind U.
By inversion on kinding (t ’ u) kind star.

The domain and codomain of functions must have kind ∗, and the attribute on the arrow must
have kind U.
Lemma kinding fun inv : ∀ a u b, kinding (a 〈 u 〉 b) kind star→

kinding a kind star ∧ kinding u kind U ∧ kinding b kind star.
By inversion on kinding (a 〈 u 〉 b) kind star.

Every type has at most one kind.
Lemma kind unique : ∀ t k1, kinding t k1→
∀ k2, kinding t k2→ k1 = k2.

By induction on kinding t k1.

Equivalent types must have the same kind.
Lemma typ equiv same kind : ∀ t s, typ equiv t s→
∀ k, kinding t k↔ kinding s k.

By induction on typ equiv t s; uses kind unique.

or a b has kind U if a and b have kind u.
Lemma kinding or : ∀ a b, kinding a kind U→ kinding b kind U→

kinding (or a b) kind U.
Trivial.

7.5.6 Well-formedness of environments

If an environment is well-formed, it must be ok.
Lemma env wf ok : ∀ E k, env wf E k→ ok E.
Trivial.

The empty environment is well-formed.
Lemma env wf empty : ∀ k, env wf empty k.
Trivial.

The singleton environment is well-formed.
Lemma env wf singleton : ∀ x t k, kinding t k→

179

Chapter 7. Formalization∗

env wf (x ¬ t) k.
Trivial.

An environment can be extended with (x ¬ t) if x is not already in E and t has the right kind.
Lemma env wf extend : ∀ E k x t, x # E→ kinding t k→

env wf E k→ env wf (E & x ¬ t) k.
Trivial.

The tail of a well-formed environment is also well-formed.
Lemma env wf tail : ∀ E x t k,

env wf (E & x ¬ t) k→ env wf E k.
Trivial.

Well-formedness of an environment is unaffected if we remove a variable.
Lemma env wf dsub : ∀ E k x,

env wf E k→ env wf (dsub x E) k.
Follows from binds dsub inv.

Well-formedness of an environment is unaffected when we add a fresh variable of the right kind.
Lemma env wf dsub inv : ∀ E k x,

env wf (dsub x E) k→
(∀ t, binds x t E→ kinding t k)→ x # dsub x E→
env wf E k.

Follows from ok dsub inv and binds dsub.

Well-formed is unaffected if we replace a type by an equivalent one.
Lemma env wf typ equiv : ∀ E k x t s, typ equiv t s→

env wf (E & x ¬ t) k→ env wf (E & x ¬ s) k.
Follows from typ equiv same kind.

Well-formedness of an environment is independent of the order of the assumptions.
Lemma env wf exch : ∀ E1 E2 k,

env wf (E1 & E2) k→ env wf (E2 & E1) k.
Trivial (uses binds exch).

Generalization of env wf exch.
Lemma env wf exch 3 : ∀ E1 E2 E3 k,

env wf (E1 & E2 & E3) k→ env wf (E1 & E3 & E2) k.
Trivial (uses binds exch 3).

Every type in a well-formed environment has the same kind.
Lemma env wf binds kind : ∀ E x t k, env wf E k→

binds x t E→ kinding t k.
Trivial.

Every part of a well-formed environment must be well-formed.
Lemma env wf concat inv : ∀ E1 E2 k, env wf (E1 & E2) k→

env wf E1 k ∧ env wf E2 k.
Trivial.

180

7.5. Preliminaries

7.5.7 Regularity

A typing relation only holds when the environment is well-formed and the term is locally closed.
Lemma typing regular : ∀ E e T fvars,

typing E e T fvars→
env wf E kind star ∧ env wf fvars kind U ∧ term e.

By induction on typing E e T fvars.

The answer predicate only holds for locally closed terms.
Lemma answer regular : ∀ e,

answer e→ term e.
Trivial induction on answer e.

The reduction relation only holds for pairs of locally closed terms.
Lemma body app : ∀ e e’, term e’→

body e→ body (trm app e e’).
Trivial.

The reduction relation only applies to locally closed terms.
Lemma red regular : ∀ e e’,
red e e’→ term e ∧ term e’.

By induction on red e e’; uses open rec term open.

7.5.8 Well-founded induction on subterms

Subterm relation on locally-closed terms.
Inductive subterm : trm→ trm→ Prop :=
| sub abs : ∀ x t, subterm (t ˆ x) (trm abs t)
| sub abs trans : ∀ x t t’, subterm t’ (t ˆ x)→ subterm t’ (trm abs t)
| sub app1 : ∀ t1 t2, subterm t1 (trm app t1 t2)
| sub app2 : ∀ t1 t2, subterm t2 (trm app t1 t2)
| sub app1 trans : ∀ t’ t1 t2, subterm t’ t1→ subterm t’ (trm app t1 t2)
| sub app2 trans : ∀ t’ t1 t2, subterm t’ t2→ subterm t’ (trm app t1 t2).

Size is defined to be the number of constructors used to build up a term.
Fixpoint size (t:trm) : nat :=

match t with

| trm fvar x⇒ 1
| trm bvar i⇒ 1
| trm abs t1⇒ 1 + size t1

| trm app t1 t2⇒ 1 + size t1 + size t2

end.

181

Chapter 7. Formalization∗

Size is unaffected by substituting free variables for bound variables.
Lemma size subst free : ∀ t i x,

size t = size ({i trm fvar x} t).
By induction on t.

Special case of size subst free.
Lemma size open : ∀ t x,

size t = size (t ˆ x).
Follows directly from size subst free.

The subterm relation is well-founded1.
Lemma subterm well founded : well founded subterm.
We prove the more general property ∀ (n:nat) (t:trm), size t < n→ Acc subterm t by induction on

n.

7.5.9 Iterated domain subtraction

Removing a list of variables from the empty environment yields the empty environment.
Lemma dsub list nil : ∀ xs, dsub list xs nil = nil.
Trivial.

Like dsub list nil but using dsub vars instead of dsub list.
Lemma dsub vars nil : ∀ xs, dsub vars xs nil = nil.
Follows directly from dsub list nil.

Auxiliary lemma used to prove dsub list inv, below.
Lemma dsub list inv aux1 : ∀ xs E v t, ok ((v, t) :: E)→

In v xs→ dsub list xs ((v, t) :: E) = dsub list xs E.
By induction on xs; uses in dom dsub inv.

Auxiliary lemma used to prove dsub list inv, below.
Lemma dsub list inv aux2 : ∀ xs E v t,
¬ In v xs→ dsub list xs ((v, t) :: E) = (v, t) :: dsub list xs E.

By induction on xs.

The following lemma is useful in proofs involving dsub list. When we apply dsub list xs to an
environment with head (v, t), then either v is in the list xs and the head of the list will be removed,
or v is not in the list xs and the head of the list will be left alone.
Lemma dsub list inv : ∀ xs E v t, ok ((v, t) :: E)→

(In v xs ∧ dsub list xs ((v, t) :: E) = dsub list xs E) ∨
(¬ In v xs ∧ dsub list xs ((v, t) :: E) = (v, t) :: dsub list xs E).

Follows from dsub list inv aux 1 and dsub list inv aux 2.

Like dsub list inv but using dsub vars instead of dsub list.
Lemma dsub vars inv : ∀ xs E v t, ok ((v, t) :: E)→

(v \in xs ∧ dsub vars xs ((v, t) :: E) = dsub vars xs E) ∨
(v \notin xs ∧ dsub vars xs ((v, t) :: E) = (v, t) :: dsub vars xs E).

1Proof suggested by Arthur Charguéraud.

182

7.5. Preliminaries

Follows from dsub list inv.

The order in which we remove variables from the domain of an environment is irrelevant.
Lemma dsust list permut : ∀ E xs ys, ok E→

(∀ x, In x xs→ In x ys)→
(∀ y, In y ys→ In y xs)→
dsub list xs E = dsub list ys E.

By induction on E; uses dsub list inv twice in the induction step (once for xs and once for ys).

Like dsust list permut, but using dsub vars instead of dsub list.
Lemma dsust vars permut : ∀ E xs ys, ok E→

(∀ x, x \in xs→ x \in ys)→
(∀ y, y \in ys→ y \in xs)→
dsub vars xs E = dsub vars ys E.

Proof analogous to dsust list permut but using dsub vars inv instead.

Special case of dsub vars inv.
Lemma dsub vars concat assoc : ∀ E xs x t, ok (E & x ¬ t)→

x \notin xs→ dsub vars xs (E & x ¬ t) = (dsub vars xs E) & x ¬ t.
Follows from dsub vars inv.

Special case of dsub vars inv.
Lemma dsub vars cons : ∀ E xs x t, ok (E & x ¬ t)→ x \in xs→

dsub vars xs (E & x ¬ t) = dsub vars xs E.
Follows from dsub vars inv.

To remove ({{x}} \u xs) from the domain of an environment, we first remove x and then xs.
Lemma dsub vars to dsub : ∀ E x xs, ok E→

dsub vars ({{x}} \u xs) E = dsub vars xs (dsub x E).
Follows from dsust list permut.

If x is in the domain of (E with xs removed), then x must be in the set (domain of E) with xs

removed.
Lemma in dom dsub vars : ∀ E x xs, ok E→

x \in dom ((dsub vars xs) E)→ x \in (S.diff (dom E) xs).
By induction on E; uses dsub vars inv in the induction step.

If x is not in the domain of E to start with, then it certainly will not be in the domain of E after we
have removed some variables from the domain of E.
Lemma notin dom dsub vars : ∀ E x xs, ok E→

x # E→ x # (dsub vars xs E).
Trivial.

7.5.10 Context split

We can swap the two branches of a context split:

E1 E2

E
⇒

E2 E1

E
Lemma split exch : ∀ E E1 E2,

183

Chapter 7. Formalization∗

split context E as (E1 ; E2)→ split context E as (E2 ; E1).
Trivial induction on split context E as (E1 ; E2).

If

E1 E2

E and x is in the domain of E1, then x must be in the domain of E.
Lemma in dom split 1 : ∀ E E1 E2 x,

split context E as (E1 ; E2)→ x \in dom E1→ x \in dom E.
By induction on split context E as (E1 ; E2).

If

E1 E2

E and x is in the domain of E2, then x must be in the domain of E.
Lemma in dom split 2 : ∀ E E1 E2 x,

split context E as (E1 ; E2)→ x \in dom E2→ x \in dom E.
Follows from in dom split 1 and split exch.

If

E1 E2

E and x is in the domain of E, then x must either be in the domain of E1 or in the domain
of E2 (or both).
Lemma in dom split inv : ∀ E E1 E2 x,

split context E as (E1 ; E2)→ x \in dom E→ x \in dom E1 ∨ x \in dom E2.
By induction on split context E as (E1 ; E2).

If

E1 E2

E and E1 binds x, then E must bind x. Note that unlike in dom split 1, we require E to
be ok.
Lemma binds split 1 : ∀ E E1 E2 x t, ok E→

split context E as (E1 ; E2)→ binds x t E1→ binds x t E.
By induction on split context E as (E1 ; E2).

If

E1 E2

E and E2 binds x, then E must bind x. Note that unlike in dom split 1, we require E to
be ok.
Lemma binds split 2 : ∀ E E1 E2 x t, ok E→

split context E as (E1 ; E2)→ binds x t E2→ binds x t E.
Follows from binds split 1 and split exch.

If

E1 E2

E and E binds x, then either E1 or E2 (or both) must bind x. Note that unlike
in dom split inv, we require E to be ok.
Lemma binds split inv : ∀ E E1 E2 x t,

split context E as (E1 ; E2)→ binds x t E→ binds x t E1 ∨ binds x t E2.
By induction on split context E as (E1 ; E2).

If

E1 E2

E then

xE1 xE2

xE .
Lemma split dsub : ∀ E E1 E2 x,

split context E as (E1 ; E2)→ ok E→
split context (dsub x E) as (dsub x E1 ; dsub x E2).

184

7.5. Preliminaries

By induction on split context E as (E1 ; E2)].

We can always split an environment E as

E ∅

E .
Lemma split empty : ∀ E,

split context E as (E ; empty).
Trivial induction on E.

If

E′ ∅

E then E must be E’.
Lemma split empty inv : ∀ E E’,

split context E as (E’ ; empty)→ E = E’.
We prove ∀ E E’ E”, split context E as (E’ ; E”)→ E” = empty→ E = E’ by induction on

split context E as (E’ ; E”).

We can always split E, x : t as

E x : t

E, x : t .
Lemma split tail : ∀ E x t,

split context (E & x ¬ t) as (E ; x ¬ t).
Follows from split empty.

If

E1 E2

E , E binds x and x is in the domain of E1, then E1 must bind x.
Lemma split binds in dom 1 : ∀ E E1 E2,

split context E as (E1 ; E2)→ ok E→
∀ x t, binds x t E→ x \in dom E1→ binds x t E1.

By induction on split context E as (E1 ; E2).

If

E1 E2

E , E binds x and x is in the domain of E2, then E2 must bind x.
Lemma split binds in dom 2 : ∀ E E1 E2,

split context E as (E1 ; E2)→ ok E→
∀ x t, binds x t E→ x \in dom E2→ binds x t E2.

Follows from split binds in dom 1 and split exch.

We prove a series of four reordering lemmas, with the first the most general and the basis for the
other three.

E1a E1b

E1

E2a E2b

E2

E

⇒

E1a E2a

Ea

E1b E2b

Eb

E
Lemma reorder ab’cd ac’bd : ∀ E E1 E2,

split context E as (E1 ; E2)→ ∀ E1a E1b E2a E2b,
split context E1 as (E1a ; E1b)→
split context E2 as (E2a ; E2b)→
∃ Ea, ∃ Eb,

split context E as (Ea ; Eb) ∧
split context Ea as (E1a ; E2a) ∧
split context Eb as (E1b ; E2b).

185

Chapter 7. Formalization∗

By induction on split context E as (E1 ; E2) followed by inversion on split context E1 as (E1a ;
E1b) and split context E2 as (E2a ; E2b). There are 34 cases to consider but they are all trivial.

Restructure a three-way split (Ea, Eb, Ec).
E1a E1b

E1 E2

E

⇒ E1a

E1b E2

E′

E
Corollary reorder ab’c a’bc : ∀ E E1 E2 E1a E1b,

split context E as (E1 ; E2)→
split context E1 as (E1a ; E1b)→
∃ E’,

split context E as (E1a ; E’) ∧
split context E’ as (E1b ; E2).

Follows from reorder ab’cd ac’bd.

Inverse of reorder ab’c a’bc:

E1

E2a E2b

E2

E

⇒

E1 E2a

E′ E2b

E

Corollary reorder a’bc ab’c : ∀ E E1 E2 E2a E2b,
split context E as (E1 ; E2)→
split context E2 as (E2a ; E2b)→
∃ E’,

split context E as (E’ ; E2b) ∧
split context E’ as (E1 ; E2a).

Follows from reorder ab’cd ac’bd.

The final reordering lemma is its own inverse:
E1a E1b

E1 E2

E

⇒

E1a E2

E′ E1b

E

Corollary reorder ab’c ac’b : ∀ E E1 E2 E1a E1b,
split context E as (E1 ; E2)→
split context E1 as (E1a ; E1b)→
∃ E’,

split context E as (E’ ; E1b) ∧
split context E’ as (E1a ; E2).

Follows from reorder ab’cd ac’bd.

Remove the assumption about x from E:

xE E′

E . We use this lemma in split dom inv, below.
Lemma split dom : ∀ E x,
∃ E’, split context E as (dsub x E ; E’) ∧ dsub x E’ = empty.

By induction on E.

Inverse property of split dom.

186

7.5. Preliminaries

Lemma split dom inv : ∀ E E’ x,
E’ = dsub x E→
∃ E x, split context E as (E’ ; E x) ∧ dsub x E x = empty.

By induction on E.

If

E1 E2

E and E is ok, then both E1 and E2 must be ok.
Lemma split context ok : ∀ E E1 E2,

split context E as (E1 ; E2)→ ok E→ ok E1 ∧ ok E2.
By induction on split context E as (E1 ; E2).

If

E1 E2

E and E is well-formed, then both E1 and E2 must be well-formed.
Lemma split context wf : ∀ E E1 E2 k,

split context E as (E1 ; E2)→ env wf E k→ env wf E1 k ∧ env wf E2 k.
Follows from split context ok, binds split 1 and binds split 2.

We can always split the concatenation of two environments into its two constituents:

E1 E2

E1&E2 .
Lemma split concat : ∀ E2 E1,

split context (E1 & E2) as (E1 ; E2).
By induction on E2.

Split a domain E into two domains E1 and E2 so that all assumptions about variables in xs go

into E1 and the rest goes into E2:

dom E\xsE xsE

E .
Lemma split dom set : ∀ E xs, ok E→

split context E as (dsub vars (S.diff (dom E) xs) E; dsub vars xs E).
By induction on E. The proof is slightly tricky, and relies on dsust vars permut, dsub vars cons,
dsub vars concat assoc and dsub vars to dsub.

7.5.11 Type equivalence

If t1 t2 is equivalent to s, then s must be of the form s1 s2 where t1 and s1, and t2 and s2, are
equivalent. This however only holds for types of kind other than U (counterexample: typ equiv

(or a (not a)) a).
Lemma typ equiv app inv ex : ∀ t s, ¬ kinding t kind U→

typ equiv t s→
(∀ t1 t2 , t = typ app t1 t2→ ∃ s1, ∃ s2,

s = typ app s1 s2 ∧ typ equiv t1 s1 ∧ typ equiv t2 s2) ∧
(∀ s1 s2 , s = typ app s1 s2→ ∃ t1, ∃ t2,

t = typ app t1 t2 ∧ typ equiv t1 s1 ∧ typ equiv t2 s2).
By induction on typ equiv t s. This is a slightly tricky proof, and we do need to prove it in both
directions (as stated in the lemma). If we try to prove it in one direction only, we get stuck in the
case for typ equiv sym.

187

Chapter 7. Formalization∗

If t1 s1 is equivalent to t2 s2, then the components must be equivalent.
Lemma typ equiv app inv : ∀ t1 t2 s1 s2,
¬ kinding (typ app t1 s1) kind U→
typ equiv (typ app t1 s1) (typ app t2 s2)→
typ equiv t1 t2 ∧ typ equiv s1 s2.

Follows from typ equiv app inv.

If t is equivalent to ATTR, it must be ATTR.
Lemma typ equiv ATTR inv : ∀ t s, typ equiv t s→

(t = ATTR→ s = ATTR) ∧ (s = ATTR→ t = ATTR).
By induction on typ equiv t s.

Special case of typ equiv app inv ex for attributed types.
Lemma typ equiv attr inv ex : ∀ t u s,

typ equiv s (t ’ u)→ ∃ t’, ∃ u’,
s = t’ ’ u’ ∧ typ equiv t t’ ∧ typ equiv u u’.

Follows from typ equiv app inv ex.

Special case of typ equiv app inv for attributed types.
Lemma typ equiv attr inv : ∀ t u s v,

typ equiv (t ’ u) (s ’ v)→ typ equiv t s ∧ typ equiv u v.
Follows from typ equiv app inv.

Special case of typ equiv app inv for function types.
Lemma typ equiv fun inv : ∀ a u b a’ u’ b’,

typ equiv (a 〈 u 〉 b) (a’ 〈 u’ 〉 b’)→
typ equiv a a’ ∧
typ equiv u u’ ∧
typ equiv b b’.

Follows from typ equiv attr inv.

Replace an attribute on an attributed type.
Lemma typ equiv new attr : ∀ t u v, typ equiv u v→

typ equiv (t ’ u) (t ’ v).
Trivial.

Replace the domain of an arrow
Lemma typ equiv fun new dom : ∀ a u b a’, typ equiv a a’→

typ equiv (a 〈 u 〉 b) (a’ 〈 u 〉 b).
Trivial.

Replace the codomain of an arrow
Lemma typ equiv fun new cod : ∀ a u b b’, typ equiv b b’→

typ equiv (a 〈 u 〉 b) (a 〈 u 〉 b’).
Trivial.

If t and s are equivalent and have kind U, then they must also be equivalent by the boolean
equivalence relation.
Lemma typ equiv BA equiv : ∀ t s,

typ equiv t s→ kinding t kind U→ BA.equiv t s.
By induction on typ equiv t s.

188

7.5. Preliminaries

Commutativity of or.
Lemma typ equiv comm or : ∀ a b, kinding (or a b) kind U→

typ equiv (or a b) (or b a).
Trivial.

7.5.12 Non-unique types

If t and s are equivalent and t is non unique, s must be non unique.
Lemma non unique equiv : ∀ t s, typ equiv t s→

non unique t→ non unique s.
By inversion on non unique t.

If tu is non-unique, then u must be equivalent to false.
Lemma non unique star : ∀ t u,

non unique (t ’ u)→ typ equiv u NU.
By inversion on non unique (t ’ u). There are two possibilities (see the definition of non unique).
For the first case, (t ’ u) of kind ∗, the lemma follows immediately. For the second, we show that
kinding (t ’ u) kind U leads to contradiction.

If u is non unique and has kind U, it must be equivalent to false.
Lemma non unique U : ∀ u,

non unique u→ kinding u kind U→ typ equiv u NU.
By inversion on non unique u. Proof analogous to non unique star.

If

E1 E2

E , E binds x, and both E1 and E2 bind x, then x must have a non-unique type. That is,
only variables of non-unique type can be duplicated.
Lemma split both inv : ∀ E E1 E2 x t, ok E→

split context E as (E1 ; E2)→
binds x t E→ x \in dom E1→ x \in dom E2→
non unique t.

By induction on split context E as (E1 ; E2).

If every type in E is non-unique, then

E E

E .
Lemma split non unique : ∀ E, ok E→

(∀ x t, binds x t E→ non unique t)→
split context E as (E ; E).

By induction on E.

7.5.13 Equivalence of environments.

We start with a number of trivial consequences of ∼=. These lemmas enable us to work directly
with the notion of an equivalence, rather than having to unfold the definition of ∼= every time we
need one of its constituents.

189

Chapter 7. Formalization∗

Equivalence only holds between well-formed environments.
Lemma env equiv regular : ∀ E1 E2 k,

(E1 ∼= E2) k→ env wf E1 k ∧ env wf E2 k.
Trivial.

If E1 ∼= E2 and E1 binds x, then E2 must bind x.
Lemma env equiv binds 1 : ∀ E1 E2 k, (E1 ∼= E2) k→
∀ x t, binds x t E1→ ∃ t’, binds x t’ E2 ∧ typ equiv t t’.

Trivial.

If E1 ∼= E2 and E2 binds x, then E1 must bind x.
Lemma env equiv binds 2 : ∀ E1 E2 k, (E1 ∼= E2) k→
∀ x t, binds x t E2→ ∃ t’, binds x t’ E1 ∧ typ equiv t t’.

Trivial.

If E1 ∼= E2 and x is in the domain of E1, x must be in the domain of E2.
Lemma env equiv in dom 1 : ∀ E1 E2 k, (E1 ∼= E2) k→
∀ x, x \in dom E1→ x \in dom E2.

Follows directly from binds in dom and env equiv binds 1.

If E1 ∼= E2 and x is in the domain of E2, x must be in the domain of E1.
Lemma env equiv in dom 2 : ∀ E1 E2 k, (E1 ∼= E2) k→
∀ x, x \in dom E2→ x \in dom E1.

Follows directly from binds in dom and env equiv binds 2.

The equivalence relation is reflexive.
Lemma env equiv refl : ∀ E k, env wf E k→ (E ∼= E) k.
Trivial.

The equivalence relation is commutative.
Lemma env equiv comm : ∀ E1 E2 k, (E1 ∼= E2) k→ (E2 ∼= E1) k.
Trivial.

The equivalence relation is transitive.
Lemma env equiv trans : ∀ E1 E2 E3 k,

(E1 ∼= E2) k→ (E2 ∼= E3) k→ (E1 ∼= E3) k.
Trivial.

If E is equivalent to the empty environment, it must be the empty environment.
Lemma env equiv empty : ∀ E k, (E ∼= empty) k→ E = empty.
By case analysis on E.

If E is equivalent to a singleton environment, it must be that singleton environment.
Lemma env equiv singleton : ∀ E k y s, (E ∼= (y ¬ s)) k→
∃ s’, E = y ¬ s’ ∧ typ equiv s s’.

By case analysis on E; distinguishing between the empty environment, the singleton environment,
and the environment with more than one element. We show contradiction for all cases except the
singleton case.

Equivalence between environments is unaffected if we remove a variable from both sides.
Lemma env equiv dsub : ∀ E1 E2 k x,

(E1 ∼= E2) k→ (dsub x E1 ∼= dsub x E2) k.

190

7.5. Preliminaries

Follows from binds in dom, binds dsub and binds dsub inv.

Equivalence between environments is unaffected if we add a variable on both sides, provided
that the variable was not already in the domain of the environments to start with and has the right
kind.
Lemma env equiv extend : ∀ E E’ k x t s, x # E→

kinding t k→ typ equiv t s→
(E ∼= E’) k→ (E & x ¬ t ∼= E’ & x ¬ s) k.

Trivial.

Special case of env equiv extend.
Lemma env equiv typ equiv : ∀ E k x t s, env wf (E & x ¬ t) k→

typ equiv t s→
(E & x ¬ t ∼= E & x ¬ s) k.

Follows from env equiv extend and env wf binds kind.

Special case of env equiv dsub.
Lemma env equiv cons : ∀ E E’ k x t,

(E & x ¬ t ∼= E’) k→ (E ∼= dsub x E’) k.
Follows from env equiv dsub and dsub not in dom.

Inverse property of env equiv cons.
Lemma env equiv cons inv : ∀ E E’ k x t,

(dsub x E ∼= E’) k→
binds x t E→ env wf E k→
(E ∼= E’ & x ¬ t) k.

Follows from binds dsub and binds dsub inv.

We can take an environment E, remove its assumption about x, and then re-insert that assumption
at the start of the environment; the result will be equivalent to the original environment.
Lemma env equiv reorder : ∀ E k x t,

env wf E k→ binds x t E→ (E ∼= dsub x E & x ¬ t) k.
Follows from binds dsub and binds dsub inv.

If

E1 E2

E and E’ is equivalent to E, then there exist two environments E′1 and E′2 such that
E′1 E′2

E′ and E1 and E2 are equivalent to E′1 and E′2.
Lemma env equiv split : ∀ E’ E E1 E2 k,

split context E as (E1 ; E2)→ (E ∼= E’) k→
∃ E1’, ∃ E2’,

split context E’ as (E1’ ; E2’) ∧ (E1 ∼= E1’) k ∧ (E2 ∼= E2’) k.
By induction on E’. For the case (v, t) :: E’, we recurse on dsub v E, then add (v, t) to the partially
constructed E1’ or E2’ depending on whether v \in dom E1 or v \in dom E2.

Equivalence is unaffected by order.
Lemma env equiv exch : ∀ E1 E2 k, env wf (E1 & E2) k→

(E1 & E2 ∼= E2 & E1) k.
Follows trivially from env wf exch and binds exch.

191

Chapter 7. Formalization∗

Generalization of env equiv exch.
Lemma env equiv exch 3 : ∀ E1 E2 E3 k, env wf (E1 & E2 & E3) k→

(E1 & E2 & E3 ∼= E1 & E3 & E2) k.
Follows trivially from env wf exch 3 and binds exch 3.

7.5.14 Range

The range of an environment containing only types of kind U is U.
Lemma rng kind U : ∀ E, env wf E kind U→ kinding (rng E) kind U.
By induction on E.

Auxiliary lemma used to prove rng non unique.
Lemma rng non unique BA : ∀ fvars,

BA.equiv (rng fvars) NU→
(∀ x u, binds x u fvars→ BA.equiv u NU).

By induction on fvars, using lemma or false both from the Boolean Algebra formalization.

If the range of an environment is equivalent to false, then every attribute in that environment must
be equivalent to false.
Lemma rng non unique : ∀ fvars, env wf fvars kind U→

typ equiv (rng fvars) NU→
(∀ x u, binds x u fvars→ typ equiv u NU).

Follows from rng non unique BA, env wf binds kind and typ equiv BA equiv.

Auxiliary lemma used to prove split rng.
Lemma split rng BA : ∀ fvars fvars1 fvars2,

split context fvars as (fvars1 ; fvars2)→
BA.equiv (rng fvars) (or (rng fvars1) (rng fvars2)).

By induction on split context fvars as (fvars1 ; fvars2), using properties of the boolean equiva-
lence relation and rng concat.

If

fvars1 fvars2

fvars then the range of fvars is equivalent to the range of the concatenation of fvars1

and fvars2. This holds because if there is an assumption about x in both fvars1 and fvars2, then
that must be the same assumption, and we know that t is equivalent to or t t for any t (disjunction
is idempotent).
Lemma split rng : ∀ fvars fvars1 fvars2, env wf fvars kind U→

split context fvars as (fvars1 ; fvars2)→
typ equiv (rng fvars) (or (rng fvars1) (rng fvars2)).

Follows from split rng BA.

Auxiliary lemma needed to prove env equiv rng.
Lemma rng reorder : ∀ (E : env) x t, binds x t E→

BA.equiv (rng E) (or (rng (dsub x E)) t).
By induction on E.

If two environments are equivalent, then their ranges must be equivalent.
Lemma env equiv rng : ∀ E E’,

192

7.6. Properties of the typing relation

(E ∼= E’) kind U→ typ equiv (rng E) (rng E’).
By induction on E, using properties of the boolean equivalence relation, rng reorder, rng concat

and typ equiv BA equiv.

7.6 Properties of the typing relation

7.6.1 Kinding properties

Every assumption in E must have kind ∗.
Lemma kinding env : ∀ E e t fvars,

E ` e : t | fvars→ ∀ x s,
binds x s E→ kinding s kind star.

Follows trivially from regularity and env wf binds kind.

Every assumption in fvars must have kind U .
Lemma kinding fvars : ∀ E e t fvars,

E ` e : t | fvars→ ∀ x u,
binds x u fvars→ kinding u kind U.

Follows trivially from regularity and env wf binds kind.

If e has type t, then t must have kind ∗.
Lemma typing kind star : ∀ E e t fvars,

E ` e : t | fvars→ kinding t kind star.
By induction on E ` e : t | fvars.

7.6.2 Free variables

If E ` e : T | fvars, then if x is free in e it must be in the domain of E and in the domain of fvars.
Lemma typing fv : ∀ E e T fvars,

E ` e : T | fvars→ ∀ x, x \in fv e→ x \in dom E ∧ x \in dom fvars.
By induction on E ` e : T | fvars.

If there is an evaluation context E such that t = E[x], then x must be free in t.
Lemma eval fv : ∀ t x,

evals t x→ x \in fv t.
By induction on evals t x.

193

Chapter 7. Formalization∗

7.6.3 Consistency of E and fvars

Every assumption in fvars must have a corresponding assumption in E.
Lemma fvars and env consistent : ∀ E e S fvars x u,

E ` e : S | fvars→ binds x u fvars→
∃ t, ∃ v, binds x (t ’ v) E ∧ typ equiv u v.

By induction on E ` e : S | fvars.

Every assumption in E must have a corresponding assumption in fvars.
Lemma env and fvars consistent : ∀ E e S fvars x t u,

E ` e : S | fvars→ binds x (t ’ u) E→ x \in fv e→
∃ v, binds x v fvars ∧ typ equiv u v.

By induction on E ` e :˜ S | fvars.

7.6.4 Weakening

Auxiliary lemma used to prove unused assumptions.
Lemma unused assumption env : ∀ E e T fvars x,

E ` e : T | fvars→ x \notin fv e→ dsub x E ` e : T | fvars.
By induction on E ` e : T | fvars.

Auxiliary lemma used to prove unused assumptions.
Lemma unused assumptions list : ∀ xs E e T fvars,

E ` e : T | fvars→ (∀ x, In x xs→ x \notin fv e)→
dsub list xs E ` e : T | fvars.

By induction on xs, using unused assumption env.

We can remove all assumptions in E about variables that are not free in e.
Lemma unused assumptions : ∀ xs E e T fvars,

E ` e : T | fvars→ (∀ x, x \in xs→ x \notin fv e)→
dsub vars xs E ` e : T | fvars.

Follows trivially from unused assumptions list.

We can append unused assumptions to the typing environment.
Lemma weakening 1 : ∀ E1 e T fvars,

E1 ` e : T | fvars→ ∀ E E2, env wf E kind star→
split context E as (E1 ; E2)→ E ` e : T | fvars.

By induction on E1 ` e : T | fvars.

We can prepend unused assumptions to the typing environment.
Lemma weakening 2 : ∀ E2 e T fvars,

E2 ` e : T | fvars→ ∀ E E1, env wf E kind star→
split context E as (E1 ; E2)→ E ` e : T | fvars.

Follows trivially from weakening 1 and split exch.

Every assumption in fvars must be used.
Lemma no fvars weakening : ∀ E e T fvars,

E ` e : T | fvars→ ∀ x, x \notin fv e→ x # fvars.
By induction on E ` e : T | fvars.

194

7.6. Properties of the typing relation

Since every assumption in fvars must be used, if x is not free in e then removing x from fvars has
no effect (since it wasn’t in fvars to start with).
Lemma unused assumption fvars : ∀ E e T fvars x,

E ` e : T | fvars→ x \notin fv e→ E ` e : T | dsub x fvars.
Follows trivially from no fvars weakening and dsub not in dom.

Combination of unused assumption env and unused assumption fvars.
Lemma unused assumption : ∀ E e T fvars x,

E ` e : T | fvars→ x \notin fv e→ dsub x E ` e : T | dsub x fvars.
Follows directly from unused assumption fvars and unused assumption env.

If e can be typed in environment E, we can split E into two environments E1 and E2 such that
every assumption about variables in e will be in E1; then e can also be typed in environment E1.
Lemma split env : ∀ E e t u fvars,

E ` e : t ’ u | fvars→
(∃ E1, ∃ E2,

split context E as (E1 ; E2) ∧
E1 ` e : t ’ u | fvars ∧
(∀ x, x \in dom E1→ x \in fv e)).

Follows from split dom set.

7.6.5 Exchange

We can replace both E and fvars by equivalent environments. This is a powerful lemma, because
the definition of equivalence for environment is very general (in particular, it allows to replace a
type by an equivalent type).
Lemma env equiv typing : ∀ E e T fvars,

E ` e : T | fvars→ ∀ E’ fvars’,
(E ∼= E’) kind star→ (fvars ∼= fvars’) kind U→
E’ ` e : T | fvars’.

By induction on E ` e : T | fvars. This proof is slightly tricky. The case of variables relies on
env equiv singleton. In the case for abstraction, we need env equiv rng, env equiv extend and
env equiv cons inv, and in the case for application we need env equiv split.

Change the order of the assumptions in the environment.
Lemma exchange : ∀ E1 E2 E3 e T fvars,

E1 & E2 & E3 ` e : T | fvars→
E1 & E3 & E2 ` e : T | fvars.

Follows trivially from env equiv typing and env equiv exch 3.

Replace an assumption in the environment by an equivalent one.
Lemma typ equiv env : ∀ E x s s’ e t fvars,

E & x ¬ s ` e : t | fvars→ typ equiv s s’→
E & x ¬ s’ ` e : t | fvars.

Follows trivially from env equiv typing and env equiv typ equiv.

195

Chapter 7. Formalization∗

7.6.6 Inversion lemmas

Inversion lemma for variables.
Lemma typing var inv : ∀ E x s fvars,

E ` trm fvar x : s | fvars→
∃ t, ∃ u, ∃ v,

typ equiv s (t ’ u) ∧
fvars = x ¬ v ∧
env wf E kind star ∧
binds x (t ’ u) E ∧
typ equiv u v.

We prove the more general lemma ∀ E e s fvars, E ` e : s | fvars→ ∀ x, e = trm fvar x→ ∃ t, ∃
u, ∃ v, typ equiv s (t ’ u) ∧ fvars = x ¬ v ∧ env wf E kind star ∧ binds x (t ’ u) E ∧ typ equiv u

v) by induction on E ` e : s | fvars. The case for variables is trivial, the cases for application and
abstraction can be dismissed, and the case for typing equiv is a straightforward application of the
induction hypothesis.

Inversion lemma for application.
Lemma typing app inv : ∀ E e1 e2 s fvars,

E ` trm app e1 e2 : s | fvars→
∃ E1, ∃ E2, ∃ fvars1, ∃ fvars2,
∃ a, ∃ b, ∃ u,

typ equiv s b ∧
E1 ` e1 : a 〈 u 〉 b | fvars1 ∧
E2 ` e2 : a | fvars2 ∧
split context E as (E1 ; E2) ∧ env wf E kind star ∧
split context fvars as (fvars1 ; fvars2) ∧ env wf fvars kind U.

Analogous to the proof of the inversion lemma for variables.

Inversion lemma for abstraction.
Lemma typing abs inv : ∀ E e s fvars’,

E ` trm abs e : s | fvars’→
∃ L, ∃ a, ∃ b,

typ equiv s (a 〈 rng fvars’ 〉 b) ∧
(∀ x fvars, x \notin L→ fvars’ = dsub x fvars→

(E & x ¬ a) ` e ˆ x : b | fvars).
Analogous to the proof of the inversion lemma for variables.

Tactic typing inversion can be used instead of a call to the standard Coq tactic inversion to
do inversion on the typing relation using the inversion lemmas we just proved.
Ltac typing inversion H :=

match type of H with

| ?E ` trm fvar ?x : ?T | ?fvars⇒
let t := fresh "t" in

let u := fresh "u" in

let v := fresh "v" in

elim3 (typing var inv H) t u v (?, (?, (?, (?, ?))))
| ?E ` trm app ?e1 ?e2 : ?T | ?fvars⇒

196

7.7. Soundness

let E1 := fresh "E1" in

let E2 := fresh "E2" in

let fvars1 := fresh "fvars1" in

let fvars2 := fresh "fvars2" in

let a := fresh "a" in

let b := fresh "b" in

let u := fresh "u" in

elim7 (typing app inv H) E1 E2 fvars1 fvars2 a b u (?, (?, (?, (?, (?, (?, ?))))))
| ?E ` trm abs ?e : ?T | ?fvars⇒

let L := fresh "L" in

let a := fresh "a" in

let b := fresh "b" in

elim3 (typing abs inv H) L a b (?, ?)
end.

7.7 Soundness

7.7.1 Progress

If e is locally-closed, then either it is an answer, it reduces to some other term e’, or there exists
an evaluation context E such that e = E[x] for some free variable x in e.
Lemma weak progress : ∀ e, term e→

answer e ∨
(∃ e’:trm, red e e’) ∨
(∃ x, x \in fv e ∧ evals e x).

By complete structural induction on term e (using subterm well founded).

If e can be typed in the empty environment, then either e is an answer or it reduces to some other
term e’.
Theorem progress : ∀ e T fvars,

empty ` e : T | fvars→ answer e ∨ ∃ e’, red e e’.
Follows from weak progress and typing fv.

7.7.2 Preservation

When a function is non-unique, then all of the elements in its closure must be non-unique. In other
words, all assumptions about the free variables of the function must be non-unique. That means
that we can type the function in an environment E’ (which is E stripped from all unnecessary
assumptions) so that we can duplicate E’ (split it into E’ twice). We will need this lemma in the

197

Chapter 7. Formalization∗

substitution lemma, when we have to substitute a function for a free variable in both terms of an
application (i.e., when we have to duplicate the function, or in other words, apply it twice).
Lemma shared function : ∀ E e a b u f fvars,

E ` trm abs e : a 〈 u f 〉 b | fvars→
typ equiv (rng fvars) NU→
∃ E’, ∃ E”,

E’ ` trm abs e : a 〈 u f 〉 b | fvars ∧
split context E as (E’ ; E”) ∧
split context E’ as (E’ ; E’) ∧
split context fvars as (fvars ; fvars).

Follows from split env, rng non unique and fvars and env consistent.

The substitution lemma is probably the most difficult lemma in the subject reduction proof. This
is not surprising, because when we substitute a term e2 for x in e1, e2 may be duplicated (when
there is more than one use for x in e1). That is not necessarily a problem, because when there is
more than one use of x in e1, then x must have a non-unique type and therefore it should be okay
to duplicate e2. However, for the result of the substitution to be well-typed, if e2 is duplicated, we
must also duplicate all the assumptions that are needed to type e2, and that is not possible in the
general case (we may need a unique assumption even when the result is non-unique). However, in
the specific case that e2 is an abstraction, we know that if e2 is non-unique, that all of the elements
in its closure must be non-unique, and so we can actually duplicate all assumptions required to
type e2 (this is what we proved in the previous lemma).
Lemma substitution : ∀ e1, term e1→
∀ E E1 E2 fvars fvars1 fvars2 x a b e2 T,

split context E as (E1 ; E2)→ env wf E kind star→
split context fvars as (fvars1 ; fvars2)→ env wf fvars kind U→
E1 & x ¬ (a 〈 rng fvars2 〉 b) ` e1 : T | fvars1 & x ¬ rng fvars2→
E2 ` trm abs e2 : a 〈 rng fvars2 〉 b | fvars2→
x \notin (dom E1 \u dom E2 \u dom fvars1)→
x \in fv e1→
E ` [x trm abs e2] e1 : T | fvars.

By induction on term e1. For the case of variables, we know that e1 must be x (it cannot be a
different variable because of the requirement that x must be free in e1), and the lemma follows
from weakening 2. In the case for an application e1 e1’, we do case analysis on x \in fv e1 and x

\in fv e2 (again, it cannot be in neither because of the same requirement). If it is e1 but not in e1’,
or in e1’ but not in e1, then it is a matter of reordering the environment so that the assumptions
about e2 are passed to the appropriate branch of the application. If it is in both, then we know that
e2 must be non-unique, and we can use shared function to distribute the assumptions to type e2

to both branches. Finally, the case for abstraction uses split dom inv, exchange and simplify rng

(and we make sure to include the assumption about the bound variable of the abstraction when
using the induction hypothesis).

Preservation for evaluation rule red value.
Lemma preservation value : ∀ L M N,

term (lt trm abs M in N)→
(∀ x : S.elt, x \notin L→ evals (N ˆ x) x)→

198

7.7. Soundness

∀ E T fvars,
(E ` lt trm abs M in N : T | fvars)→
(E ` N ˆˆ trm abs M : T | fvars).

Follows from substitution and eval fv.

Preservation for evaluation rule red commute.
Lemma preservation commute : ∀ L M A N,

term (trm app (lt M in A) N)→
(∀ x : S.elt, x \notin L→ answer (A ˆ x))→
∀ E T fvars,

(E ` trm app (lt M in A) N : T | fvars)→
(E ` lt M in trm app A N : T | fvars).

This and the next lemma are mainly a matter of re-ordering the assumptions in the environments
E and fvars in a useful way. Graphically, what we want is

(

E3`−:a0
u0−→(a

u−→T)|fvars3︷ ︸︸ ︷
(λ · A)

E4`−:a0|fvars4︷︸︸︷
M)︸ ︷︷ ︸

E1`−:a
u−→T|fvars1

E2`−:a|fvars2︷︸︸︷
N

︸ ︷︷ ︸
E`−:T|fvars

7→ (λ ·

E3,x:a0`−x :a
u−→T|fvars′′︷︸︸︷

A

E2`−:a|fvars2︷︸︸︷
N)︸ ︷︷ ︸

E′`−:a0

∨
x fvars0−−−−−−→T|

x fvars0

E4`−:a0|fvars4︷︸︸︷
M

︸ ︷︷ ︸
E`−:T|fvars

The ordering of E is straightforward:
E3 E4

E1 E2

E

⇒

E3 E2

E′ E4

E
but the reordering of fvars is slightly more involved. We have
fvars3 fvars4

fvars1 fvars2

fvars

⇒

fvars3 fvars2

fvars′ = xfvars0 fvars4

fvars

Here, the equality on fvars’ comes from the premise of the abstraction rule. In addition, we
can use split dom inv to get

fvars3 fvars2

fvars′ = xfvars0 fvars0x

fvars0

⇒

fvars3 fvars0x

fvars′′ fvars2

fvars0

Together with split empty inv, that is sufficient to prove the lemma.

Preservation for evaluation rule red assoc.
Lemma preservation assoc : ∀ L M A N,

term (lt lt M in A in N)→
(∀ x : S.elt, x \notin L→ answer (A ˆ x))→
(∀ x : S.elt, x \notin L→ evals (N ˆ x) x)→
∀ E T fvars,

(E ` lt lt M in A in N : T | fvars)→
(E ` lt M in (lt A in N) : T | fvars).

199

Chapter 7. Formalization∗

Like in the previous lemma, proving this lemma is mainly a matter of reordering the environments.
The following diagram shows roughly what we’re trying to achieve:

E1`−:a
u−→T|fvars1︷ ︸︸ ︷

(λ · N) (

E3`−:a0
u0−→a|fvars3︷ ︸︸ ︷

(λ · A)

E4`−:a0|fvars4︷︸︸︷
M)︸ ︷︷ ︸

E2`−:a|fvars2︸ ︷︷ ︸
E`−:T|fvars

7→ (λ ·

E1`−:a
u−→T|fvars1︷ ︸︸ ︷

(λ · N)

E3,x:a0`Ax :a|fvars′′︷︸︸︷
A)︸ ︷︷ ︸

E′`−:a0

∨
x fvars0−−−−−−→T|

x fvars0

E4`−:a0|fvars4︷︸︸︷
M

︸ ︷︷ ︸
E`−:T|fvars

Also, as for the last lemma, the reordering on E is straightforward,

E1

E3 E4

E2

E

⇒

E1 E3

E′ E4

E
but the ordering on fvars is again slightly more involved:

fvars1

fvars3 fvars4

fvars2

fvars

⇒

fvars1 fvars3

fvars′ = xfvars0 fvars4

fvars
fvars1 fvars3

fvars′ = xfvars0 fvars0x

fvars0

⇒ fvars1

fvars3 fvars0x

fvars′′

fvars0

Preservation for evaluation rule red closure app.
Lemma preservation closure app : ∀ E E’ M,

term (trm app E M)→
red E E’→
(∀ (E0 : env) (T : typ) (fvars : env),

E0 ` E : T | fvars→ E0 ` E’ : T | fvars)→
∀ E0 T fvars,

(E0 ` trm app E M : T | fvars)→
(E0 ` trm app E’ M : T | fvars).

Trivial.

Preservation for evaluation rule red closure let.
Lemma preservation closure let : ∀ L E E’ M,

term (lt M in E)→
(∀ x : S.elt, x \notin L→ red (E ˆ x) (E’ ˆ x))→
(∀ x : S.elt,

x \notin L→
∀ (E0 : env) (T : typ) (fvars : env),
E0 ` E ˆ x : T | fvars→ E0 ` E’ ˆ x : T | fvars)→

∀ E0 T fvars,
(E0 ` lt M in E : T | fvars)→
(E0 ` lt M in E’ : T | fvars).

200

7.7. Soundness

Trivial.

Preservation for evaluation rule red closure dem.
Lemma preservation closure dem : ∀ L E0 E0’ E1,

term (lt E0 in E1)→
red E0 E0’→
(∀ (E : env) (T : typ) (fvars : env),

E ` E0 : T | fvars→ E ` E0’ : T | fvars)→
(∀ x : S.elt, x \notin L→ evals (E1 ˆ x) x)→
∀ E T fvars,

(E ` lt E0 in E1 : T | fvars)→
(E ` lt E0’ in E1 : T | fvars).

Trivial.

If e has type T and e reduces to e’, then e’ will also have type T.
Theorem preservation : ∀ e e’, red e e’→
∀ E T fvars, E ` e : T | fvars→ E ` e’ : T | fvars.

Follows trivially by induction on E ` e : T from the preceding preservation lemmas.

201

Chapter 7. Formalization∗

202

Conclusions and Future Work

Through the development of a series of successively simpler type systems we have shown
how to define a uniqueness type system for the lambda calculus that is only a minor deviation
from more conventional Hindley/Milner based type systems, thus demonstrating how to make
uniqueness typing less unique. The advantages of such an endeavour should be self-evident: it
makes uniqueness typing more accessible to the functional programming community, facilitates
retrofitting uniqueness to existing compilers, and enables incorporating existing techniques for
modern type system extensions such as higher rank types or generalized algebraic data types into
a uniqueness type system.

In this final chapter we will review some of our design decisions in Section 8.1. Section 8.2 p. , p. 

discusses future work, and we conclude the thesis in Section 8.3. p. 

8.1 An exploration of the design space

We have presented three different uniqueness type systems in this thesis; add to that the original
Clean type system, the uniqueness logic proposed by Harrington and the uniqueness type/sharing
analysis system proposed by Hage et al. and it is clear that the design space for uniqueness type
systems is large. In this section, we will discuss some of the dimensions of this space, the possible
choices within those dimensions and why we prefer some options over others.

8.1.1 Boolean attributes versus inequality constraints

The choice between using boolean attributes as uniqueness attributes and using a separate con-
straint language is partly aesthetic. For example, when Hage et al. (2007, Section 3.3) argue
that uniqueness polymorphism and constraints are simultaneously useful, they give the following
example:

apply :: (tu u f−→ sv) ×−→ tw
u′f−→ sv, [w ≤ u, u′f ≤ u f]

apply f x = f x

(Although Clean too supports both polymorphism and constraints, this is not a valid type in Clean
due to the non-uniformity of the subtyping relation; instantiating t and s with Int would however
yield a valid type.) Using boolean attributes we can recode this type as

apply :: (tu u f−→ sv) ×−→ tu∨w
u f∨u′f−−−→ sv

Which type is to be favoured is a matter of taste, and in cases such as the one above where one
uniqueness attribute (u) constrains another (w) and both attributes are necessary there is no clear
advantage to either approach.

203

Chapter 8. Conclusions and Future Work

On the other hand, we have repeatedly argued in this thesis (Section 5.1.5, Section 6.3) thatp. , p. 

we should allow terms to be as polymorphic in their uniqueness as possible, and never assign a
unique type to a term when not strictly necessary. We can take advantage of that approach and
(without loss of generality) simplify the type of apply to

apply :: (tu u f−→ sv) ×−→ tu u f−→ sv

or even

apply :: (a
u f−→ b) ×−→ a

u f−→ b

by taking advantage of type variables of kind ?. Of course, we can adopt the same strategy (and
keep terms polymorphic in their uniqueness) in a system based on constraints, and consequently
simplify the type of apply the same way. However, when attributes are constrained by more
than one other attribute, this simplification is no longer possible in a system based on constraints.
For example, the constraint-based type

swap :: (au, bv)up ×−→ (bv, au)u′p , [up ≤ u, up ≤ v]
swap (x, y) = (y, x)

can be simplified to

swap :: (au, bv)u∨v ×−→ (bv, au)w

which we feel is simpler and preferable to the type with constraints. Note again that the simplifi-
cation takes advantage of the fact that for any derivation e : (au, bv)• there is also a derivation of
e : (au, bv)×, so that this is in fact a correct translation of the type with constraints (as discussed
in Section 5.1.5). This simplification relies essentially on using a boolean expression and isp. 

frequently useful. For example, functions with more than two arguments typically have types
such as

f :: tu ×−→ sv u f−→ rw
u′f−→ . . . , [u f ≤ u, u′f ≤ u, u′f ≤ v]

f x y z = ..

Using boolean attributes we can simplify this to

f :: tu ×−→ sv u−→ rw u∨v−−→ . . .

where we have eliminated u f and u′f (using constraints, we can eliminate u f but not u′f).
Moreover, boolean attributes offer a clear advantage over a constraint based approach in the

formalization and implementation of the type system. Although some of the technical difficulties
we mentioned in Chapter 4 can be resolved by recasting the type system using the qualified typesp. 

framework1, various difficulties remain—and of course, an implementation and formalization
would have to deal with qualified types; this is an especially valid concern in formal proofs.

Simplification of constraint sets (taking transitive closures and removing “redundant” con-
straints, exemplified in Section 4.1.4) are ad hoc techniques and must therefore be studied withp. 

care. For example, Jones (1995a, Section 6.3) notes that the restriction to unambiguous type
schemes may cause difficulties in the context of a system with subtyping. Whether or not this
is a problem in a uniqueness type system (with its very shallow subtyping relation) is an open
question.

1Qualified types are well-known for causing a loss of sharing (Jones, 1995a, Section 6.1.2, Unnecessary polymorphism;
see also a discussion of Haskell’s monomorphism restriction, for example in Hudak et al., 2007). A uniqueness type
system based on qualified types framework, which uses evidence parameters for subtyping constraints—such as the one
proposed by Hage et al. (2007)—must be careful that this does not cause unique objects to be shared during optimization.

204

8.1. An exploration of the design space

If it is, then a weakened ambiguity restriction needs to be used (Jones, 1995a, Section 5.8.3)
in which uniqueness variables are allowed to appear in constraints that do not appear in the type
proper. However, this will complicate the implementation of subsumption (Section 2.5.2). For p. 

example, consider checking whether

∀a u v w · au ×−→ aw, [u ≤ v, v ≤ w] � ∀a u w · au ×−→ aw, [u ≤ w]

(Example adopted from Fuh and Mishra, 1989.) As part of the subsumption check we will need to
check whether [u ≤ w] entails [u ≤ v, v ≤ w], where u and w are the skolemized versions of the
uniqueness attributes of the right-hand type scheme—for some variable v. It is non-obvious how
to define the necessary combination of the entailment check with unification.

By contrast, the boolean approach requires only the addition of two well-understood algo-
rithms, which can be implemented and tested or proven correct independently from the rest of
the compiler: boolean unification and boolean simplification. For example, the subsumption
check between two type schemes does not need to do anything special regarding the uniqueness
attributes when using boolean attributes (Section 5.2.4). p. 

Finally, although the approach based on constraints is relatively easy to use in compilers that
already support qualified types, retrofitting uniqueness typing to compilers that do not support
qualified types is much easier with the boolean attribute approach.

8.1.2 Subtyping

A uniqueness type system distinguishes between unique types and non-unique types. Duplication
of terms of a unique type is disallowed, so that the type system guarantees that there is only a
single reference to terms of a unique type. Although it seems safe to assume that a unique term is
non-unique—after all, we are simply forgetting about the uniqueness guarantee—we have seen
that we need to be careful with partial applications. There are various solutions to this problem:

1. In Clean (Section 3.2.4), the partial application of a function must be unique when any of p. 

the supplied arguments is unique. Moreover, unique functions are necessarily unique: the
subtyping relation is modified so we cannot regard unique functions as non-unique. This
non-uniformity of the subtyping relation has various disadvantages:

• Lack of principal types (Barendsen and Smetsers, 1996)

• Since functions cannot lose their uniqueness, type variables cannot either (since they
could be instantiated to function types). For example, the function dup must be
assigned the type

dup :: t× ×−→ (t×, t×)u

dup x = (x,x)

• Type inference becomes more difficult: when inferring a type for a variable marked
as shared (x⊗), if we do not yet know the type of the variable (the type is still a
meta-variable), we cannot execute the uniqueness correction until later when the meta-
variable is either instantiated by a type or is universally quantified in a generalization
step.

205

Chapter 8. Conclusions and Future Work

2. The essence of the problem is that the type of a function is not specific enough. Generally,
when we extract something from a container (such as a pair of elements), if we extract a
unique element from the container the container must be unique itself. Executing a function
may involve extracting unique elements from the closure of the function (a container)—but
the type of a function does not tell us the types of the elements in the closure of the function.
We therefore proposed a form of closure typing in Chapter 4, and added a second uniquenessp. 

attribute to the function arrow indicating whether the closure of the function contained any
unique elements. With this approach, it is sound to duplicate functions; the typing rules
will enforce that functions with unique elements in their closure are unique when applied.
For example, dup now has the type

dup :: tu ×−→
×

(t×, t×)v

This restores the uniformity of the subtyping relation at the cost of introducing an additional
attribute into the type language. This approach was adopted by Hage et al. (2007; 2008).

Although this approach seems to introduce rather complicated types (Section 4.3), wep. 

showed in Chapter 5 that this complexity can be reduced by using boolean attributes.p. 

3. We argued in Chapter 6 that we do not need uniqueness coercion at all if we are careful inp. 

the types we assign to primitive functions. For example, the function that clears all elements
of an array should get the type

resetArray :: Array•
×−→ Arrayu

rather than

resetArray :: Array•
×−→ Array•

If resetArray is assigned the second type, we will not be able to pass the result of
resetArray to a function that expects a non-unique argument (or indeed, duplicate the
array) without a uniqueness coercion. However, if we use the first type instead then we will
be able to treat the result of resetArray as unique or non-unique, depending on what
we need to do. We are taking advantage of polymorphism to encode subtyping.

A downside of this approach is that we need higher rank types (and thus perhaps a type
annotation, but see Section 8.2.5) if we are using one term at two different uniquenessp. 

levels. The example we considered in Section 6.3 wasp. 

f :: ∀v. (∀u.Arrayu) ×−→ Arrayv

f arr = if isEmpty arr⊗ then shrink arr� else grow arr�

Since we are using arr both as a unique array (in both branches) and as a non-unique
array (in the condition), arr needs to be polymorphic in its uniqueness in the absence of
an explicit coercion relation. However, we feel that this is a small price to pay.

4. We can avoid the partial application problem completely by disallowing unique elements
inside function closures. This is the approach taken in Mercury (Section 3.6.3) and in somep. 

of Wadler’s linear type systems (Section 3.3.2). In practical terms, it means that functionsp. 

can only have a single unique argument, which must be the last. Functions that require
more than one unique argument must be uncurried. For example,

closeFile :: (File•,World•)• → World•

206

8.1. An exploration of the design space

Similarly, the function that returns the first of two arguments gets the type

const :: ∀(t : T)(a : ?) · t× → a→ t×

const x y = x

Of course, the type of curry is also affected:

curry :: ∀(t : T)(u : U)(a b : ?) · ((t×, a)u → b)→ t× → a→ b
curry f = λx. λy. f (x, y)

Although this approach makes it possible to introduce a general coercion relation from
unique to non-unique terms, it is also of interest in the absence of such a coercion relation
as it allows to assume that every function is non-unique; hence we can interpret (→) as
(×−→) and we no longer need to add uniqueness attributes to arrows.

5. For completeness, we also mention the approach suggested by Harrington (2001), where the
result of a non-unique function must be non-unique. However, as we argued in Section 3.4, p. 

we consider this approach inadequate for maintaining purity.

8.1.3 Attributes as types

We have a choice between treating uniqueness attributes and “base types” as two different
syntactic categories, or treating both as types and distinguish based on a kind system. We argued
in Section 6.1 that treating uniqueness attributes as types (of kind U) has various advantages: we p. 

gain free additional expressive power in the definition of algebraic data types and type synonyms,
and the presentation of the type system as well as the presentation of types is simplified. For
example, the types we considered in the previous section

const :: t× → a→ t×

curry :: ((t×, a)u → b)→ t× → a→ b

make essential use of type variables over kind T , U and kind ? to be able to present this types in
a natural way. Note that kind annotations are not necessary: the kind inferencer will be able to
infer the kinds of type variables without user assistance.

Distinguishing base types and uniqueness attributes using a kind system also cleans up various
other aspects of the type system. For example, in type systems such as Clean there are three
different kinds of variables: type variables, uniqueness variables, and variables that denote
arguments to algebraic data types and correspond to a type with an attribute. Using a kind system,
we only need one notion of a type variable (of kind T , U or ?, respectively).

Moreover, the definition of a type scheme is clarified. For example, the usual kinding rule for
type schemes is (e.g., van Bakel et al., 1997)

Γ, a : κ ` σ : ∗ κ : �
UNIV

Γ ` ∀(a : κ) · σ : ∗

The universally quantified variable can range over types of an arbitrary kind κ (recall from
Section 2.3 that � is the universe of kinds), but the type that we are quantifying over is restricted p. 

to be of kind ? (value types). We use exactly the same rule in our system (Chapter 6). For example, p. 

the type of the identity function is

id :: ∀(a : ?),
(

a→ a
)×

207

Chapter 8. Conclusions and Future Work

(We are avoiding the shorthand notation a ×−→ a to facilitate the comparison, below.) In the
approach proposed by Hage et al. (2007) universal quantification effectively ranges over types of
kind T :

Γ, t : T ` σ : T
UNIVT

Γ ` ∀(t : T) · σ : T
Γ, u : U ` σ : T

UNIVU
Γ ` ∀(u : U) · σ : T

In this approach, the universal quantifier ranges over non-value types (types of kind other than ?).
This is slightly unconventional and has some disadvantages (Section 3.2.8): the top-level attributep. 

of a type cannot be universally quantified, and types become more difficult to interpret (we will
discuss a benefit of their approach in Section 8.2.3). For example, the type of id is now

id ::
(
∀(t : T)(u : U), tu → tu

)×
Hage et al. do not give an explicit kinding rule, but enforce the structure of universal quantification
syntactically. We feel that even if UNIVT is preferred over rule UNIV (Section 8.2.3), using a kind
system makes it possible to be more explicit about this decision and consider its consequences.
One minor disadvantage of using a kind system is that the metatheory needs to include a kinding
relation. However, for any serious type system this needs to be the case anyway.

Finally, we note that it is possible to reduce the number of kinds by interpreting T as U → ?

or U as T → ? (Section 6.1). This makes little difference from a theoretical point of view;p. 

whether or not it is more elegant we leave up to the reader.

8.1.4 Uniqueness propagation in constructors or destructors

One design decision that we have not emphasized in this thesis but deserves a discussion at this
point is whether constructors or destructors (or both) should propagate uniqueness. We discussed
uniqueness propagation in Section 3.2.3, where we mentioned the following Clean type for thep. 

first projection function for pairs:

fst :: (tu, sv)w → tu, [w ≤ u]

The constraint [w ≤ u] indicates that if we want to extract a unique element from the pair, the pair
itself must be unique. Hence, destructors (such as fst) in Clean enforce uniqueness propagation.

Constructors in Clean also enforce uniqueness propagation; the type of the pair constructor is

(,) :: tu → sv → (tu, sv)w, [w ≤ u, w ≤ v]

It is important that destructors enforce propagation because even though the constructor may
enforce propagation too, a unique pair may later become non-unique; hence, we must check
“again” when destructing the pair. Nevertheless, since Clean demands that containers containing
necessarily unique objects are necessarily unique themselves, it is also important that the con-
structor enforces uniqueness propagation: if a necessarily unique argument is given to the pair
constructor, then the pair itself becomes necessarily unique.

In a sense, Clean uses the constructor to guarantee uniqueness propagation for partial ap-
plications (which become necessarily unique when any of the supplied arguments are unique,
and are therefore guaranteed to remain unique when created), and the destructor for everything
else. Propagation for partial applications cannot be enforced during destruction (that is, when the
function is applied) since the function type does not tell us if there are any unique objects in the
function closure, unless we use a form of closure typing such as the one suggested in Chapters 4p. 

and 5 (see also point 2 in Section 8.1.2, above).p. , p. 

208

8.1. An exploration of the design space

If we use closure typing, it is possible to enforce uniqueness propagation in destructors only. In
fact, this may even be possible in Clean (where there is no closure typing) if we allow necessarily
unique objects to be wrapped inside containers that are “unique now but may become non-unique
later”, as long as the destructor for that container will make it impossible to extract the necessarily
unique object from a non-unique container.

If however we always interpret “unique” as “necessarily unique” and no longer support a
notion of “unique now, but may become non-unique later” (as we suggest in Chapter 6), it also p. 

becomes possible to enforce propagation in constructors only. For example, if the type of the pair
constructor is

(,) :: tu ×−→ sv u−→ (tu, sv)u∨v

then when we construct a pair with a unique component, the pair itself must be unique and will
therefore remain unique. That means that we no longer need to enforce uniqueness propagation in
the destructor, so that we can give the following type to the first projection function:

fst :: (tu, sv)w ×−→ tu

In theory this function can be used to extract a unique object from a non-unique pair but that is
okay since there are no non-unique pairs with unique components (due to the constructor).

The obvious question is whether it is better to enforce propagation in destructors or in
constructors. Enforcing propagation in destructors admits more programs: if we have a non-
unique pair with one unique component and one non-unique component, we will still be able to
extract the non-unique component from the pair. If the constructor enforces propagation, this will
not be possible since a pair with a unique component cannot become non-unique in that approach.

On the other hand, it is not clear how often it is useful to extract a non-unique component from
a non-unique container with some unique components. Enforcing propagation in the constructor
is more uniform since some attributes must be propagated in the constructor. In particular, the
attribute on arrows must be propagated in the function space constructor (rule for abstraction)
from the attributes in the function closure. (The observer attribute we discuss in Section 8.2.9 p. 

must also be propagated in constructors rather than destructors.)
Finally, if GADTs are supported (Section 5.3) the user can decide the type of the constructors p. 

of a data type so that it may be possible to support both: if the user specifies that the constructor
propagates uniqueness it is no longer necessary to do so in the destructor and vice versa.

In summary, it is always possible to enforce propagation in destructors only; even necessarily
unique objects may be wrapped in non-unique containers as it will be impossible to extract them.
When unique always means “necessarily unique”, it is also possible to enforce propagation only
in the constructors. Enforcing propagation in both constructors and destructors is not necessary.

8.1.5 Number of aspects considered

In uniqueness typing, we consider only one usage aspect of a term: is there one or more than one
reference to a term? Various authors have considered systems that consider more than one aspect;
for example, the single-threaded polymorphic lambda calculus (Section 3.5) uses three: read-only, p. 

free, and single-threaded. When multiple aspects are subsequently combined into one “abstract
use”, the definition of the type system becomes rather opaque. For example, the definition of the
various operators in the STPLC (Figure 3.7) is far from obvious, and it is hard to tell how the p. 

STPLC differs from similar type systems such as the system proposed by Odersky (Section 3.5.5). p. 

209

Chapter 8. Conclusions and Future Work

Another puzzling feature of the STPLC is that it allows for arbitrary disjunctions and conjunc-
tions between these aspects, resulting in a lattice of 20 different properties whose inclusions are
not self-evident (Figure 3.6). It is not clear whether such generality gives any additional expressivep. 

power over the simple product of the three aspects (i.e., 8 different properties: RSF, RSF, RSF,
RSF, RSF, RSF, RSF and RSF), especially when aspect polymorphism is also supported.

Although considering more aspects can make the system more precise, it is important that
the type system does not become too complex (for example, consider the folda example in
Section 3.5.4). It therefore seems important that the individual aspects can be considered andp. 

understood independently. Moreover, twenty years of experience with uniqueness typing seems to
suggest that considering only uniqueness (the multi-threaded aspect in the STPLC) is sufficient
(but see Section 8.2.9).p. 

8.2 Future work

The design of a type system is a major effort and we have only focused on certain aspects in this
thesis. There is therefore plenty of scope for future work; we will identify the most important in
this section.

8.2.1 Simplifying the type language

Although the typing rules only make use of disjunction between boolean attributes, unification
may introduce conjunctions and negations. In this section we discuss when this arises and whether
it can be avoided. Consider

use2 :: tu ×−→ sv u−→ a u∨v−−→ Int×

req_notu_fn :: (a ×−→ b) ×−→ Int×

The definitions of these functions is not important; use2 is a function of more than two arguments
so that use2 x y must be unique if either x or y is, and req notu fn is a higher order function
that requires a non-unique function as argument (perhaps because that function is applied more

than once). Since u ∨ v
?≈ × only if u ≈ × and v ≈ ×, it follows that if we pass use2 x y as

argument to req notu fn, both x and y must be non-unique:

bunif1 :: t× ×−→ s× ×−→ Int×

bunif1 x y = req_notu_fn (use2 x y)

However, suppose we have a higher order function that demands to be passed a unique function:

req_uniq_fn :: (a •−→ b) ×−→ Int×

The rule for abstraction takes advantage of the fact that the typing rules never require a unique
function (Section 5.1.5), and indeed there is never a need to demand a unique function. However,p. 

a function such as req uniq fn can easily be defined by providing a type annotation. We
mentioned before that use2 x y is unique if either x or y is; if we require this partial application
to be unique, then at least one of x or y must be unique:

bunif2 :: t¬u∨v ×−→ su ¬u∨v−−−→ Int×

bunif2 x y = req_uniq_fn (use2 x y)

bunif3 :: tu ×−→ s¬u∨v u−→ Int×

bunif3 x y = req_uniq_fn (use2 y x)

210

8.2. Future work

The strange attribute ¬u ∨ v comes from the most general unifier[
u 7→ u
v 7→ ¬u ∨ v

]

of the unification equation u ∨ v
?≈ •, and encodes exactly the requirement that at least one

of x and y must be unique. This shows that the boolean attribute approach can express much
more complex relations between uniqueness attributes than the constraints approach (using only
implications between attributes).

The important question is whether this additional expressive power is useful. The example
above is contrived because it unnecessarily requires a function to be unique. Nevertheless, we
have seen in Section 6.4.3 that it is sometimes useful to express implications using a conjunction p. 

rather than a disjunction. An interesting open question is under which conditions (if at all) we can
simplify the type language to support disjunction only (disallowing conjunction and negation).

As well as simplifying the type language, this has an important computational advantage: sim-
plification of general boolean expressions is expensive (exponential complexity). Simplification
of boolean expressions that use only disjunctions, on the other hand, is simple operation that can
be performed in linear time.

8.2.2 Simplifying types

As well as simplifying the type language, it may be possible to further simplify types; unfortunately,
boolean simplification of individual attributes does not appear to be sufficient. For example,
suppose that strings have a polymorphic uniqueness1:

"a" :: Stringu

If we pass a string to the function use2 from the previous section, we get

need_simpl :: a u∨v−−→ Int×

need_simpl = use2 "a" "b"

Although the expression u ∨ v cannot be further simplified, the type of this function can be
simplified to

need_simpl :: a u−→ Int×

Indeed, when a user provides this type annotation the type checker will accept this type as valid
since the subsumption check

∀a u v · a u∨v−−→ Int× � ∀a u · a u−→ Int×

succeeds. In fact, the subsumption holds in both directions:

∀a u · a u−→ Int× � ∀a u v · a u∨v−−→ Int×

It is clear therefore that these two types are isomorphic. However, the individual uniqueness
attributes cannot be further simplified when considered independently but only when considered
as part of the larger type, and it is not obvious how to automate this simplification.

1Assuming that every occurrence of a string denotes a different instances of that string, of course.

211

Chapter 8. Conclusions and Future Work

This problem looks fairly innocuous in the above examples, but it can get sufficiently bad to
become a real problem. For example, we discussed the function swap in Section 6.4.3:

swap :: (tu, sv)u∨v∨w ×−→ (sv, tu)w′

swap p = (p�.field2, p�.field1)

Unfortunately, the inferred type for swap is

swap :: (s(¬v∧u)∨(¬v∧w)∨(u1∧u)∨(u1∧w), tu)u∨w ×−→ (tu, s(¬v∧u)∨(¬v∧w)∨(u1∧u)∨(u1∧w))v1

As it turns out these two types are isomorphic, but this is non-obvious to say the least (even the
type checker requires a long time to verify it) and it is clear that further simplification of types is a
necessity—even though the attribute on s has been minimized.

8.2.3 Improving Impredicativity

At first sight, it may seem that the two types

∀(a : ?) · a ×−→ a

and
∀(t : T)(u : U) · tu ×−→ tu

are interchangeable in all contexts. Unfortunately, that is not the case. A type variable a of
kind ? can be instantiated with a polymorphic type (impredicative instantiation); impredicative
instantiation is not possible if we replace a by tu for two type variables of kind T and U .

Consider the following example using HMF (Section 2.5.4), Morrow’s original type system.p. 

Suppose we define a function that wraps an object in a record:

wrap :: ∀(a : ?) · a→ {Ll : aM}
wrap x = {l = x}

The application (wrap id) has an ambiguous type (Section 2.4.4, Section 2.5.4); by default,p. , p. 

Morrow will never choose impredicative instantiation and assign the type

wrap id :: ∀a · {Ll : a→ aM}

To override this behaviour, we can use a rigid type annotation (Leijen, 2008a) to indicate that we
require impredicative instantiation:

wrap (id :: ∀a · a→ a) :: {Ll : ∀a · a→ aM}

Alas, this does not transfer easily to our version of Morrow with support for uniqueness. In our
system, wrap has the type

wrap :: ∀t u v · tu ×−→ {Ll : tuM}v

Like in HMF, the type of (wrap id) is

wrap id :: ∀t u v · {Ll : tu ×−→ tuM}v

Unlike in HMF however we cannot use the rigid type annotation to force impredicative instantia-
tion. If we try

wrap (id :: ∀t u · tu ×−→ tu)

Morrow will give the following error message:

212

8.2. Future work

Types do not match

context : wrap (id :: ∀t u · tu ×−→ tu)

term : (id :: ∀t u · tu ×−→ tu)

inferred type : ∀s v.sv ×−→ sv

does not match: tu

which is exactly the problem we alluded to above: a type tu for two type variables of kind T and
U cannot be instantiated with a polymorphic type.

If this example seems somewhat arcane, we briefly mentioned in Section 6.4.2 that the fields p. 

of records are limited to have monomorphic types. This is due to the same problem. Consider the
type of record field selection:

(_.l) :: ∀r t u v · r \ l ⇒ {Ll : tu | rM}u∨v ×−→ tu

Notice that the type of the field must have type tu; hence, if we create a record with a polymorphic
field1

rec :: ∀u.{Ll : ∀t v.tv ×−→ tvM}u

rec = {l = id :: ∀t v.tv ×−→ tv}

and try to select that field

rec.l

we get a similar error message:2

Types do not match

context : rec.l

term : rec

inferred type : {Ll : ∀s u1.su1 ×−→ su1M}w

does not match: {Ll : tu | rM}u∨v

This is unfortunate, because restricting records to monomorphic fields rather limits their usefulness.
There is no trivial solution to this problem. Although the type of wrap could conceivably be

changed to

wrap :: ∀a v · a ×−→ {Ll : aM}v

this solution it not possible for field selection, because we need to know what the attribute on
the type is to be able to express uniqueness propagation (the requirement that the record must be
unique if we are extracting a unique field).

One solution is to adopt the approach suggested by Hage, Holdermans, and Middelkoop
(2007) and change the universal quantifier to quantify over types of kind T instead. We discussed
some of the disadvantages of this approach in Section 8.1.3, but an advantage of their approach is p. 

that the problems discussed in this section disappear since a type tu now can be instantiated with
a polymorphic type, which will have the shape (∀ . . .)u.

One potential alternative is to promote the ceiling de operator from Section 4.2.4 from the p. 

1The reason we can even create this record is that the internal type of record creation quantifies over a type of kind ?,
like the modified type of wrap shown later in the section.

2Note that Morrow’s type system is invariant, so that we cannot instantiate type schemes under type constructors. In a
covariant type system we could type rec.l but this circumvents the problem by avoiding impredicative instantiation—it
does not solve the more general problem.

213

Chapter 8. Conclusions and Future Work

meta-level to the object level as a type constructor of kind

de : ?→ U

For example, the function const might get the type

const :: ∀a b · a ×−→ b
dae−−→ a

const x y = x

instead of

const :: ∀t u b · tu ×−→ b u−→ tu

const x y = x

Similarly, the type of field selection would become

(_.l) :: ∀r a v · r \ l ⇒ {Ll : a | rM}dae∨v ×−→ a

As mentioned in Section 4.2.4, we have to be careful defining this operator. If we allow for
arbitrary boolean expressions as attributes, then we might define it as

d∀~a · ρνe =

ν if fv(ν) ∪~a = ∅

• otherwise

The introduction of this operator might streamline other aspects of the type system as we must
frequently be careful with terms with a polymorphic uniqueness (for example, see Section 5.2.3):p. 

introducing an object-level ceiling operator might mean that we have to worry about this problem
in fewer places (of course, this is exactly the problem that the approach by Hage et al. avoids, by
not allowing universal quantification over the top-most attribute of a type).

However, it seems that if we pursue this approach to its logical conclusion we will also need
various other object-level operators. For example, we might need the “dual” operator

b·c : ?→ T

so that we can write

dup :: ∀a u · a ×−→ (bac×, bac×)u

Depending on the approach we take to subtyping, we must be careful with the definition of this
operator. In particular, if we do not use subtyping at all we should be able to instantiate this type
of dup to

dup :: t× ×−→ (t×, t×)u

or

dup :: (∀u · tu) ×−→ (t×, t×)u

but not to

dup :: t• ×−→ (t×, t×)u

That means that bt•c must be undefined (just like the uniqueness correction xy is undefined for
some types).

We may need yet another operator to be able to define the to operator discussed in Sec-
tion 6.4.2, which was defined so thatp. 

214

8.2. Future work

to u a Lx : tv, y : sw | rM

evaluates to
Lx : tv∧u → a, y : sw∧u → a | rM

If we wanted to support polymorphic fields, this operator must be modified to be defined over
general (possibly polymorphic) types

to u a Lx : σ, y : σ′ | rM

The example we considered was

select :: 〈Ll : tu∧vM〉v ×−→ tu∧v

select v = case v {l = λx → x}

However we modify the type of select to support polymorphic fields, we should be able to
instantiate the result type to

select :: 〈Ll : ∀u · tuM〉• ×−→ t•

but (importantly) not to

select :: 〈Ll : ∀u · tuM〉× ×−→ t•

The combination of bc and de does not appear to be sufficient to achieve this. On the other hand,
the to operator is rather unusual: we have only found one use for using conjunctive attributes on
the fields of a record (rather than a disjunctive attribute on the record itself). Giving up first-class
pattern matching to remove the need for to may be a small price to pay for a simpler type system.
When pattern matching becomes a language construct, we can give select the same type as for
field selection, above:

select :: {Ll : aM}dae∨v ×−→ a

or even

select :: {Ll : aM}dae ×−→ a

An in-depth examination of which of these operators are essential and of their properties is future
work; in particular, their interaction with the existence of principal types and the decidability of
type inference must be carefully studied.

8.2.4 Syntactic sugar

When we compared uniqueness typing to the monadic approach to side effects in Section 2.8.7, we p. 

mentioned that the most important objection to uniqueness typing is that programs (in particular,
types) become more cluttered. We feel that some of the techniques we propose in this thesis
reduce this problem to some extent:

• The use of type variables of kind ? allows us to write

id :: a ×−→ a

instead of

id :: tu ×−→ tu

215

Chapter 8. Conclusions and Future Work

Unfortunately, the fact that we must often know the attribute on a type limits the applicability
of this technique. For example, we must write

const :: tu ×−→ b u−→ tu

Unless, that is, we adopt the approach outlined in 8.2.3 so that we can writep. 

const :: a ×−→ b
dae−−→ a

• Our suggestion of keeping terms polymorphic in their uniqueness as long as possible (rather
than making them unique) allows us to write

apply :: (a
u f−→ b) ×−→ a

u f−→ b

instead of

apply :: (tu u f−→ sv) ×−→ tw
u′f−→ sv, [w ≤ u, u′f ≤ u f]

• As mentioned above, we feel that the approach using boolean attributes yields more readable
types than the approach using uniqueness constraints; we believe that

swap :: (tu, sv)u∨v ×−→ (sv, tu)w

is more readable than

swap :: (tu, sv)up ×−→ (sv, tu)u′p , [up ≤ u, up ≤ v]

• Support for synonyms for types of kind ? can also be used to lighten the burden. For
example, we can define a Unit type as a non-unique empty record:

type Unit = {LM}×

Likewise, we might define synonyms for non-unique versions of often used data structures
such as lists:

type List t = [t×]×

Such synonyms can then be used to simplify function signatures. Note that this List
synonym has kind T → ?. Clean only supports synonyms of kind ?→ . . .→ ?→ T ; the
additional expressive power we offer follows very naturally from the “attributes are types”
approach (Section 6.1).p. 

Even with these improvements the uniqueness type system still permeates the language, affecting
nearly every type: even the identity function has a different type than in the standard Hindley/Mil-
ner style type systems. Syntactic conventions can be used to alleviate the problem, but we must be
careful that syntactic sugar does not become syntactic heroin (Bates, 2005). Although judicious
use of syntactic sugar may hide the uniqueness properties of a function, one may wonder whether
that is desirable: after all, the uniqueness properties are important. Worse, types with some of
their uniqueness properties hidden (for example, when some inequality constraints are “implied”
and therefore not shown) may confuse the non-expert user.

With that proviso, however, some syntactic sugar is undoubtedly useful. Clean for example
allows type annotations without inequality constraints, which are inferred. Unfortunately, in a

216

8.2. Future work

qualified types framework this is difficult to formalize since there are no “constraint variables” (we
discussed a possible type system with constraints that did use constraint variables in Chapter 4).p. 

The situation improves with a type system based on boolean expressions. The key ingredient
is the use of partial type annotations by means of the “some” binder (Leijen, 2008a; Rémy, 2005),
denoted by ∃∃. For example, we can write the type of the identity function as

id :: ∃∃(u : U) · ∀(a : ?) · a u−→ a

These binders are read as “for some u, and for all a”. Note that the ∃∃ binder is not an existential
binder: we are not trying to hide the attribute on the arrow, but merely want to express that there
is “some” attribute without having to be specific about what it is. The syntactic sugar we can now
add is that we allow users to omit attributes from types; missing attributes will be interpreted as
fresh “some”-bound variables. Thus, the annotation

id :: a → a

is equivalent to the previous annotation with the explicit ∃∃ binder. If we additionally introduce an
object-level ceiling operator, this syntactic sugar will allow us to write many types without any
uniqueness annotations. For instance, we could write

const :: a→ b→ a

which would be syntactic sugar for the partial type annotation

const :: ∃∃ u v · a u−→ b v−→ a

and can be completed by the type inferencer to

const :: a ×−→ b
dae−−→ a

As an aside, note that the annotation

const :: a → b → a

is allowed in Clean, too (and frequently used), but denotes a very different type: Clean does
not have a special syntax to denote “non-unique”; instead, this is denoted by the absence of an
attribute. Hence, this type of const denotes the type

const :: a× ×−→ b× ×−→ a×

Other useful syntactic sugar we might introduce is to allow the use of a type σ of kind ? where
a type of kind U is expected and treat that use as an implicit application of the ceiling operator,
dσe; this allows us to write

const :: a ×−→ b a−→ a

to denote the same type as the one above. Similarly, we might allow the use of a type σ of kind
? where a type of kind T is expected and treat that use as an implicit application of the floor
operator, bσc; this allows us to write

dup :: a ×−→ (a×, a×)u

Together with the convention that missing attributes are interpreted as fresh type variables bound
by an implicit “some” quantifier, this allows us to write down those aspects of types that are
interesting and leave out the rest:

const :: a→ b a−→ a
dup :: a→ (a×, a×)

217

Chapter 8. Conclusions and Future Work

We must remind the reader that the definition of these two operators is not without difficulty and
should be studied before more pragmatic matters are dealt with. Moreover, these conventions will
complicate kind inference: for instance, it is not clear whether

dup :: a→ (a×, a×)

means

dup :: ∃∃ v w · ∀(a : ?) · a v−→ (bac×, bac×)w

or

dup :: ∃∃ u v w · ∀(a : T) · au v−→ (a×, a×)w

although in light of Section 8.2.3 it should be clear that the first interpretation is to be preferred.p. 

8.2.5 Integration in Clean

We have proposed various changes to the Clean type system in this thesis. Some of these changes
will not cause many problems with backwards compatibility, whereas others are more difficult
to integrate into Clean without sacrificing the large “legacy” code base. We will consider each
change in turn:

Boolean attributes instead of inequality constraints When no type annotation is provided for
an expression, this will make no difference. When a type annotation with inequality
constraints is given, however, we can easily interpret the inequality constraints as syntactic
sugar for boolean expressions (Section 5.1.5).p. 

No subtyping Clean distinguishes between objects that are non-unique, unique “now” but that
may become non-unique later, and “necessarily” unique objects that are unique now and
must remain unique (Section 3.2, especially 3.2.4). We have proposed to distinguish onlyp. , p. 

between terms that are non-unique and terms that are necessarily unique, but to leave
terms polymorphic in their uniqueness whenever possible. This is a more radical departure
from the original type system, and consequently more difficult to integrate in a backwards
compatible manner. Some of the difficulties can be resolved by interpreting type annotations
differently. For example, one might treat a unique (but not necessarily unique!) type in the
codomain of a function as it if were polymorphic, so that we interpret

resetArray :: Array•
×−→ Array•

as

resetArray :: Array•
×−→ Arrayu

Not all problems can be resolved in this fashion since there are types that are valid in Clean
but not valid in our system, such as

dupArray :: {Char}• → ({Char}×, {Char}×)

dupArray arr = (arr, arr)

Fortunately such types are rare, especially since the subtyping relation is non-uniform so
that type variables cannot loose their uniqueness. For instance, the following type is invalid
in both Clean and in our proposal:

218

8.2. Future work

// Illegal example

dupAny :: t• → (t×, t×)

dupAny x = (x, x)

Attributes as types We have proposed to treat attributes as types and use a kind system to
distinguish between the two. Although this will of course require re-engineering (indeed,
perhaps simplifying) parts of the Clean type checker, we do not foresee any problems with
backwards compatibility due to this modification. (Of course, programs that take advantage
of the additional expressive power provided by treating attributes as types of kind U will
not be compatible with the original type system.)

Higher rank types Support for higher rank types will obviously not cause any difficulties with
backwards compatibility. However, we sometimes require higher rank types if a term is
used at two different uniqueness levels (Section 6.3). For example: p. 

f :: ∀v. (∀u.Arrayu) ×−→ Arrayv

f arr = if isEmpty arr⊗ then shrink arr� else grow arr�

If no type annotation was given in the original code, backwards compatibility depends
on the higher rank type system that is adopted. If this is PTI (Section 2.5.3) or HMF p. 

(Section 2.5.4) then a type annotation must be given for this definition, as higher rank types p. 

will never be inferred. However, since type inference for rank-2 types is decidable (Kfoury
and Wells, 1994; Lushman, 2007) (albeit at the cost of losing principal types), it may be
possible to modify the type system so that the type of f , above, can be inferred, in which
case backwards compatibility can be retained.

However, it may be that the user has provided a type annotation such as

f :: Array•
×−→ Arrayv

or probably even

f :: Array•
×−→ Array•

This is a valid annotation in Clean, since Array• is a subtype of Array×. It is not a valid
annotation in our system. In this case, it may be necessary to ignore a given type annotation
and infer the correct type instead. This is not an elegant solution, but it may help to integrate
a new type system without sacrificing legacy code.

Apart from the changes to the core type system, there are also some areas of the type system
that we have ignored completely in this thesis. The two most important ones are type classes and
polytypic programming. We will briefly consider these in turn.

Type classes The difficulty with type classes is that uniqueness propagation must somehow be
guessed from the type of the class members (rather than from their definition). The example
that is given in (Plasmeijer and van Eekelen, 2002, Section 9.5, Combining uniqueness

typing and overloading) is the class

class Functor f where

fmap :: (tu → sv)→ f tu → f sv

219

Chapter 8. Conclusions and Future Work

(We have modified the notation somewhat to be in line with the notation used elsewhere
in this thesis.) The type that is specified for fmap is underspecified (even ill-kinded): the
attribute on f is missing. The problem is that this attribute depends on the particular f . For
example, the Functor instance for lists has type

fmap[] :: (tu → sv)→ [tu]w → [sv]w
′
, [w ≤ u, w′ ≤ v]

But if we define a data type T as follows:

:: T a = MkT .(Int → a)

then the corresponding Functor instance has type

fmapT :: (tu u f−→ sv)→ Tw tu → Tw′ sv, [w′ ≤ u f , w′ ≤ w]

In the first case, the arguments tu and sv that are supplied to f describe the type of
the elements of the list and thus the uniqueness of f is constrained by u and v (recall
from Section 8.1.4 that Clean enforces uniqueness propagation in both constructors andp. 

destructors). In the second example tu and sv do not describe the type of the elements in
the container f but rather give the codomain of the function that is stored in a T object. In
this case, the type of f is constrained by the uniqueness of that function1 but is not at all
related to tu or sv.

This is a complicated part of uniqueness typing, and a full description is even “far beyond the
scope of the reference manual” (Plasmeijer and van Eekelen, 2002, Section 9.6)—though
one might wonder about the right scope of that description, if not the reference manual!
The bad news is that most of this complexity will remain even after the simplifications we
propose. The good news is that some of the complexity will disappear: since we suggest to
abandon subtyping, covariance/contravariance behaviour of constructors no longer needs to
be taken into account.

Polytypic programming The current implementation of polytypic programming in Clean (Ali-
marine, 2005) has rudimentary support for uniqueness typing. However, since polytypic
programming relies essentially on higher rank types (Hinze, 2000, especially Section 3.1.3,
Specializing generic values, encodeFMapForm example on page 62) but Clean does not
currently support higher rank types, full support for uniqueness has so far been impossible.
Indeed, this was the original motivation for our work. However, even with a uniqueness
system that supports higher rank types support for polytypic programming is not trivial.
For example, the type of a polytypic function in n arguments is usually defined to be a
type-level function of kind ?→ ?→ ?︸ ︷︷ ︸

n

→ ? (Verbruggen et al., 2008). It is not obvious

how this kind should be modified in a uniqueness type system, but at least the kind system
we propose in this thesis will make it easier to discuss the possibilities. Other difficulties
include attribution during type specialization and the uniqueness properties of the bimaps.
An in-depth study of this problem is future work.

1The uniqueness of the function stored inside the T object must be the same as the uniqueness of the T object itself
(as indicated by the dot; Section 5.3). The function in the new T object is the composition of the original function (with
uniqueness w) and the argument to fmap (with uniqueness u f). If either of these two functions is unique, the new function
and therefore the new T object must be unique. Hence the constraint [w′ ≤ u f , w′ ≤ w].

220

8.2. Future work

8.2.6 Embedding affine logic

In both affine logic and uniqueness typing, terms of a unique (affine) type cannot be duplicated.
That is, in both systems we want to reject the function

dup_unique :: t• ×−→ (t•, t•)u

dup_unique x = (x, x)

However, uniqueness typing and affine logic are “dual” in their subtyping relation. In uniqueness
typing, the following term is type-correct:

coerce_unique :: t• ×−→ t×

coerce_unique x = x

(provided we deal with partial application); in affine logic, coerce unique is ill-typed but

coerce_affine :: t× ×−→ t•

coerce_affine x = x

is correct. We argued in Section 8.1.2 that we do not need to include a specific subtyping relation p. 

in the type system as long as we are careful in the types we assign to primitive functions. It should
be possible to use a similar encoding for affine logic. For instance, suppose we can buy a pizza
with one bank note. This is encoded in affine logic as

buy_pizza :: Note•
×−→ Pizza•

We should also be able to buy a pizza given an infinite supply of bank notes:

bank :: Note×

To be able to typecheck the application (buy pizza bank), we need the coercion from a
non-affine type to a affine type. In the absence of such a coercion we can still type the application
if we give buy pizza a polymorphic type:

buy_pizza :: Noteu ×−→ Pizza•

The duality between affine logic and uniqueness is again evident from this example: in uniqueness
typing, we needed make to the codomain of functions (such as resetArray) more polymorphic
while in affine logic we needed to make the domain of functions more polymorphic.

This has an intuitive semantic explanation too: when a function returns a unique object, it
returns an object with a guarantee that that object is not shared. The function does not care
whether or not this guarantee is useful, so we can modify the function to return a term with a
polymorphic uniqueness instead. When a function requires a unique object as input, however, it
relies on that guarantee and so it really requires a unique object. In affine logic the situation is
reversed. When a function demands a bounded resource (a single bank note) it does not matter
if it passed an unbounded resource instead (the whole bank), and so we can make the domain
of the function polymorphic in its affinity. However, when it returns a bounded resource, then
that resource cannot be interpreted as an unbounded resource and therefore it really must return a
affine result.

It thus seems that we can unify affine logic and uniqueness typing as a single language, simply
by taking advantage of polymorphism. A more formal investigation into an embedding from both
uniqueness typing with explicit coercions and affine logic with explicit coercions into a single
language without coercions could therefore be very interesting.

221

Chapter 8. Conclusions and Future Work

8.2.7 Formalization

Although we have given a formal specification of the core type system and the associated formal
soundness proof in Chapter 7, a full formalization of the type system should be based on anp. 

extension of the core logic to a higher rank type system such as PTI or HMF, and should include
proofs of principal types, correctness of type inference (decidability, soundness, completeness),
conservativity (with respect to the underlying type system without support for uniqueness), etc.

Fully formal (where we use “formal” strictly in the sense of “machine verified”) proofs of
these properties are very labour intensive; proof engineering is an area of computer science that
only recently started to mature. The work by Aydemir et al. (2008) has been extremely helpful in
the development of our proofs, and it is only through the development of proof techniques and
proof libraries that full formal proofs of non-trivial type systems become feasible.

A fully formal proof does give strong guarantees: one has only to trust the definition of the
type system and the statement of the theorems one is interested in and the type checker will
verify that the proof is correct. Moreover, a proof in a constructive logic such as Coq has the
additional benefit that a formal definition of a type inference algorithm (say) can be extracted
automatically to compilable code (for example, in Haskell) so that there is no gap between the
formalization and the implementation.1 Moreover, although constructive logic did force us to
be very precise about some aspects of the proof (for example, we had to be very precise about
the nature of a typing environment, rather than simply treating it as a set) we certainly did not
feel “completely paralysed” with Boolos (Section 2.1.1). In fact, we felt very comfortable withp. 

constructive logic—it matches a computer scientist’s way of thinking!
Although we could potentially have given informal proofs of these other properties, we are

not convinced that an informal (“pencil-and-paper”) proof provides much more insight into a
type system than an implementation. In both cases one must consider all corner cases, and in
both cases one is likely to make assumptions that will later turn out to be incorrect—during
the development of the formal proof of soundness it happened on numerous occasions that we
temporarily assumed an “obvious” lemma so that we could complete another theorem, only to
realize later that the assumed was in fact not true. In a pencil-and-paper proof those lemmas would
probably not be considered at all. Moreover, the implementation has the important advantage
over the pencil-and-paper proof that it is easier to experiment with; one is therefore more likely
to discover errors in an implementation than to discover errors in an informal proof. In addition,
when the type system evolves (as it inevitably will), bugs in an implementation are likely to be
discovered, but bugs in an informal proof are likely to be missed unless one is extremely careful
when rechecking each and every lemma. In a fully formal proof on the other hand the proof
checker will automatically verify that our lemmas still hold when we make a modification, and
will tell us exactly which lemmas need to be updated.

Finally, although it is not at all obvious that soundness holds for a uniqueness type system (after
all, it is very sensitive to loss of sharing), other properties such as principal types and decidability
of type inference are mostly inherited from the base system. This is true in particular for the
type system with boolean attributes instead of inequality constraints: since boolean unification
is unitary (we proved this in Section 2.2.4), unification with boolean attributes is guaranteed top. 

return most general unifiers, a key ingredient when inferring principal types.

1One may object that a formal definition of type inference is unlikely to be efficient, and that may be true. On the
other hand, one could argue that a more efficient inference algorithm should also be proven correct formally.

222

8.2. Future work

8.2.8 Purity

We discussed the definition of “purity” and related properties such as referential transparency
and definiteness in Section 2.8.4, and mentioned that a more formal treatment of purity and p. 

substructural logic (in particular, uniqueness typing) is necessary. In this section we briefly discuss
two ways in which we might approach this problem.

One option is to adopt the method described by Guzmán and Hudak (1990), who start with a
pure lambda calculus with an associated non-deterministic (graph-rewriting) operational semantics
and prove that the order of evaluation is irrelevant in this language (they prove that the language
is confluent). They then show that confluence is lost when side effects are added: once side
effects are added to the language, we can write programs for which one order of evaluation gives
a different result than another. Finally, they show that when their type system (the single-threaded
polymorphic lambda calculus) is imposed on top of this language, the non-confluent programs are
considered ill-typed so confluence is recovered for well-typed programs.

As we have seen in Section 2.8.3, Sabry (1998) argues that confluence is not a strong enough p. 

property to guarantee purity. An alternative approach might therefore be to adopt his definition
of purity (essentially, equivalence of the call-by-name, call-by-value and call-by-need semantics
for the language). To do so, we will need to introduce a notion of “typed” rewriting: we can
only hope to prove equivalence of these semantics if we require that evaluation maintains type
correctness at every step (we discussed this in more detail in Section 2.8.3).

8.2.9 Observer types

We mentioned the problem of allowing multiple reads before a write in Section 3.2.6. Adam p. 

Megacz has suggested (Megacz, 2007) that the boolean attribute approach may be naturally
extended to support Odersky’s observer types (Section 3.3.3) by adding a second attribute to terms p. 

to indicate whether the term is “observed”.
This corresponds to the “read-only” attribute in Guzmán’s single-threaded polymorphic

lambda calculus (Section 3.5), although Guzmán (like Odersky) then tries to combine the read- p. 

only attribute with the “multi-threaded” (uniqueness) attribute. If we want to use the boolean
attribute approach, it is better to leave the two attributes separate; for example, an “observed”
non-unique array might have type

arr :: Array×,•

This additional attribute is “ignored” (left free) by most of the typing rules. For example, the
identity function might get the type

id :: tu,v ×,w−−→ tu,v

Only in the strict-let expression would the observer attribute of a term be set to true (•); we can
then easily check whether any terms “escape” the strict-let expression by attempting to unify the
observer attribute of the types of variables bound in the strict-let with false (×). (We must make
sure that the observer property is propagated outwards by constructors for algebraic data types.)

This provides a more principled and more general (more permissive) solution than the one
currently adopted in Clean. For example, we might have a function that copies an array:

copyArray :: Arrayu,u′ ×,w−−→ Arrayv,v′

With the new approach, we can now (correctly!) define

223

Chapter 8. Conclusions and Future Work

dupArray :: Array•,u
×,w−−→ (Array•,v,Array•,v

′
)up

dupArray arr #! copy = copyArray arr

= (arr, copy)

while

// invalid definition

dupArray‘ :: Array•,u
×,w−−→ (Array•,v,Array×,v′)up

dupArray‘ arr #! copy = id arr

= (arr, copy)

would still be rejected: we can detect that arr escapes since the type of arr within the strict-let
is Array×,•.

A potential alternative way to distinguish between these two examples was suggested by John
van Groningen (personal communication): we might use the information that copy (but not id)
can return a unique array even when given a non-unique array to accept the first example but
reject the second. This analysis might become more difficult to execute however when the bodies
of the definitions in the strict-let are more complex.

Although the additional attribute on types complicates the type system and the types, the
second attribute on types could always be hidden from the user. Even when a type error arises
because of a unification failure on the observer attribute, an error message such as “observed term
escaping in strict-let on line xxx” would probably suffice. The advantage of this approach is that
it is simple to define and fits in well with the rest of the type system.

8.2.10 Improving error messages

An often heard complaint about Clean is that its type checker generates error messages that are
hard to understand. Since we have made uniqueness typing less unique, research on improved error
messages for Hindley/Milner type systems (such as Heeren, 2005) can probably be incorporated
into a uniqueness type checker. On the other hand, the use of boolean attributes may benefit from
a special treatment. For example, if we reconsider the example from Section 5.2.4,p. 

f :: (∀ u v.tu u f−→
uc

sv)→ . . .

g :: tu∨v u f−→
uc

sv

if we attempt to apply f to g, our type checker will complain

Types do not match

context : f g

term : g

inferred type : ∀u v · tu∨v ×−→ tv

does not match: ∀u v · tu ×−→ tv

Perhaps it would be good if the type checker would explain why these types do not match. For
example, it could tell us that the first type cannot be instantiated to (t× ×−→ t•), whereas the
second one can.

In addition, it might be helpful if the type checker gives hints about why a term is inferred to
be non-unique (for instance, when a variable is used twice in its scope) or unique (for instance,
when a function is partially applied and the supplied argument is unique).

224

8.3. Coda

Other scope for improvement will become clearer once a serious implementation of the new
type system is attempted, and it is used for non-toy examples.

8.2.11 Dependent types

There has been surprisingly little research into substructural dependent type systems or logics. In
the type systems community, there are two notable exceptions:

• LF (Harper et al., 1993; Harper and Licata, 2007) is a dependently typed programming
language (equivalent to system λP in the Barendregt Cube, Figure 2.6, or first-order p. 

predicate logic). Although LF itself is a logic, it was designed as a (meta) logic for
formalizing other (object) logics; it is however less suitable to formalizing substructural
logics. Both Linear LF (Cervesato and Pfenning, 2002) and Relevant LF1 (Ishtiaq and Pym,
1998) are attempts to adapt LF so that it uses a linear version of λP instead.

• The logic of bunched implications (Section 3.6.4) has a predicate version (Pym, 1999; p. 

O’Hearn and Pym, 1999).

Although there is some work on substructural predicate logic (Grišin, 1982; Došen, 1992; Bellin
and Ketonen, 1992; Brünnler et al., 2008), there is much less than one might expect (a discussion
of these papers, and of LLF/RLF and bunched predicate logic, is beyond the scope of this thesis).

It seems that the development of a substructural dependent type system might yield substantial
benefits. A dependent uniqueness type system can be used as a basis for a pure functional pro-
gramming language that uses uniqueness typing to support side effects without losing referential
transparency, but also supports the proofs-as-programs methodology supported by systems such
as Coq (Section 2.3.5). Obviously, this would be a major undertaking and might form the basis p. 

for a Ph.D. or postdoctoral research project.

8.3 Coda

Uniqueness typing is not as well-known in the functional programming community as it deserves
to be; we feel that this is partly due to the origin in and emphasis on graph rewriting in the original
research papers on the topic. In this thesis, we have shown how to make uniqueness typing less
unique: by allowing boolean attributes as uniqueness attributes we can give a formalization of
uniqueness typing that is so similar to the conventional Hindley/Milner style type systems that
modern extensions such as higher rank types or GADTs can be incorporated without difficulty.
Treating uniqueness attributes as types of a special kind facilitates retrofitting uniqueness typing to
existing compilers, allows for a more elegant formalization of the type system and gives additional
expressive power virtually for free. Removing subtyping but making sure that terms are never
more unique than they need to be means that we do not to give partial application any special
treatment, and makes it possible to simplify many types. Finally, we have shown that the type
system is sound with respect to the standard call-by-need semantics, which is the most accurate
semantics for more conventional programming languages such as Haskell too. We have surveyed

1The name “Relevant LF” is confusing: the authors use ”relevant” to describe a logic where both contraction and
weakening are restricted (that is, a linear logic) rather than a logic where weakening is restricted but contraction is
permitted (the usual meaning of “relevant”, Section 2.6).

225

Chapter 8. Conclusions and Future Work

related work, discussed some of the advantages and disadvantages of our design decisions, and
identified future work. U

226

Boolean algebra

A.1 Boolean algebra

This formalization is based on the second chapter (“The self-dual system of axioms”) in Good-
stein’s book “Boolean Algebra” Goodstein (2007).

A.1.1 Abstraction over the structure of terms

Module Type BooleanAlgebraTerm.

Parameter trm : Set.
Parameter true : trm.
Parameter false : trm.
Parameter or : trm→ trm→ trm.
Parameter and : trm→ trm→ trm.
Parameter not : trm→ trm.

End BooleanAlgebraTerm.

A.1.2 Huntington’s postulates

Module BooleanAlgebra (Term : BooleanAlgebraTerm).
Import Term.

Inductive equiv : trm→ trm→ Prop :=

| comm or : ∀ (a b:trm), equiv (or a b) (or b a)
| comm and : ∀ (a b:trm), equiv (and a b) (and b a)

| distr or : ∀ (a b c:trm), equiv (or a (and b c)) (and (or a b) (or a c))
| distr and : ∀ (a b c:trm), equiv (and a (or b c)) (or (and a b) (and a c))

| id or : ∀ (a:trm), equiv (or a false) a

| id and : ∀ (a:trm), equiv (and a true) a

227

Chapter A. Boolean algebra

| compl or : ∀ (a:trm), equiv (or a (not a)) true

| compl and : ∀ (a:trm), equiv (and a (not a)) false

| clos not : ∀ (a b:trm), equiv a b→ equiv (not a) (not b)
| clos or : ∀ (a b c:trm), equiv a b→ equiv (or a c) (or b c)
| clos and : ∀ (a b c:trm), equiv a b→ equiv (and a c) (and b c)

| refl : ∀ (a:trm), equiv a a

| sym : ∀ (a b:trm), equiv a b→ equiv b a

| trans : ∀ (a b c:trm), equiv a b→ equiv b c→ equiv a c.

A.1.3 Setup for Coq setoids

Thanks to Adam Megacz.

Add Relation trm equiv

reflexivity proved by refl

symmetry proved by sym

transitivity proved by trans

as equiv relation.

Add Morphism or

with signature equiv ==> equiv ==> equiv

as or morphism.

Add Morphism and

with signature equiv ==> equiv ==> equiv

as and morphism.

Add Morphism not

with signature equiv ==> equiv

as not morphism.

A.1.4 Derived Properties

Lemma false unique : ∀ (x:trm), (∀ (a:trm), equiv (or a x) a)→ equiv false x.

Lemma true unique : ∀ (y:trm), (∀ (a:trm), equiv (and a y) a)→ equiv true y.

Lemma complement unique : ∀ (a a’ a”:trm),

equiv (or a a’) true→ equiv (and a a’) false→

equiv (or a a”) true→ equiv (and a a”) false→

equiv a’ a”.

228

A.1. Boolean algebra

Lemma involution : ∀ (a:trm), equiv (not (not a)) a.

Lemma true compl false : equiv false (not true).

Lemma false compl true : equiv (not false) true.

Lemma zero or : ∀ (a:trm), equiv (or a true) true.

Lemma zero and : ∀ (a:trm), equiv (and a false) false.

Lemma idem or : ∀ (a:trm), equiv a (or a a).

Lemma idem and : ∀ (a:trm), equiv a (and a a).

Lemma abs or : ∀ (a b:trm), equiv (or a (and a b)) a.

Lemma abs and : ∀ (a b:trm), equiv (and a (or a b)) a.

Lemma equiv or and3 : ∀ (a b c:trm),
equiv (or a b) (or a c)→ equiv (and a b) (and a c)→ equiv b c.

Lemma equiv or not : ∀ (a b c:trm),
equiv (or a b) (or a c)→ equiv (or (not a) b) (or (not a) c)→ equiv b c.

Lemma equiv and not : ∀ (a b c:trm),
equiv (and a b) (and a c)→ equiv (and (not a) b) (and (not a) c)→ equiv b c.

Lemma assoc or : ∀ (a b c:trm), equiv (or a (or b c)) (or (or a b) c).

Lemma assoc and : ∀ (a b c:trm), equiv (and a (and b c)) (and (and a b) c).

Lemma equiv or and2 : ∀ (a b:trm), equiv (or a b) (and a b)→ equiv a b.

Lemma DeMorgan or : ∀ (a b:trm), equiv (not (or a b)) (and (not a) (not b)).

Lemma DeMorgan and : ∀ (a b:trm), equiv (not (and a b)) (or (not a) (not b)).

A.1.5 “Non-standard” properties (not proven in Goodstein)

Lemma abs or or : ∀ (a b:trm), equiv (or (or a b) a) (or a b).

Lemma abs and and : ∀ (a b:trm), equiv (and (and a b) a) (and a b).

Lemma distr or or : ∀ a b c, equiv (or a (or b c)) (or (or a b) (or a c)).

Lemma distr and and : ∀ a b c, equiv (and a (and b c)) (and (and a b) (and a c)).

Lemma or false left : ∀ (a b:trm), equiv (or a b) false→ equiv a false.

Lemma or false right : ∀ (a b:trm), equiv (or a b) false→ equiv b false.

Lemma or false both : ∀ (a b:trm),
equiv (or a b) false→ equiv a false ∧ equiv b false.

Lemma and true left : ∀ (a b:trm), equiv (and a b) true→ equiv a true.

Lemma and true right : ∀ (a b:trm), equiv (and a b) true→ equiv b true.

Lemma and true both : ∀ (a b:trm),
equiv (and a b) true→ equiv a true ∧ equiv b true.

229

Chapter A. Boolean algebra

A.1.6 Conditional

Definition ifbool (b P Q:trm) : trm := or (and b P) (and (not b) Q).

Lemma if ident branch : ∀ (b P:trm),
equiv (ifbool b P P) P.

Lemma distr or if : ∀ (b P Q R:trm),
equiv (or (ifbool b P Q) R) (ifbool b (or P R) (or Q R)).

Lemma distr or if2 : ∀ (b P Q:trm),
equiv (ifbool b P Q) (or (ifbool b P Q) (and P Q)).

Lemma distr and if : ∀ (b P Q R:trm),
equiv (and (ifbool b P Q) R) (ifbool b (and P R) (and Q R)).

Lemma distr not if : ∀ (b P Q:trm),
equiv (not (ifbool b P Q)) (ifbool b (not P) (not Q)).

End BooleanAlgebra.

230

Bibliography

Journal and book series titles are listed in full, and Lecture Notes in Computer Science volume
numbers are always quoted (where applicable). We feel that publishers’ addresses are no longer
useful today and do not list them. Conference papers do not include the full details of the
conference proceedings, but simply mention the name of the conference; details for the conference
proceedings are listed separately (p. 240). Page numbers are listed for journal articles and
conference proceedings, but not for electronic or informal proceedings or for articles that are yet
to appear. Every entry concludes with a list of pages where the entry is cited in parentheses, so
that the bibliography can be used for “reverse look up”.

Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1-2):3–57, 1993. (p. 89)

P. M. Achten and M. J. Plasmeijer. The ins and outs of Clean I/O. Journal of Functional

Programming, 5(1):81–110, 1995. (pp. 13 and 69)

Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model of substructural state.
In ICFP05, pages 78–91. (p. 77)

Artem Alimarine. Generic Functional Programming: Conceptual Design, Implementation and

Applications. PhD thesis, Radboud Universiteit Nijmegen, 2005. (pp. 15 and 216)

Thorsten Altenkirch and Nicolas Oury. ΠΣ: A core language for dependently typed
programming. Unpublished manuscript, 2008. (p. 32)

Pablo Armelín. Programming with Bunched Implications. PhD thesis, Queen Mary, University of
London, 2002. (p. 112)

David Aspinall and Martin Hofmann. Another type system for in-place update. In ESOP02,
pages 36–52. (p. 105)

David Aspinall, Martin Hofmann, and Michal Konečný. A type system with usage aspects.
Journal of Functional Programming, 18(2):141–178, 2008. (p. 105)

Steve Awodey. Category Theory. Oxford University Press, 2006. (p. 73)

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.
Engineering formal metatheory. In POPL08, pages 3–15. (pp. 161, 162, and 218)

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. (pp. 22, 26, and 27)

231

Bibliography

Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In ICFP02, pages 157–166.
(p. 60)

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984. (p. 167)

Henk Barendregt. Introduction to generalized type systems. Journal of Functional Programming,
1(2):125–154, 1991. (p. 29)

Henk Barendregt and Silvia Ghilezan. Lambda terms for natural deduction, sequent calculus and
cut elimination. Journal of Functional Programming, 10(1):121–134, 2000. (p. 22)

Erik Barendsen and Sjaak Smetsers. A derivation system for uniqueness typing. In
SEGRAGRA95, pages 151–158. (p. 78)

—. Uniqueness typing for functional languages with graph rewriting semantics. Mathematical

Structures in Computer Science, 6:579–612, 1996. (pp. 7, 78, 79, 82, 85, 126, 127, 128, 147,
148, 150, 154, 155, and 201)

—. Conventional and uniqueness typing in graph rewrite systems. Technical Report CSI-R9328,
University of Nijmegen, December 1993a. (p. 126)

—. Conventional and uniqueness typing in graph rewrite systems. In FSTTCS93, pages 41–51.
(p. 78)

—. Uniqueness type inference. In PHILPS95, pages 189–206. Also known as “Uniqueness

typing in Theory and Practice”. (p. 78)

Michael Barr and Charles Wells. Category Theory for Computing Science. Les Publications
CRM, third edition, 1999. (p. 73)

Gilles Barthe and Morten Heine Sørensen. Domain-free pure type systems. Journal of Functional

Programming, 10(5):417–452, 2000. (p. 39)

Rodney Bates. Syntactic heroin. Queue, 3(5):64, 62–63, 2005. (p. 212)

Gianluigi Bellin and Jussi Ketonen. A decision procedure revisited: notes on direct logic, linear
logic and its implementation. Theoretical Computer Science, 95(1):115–142, March 1992.
(p. 221)

Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In LICS96, page
420. (p. 77)

Josh Berdine and Peter W. O’Hearn. Strong update, disposal, and encapsulation in bunched
typing. In MFPS06, pages 81–98. Electronic Notes in Theoretical Computer Science, volume
158. (p. 112)

Stefan Berghofer and Christian Urban. Nominal inversion principles. In TPHOLs08. To appear.
(p. 161)

Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development

(Coq’Art: The Calculus of Inductive Constructions). Springer-Verlag, 2004. (p. 34)

G. M. Bierman. Program equivalence in a linear functional language. Journal of Functional

Programming, 10(2):167–190, 2000. (p. 77)

232

Bibliography

G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a polymorphic linear
lambda calculus with recursion. In HOOTS00, pages 70–88. (p. 77)

Malgorzata Biernacka and Dariusz Biernacki. Formalizing constructions of abstract machines for
functional languages in Coq. In WRS07pre. (p. 168)

Richard Bird, Geraint Jones, and Oege De Moor. More haste, less speed: lazy versus eager
evaluation. Journal of Functional Programming, 7(5):541–547, 1997. (p. 56)

Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now! College Publications,
2006. Freely available online. (p. 108)

George Boole. An Investigation of the Laws of Thought on which are founded the mathematical

theories of logic and probabilities. Macmillan, 1854. Republished by Dover, 1958. (pp. 25
and 27)

George Boolos. The hardest logic puzzle ever. The Harvard Review of Philosophy, 6:62–65,
1996. (p. 19)

Didier Le Botlan and Didier Rémy. MLF: raising ML to the power of System F. In ICFP03,
pages 27–38. (pp. 35, 41, 51, and 149)

John Boyland. Alias burying: Unique variables without destructive reads. Software: Practice and

Experience, 31(6):533–553, May 2001. (p. 77)

L. E. J. Brouwer. Over de Grondslagen der Wiskunde. PhD thesis, Universiteit van Amsterdam,
1907. (p. 19)

Frank Markham Brown. Boolean Reasoning, The Logic of Boolean Equations. Dover
Publications, Inc., 2003. (p. 27)

Kai Brünnler, Dieter Probst, and Thomas Studer. On contraction and the modal fragment.
Mathematical Logic Quarterly, 54(4):345–349, 2008. (p. 221)

Stanley N Burris. The laws of Boole’s thought. Presented to the American Mathematical Society,
January 2001. (p. 25)

Andrew Butterfield and Glenn Strong. Proving correctness of programs with IO—a paradigm
comparison. In IFL01, pages 72–87. (p. 66)

Venanzio Capretta. General recursion via coinductive types. Logical methods in computer

science, 1(2):1–28, July 2005. (p. 71)

Iliano Cervesato and Frank Pfenning. A linear logical framework. Information and Computation,
179(1):19–75, 2002. (pp. 154, 164, and 221)

Jorge Cham. Phd comics: Thesis topic, May 1998.
http://www.phdcomics.com/comics/archive.php?comicid=82. (p. vii)

Arthur Charguéraud. Formal PL metatheory: Locally nameless developments (Coq development),
2007. http://www.chargueraud.org/arthur/research/2007/binders.
(p. 162)

233

Bibliography

Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):
346–366, April 1932. (p. 11)

Koen Claessen and David Sands. Observable sharing for functional circuit description. In
ASIAN99, pages 62–73. (p. 63)

Stephen Cooper. On linear types and imperative update. PhD thesis, Syracuse University, 1997.
(p. 90)

Coq Development Team. The Coq proof assistant—reference manual (version 8.1), 2006. (p. 35)

T. Coquand and H. Herbelin. A-translation and looping combinators in pure type systems.
Journal of Functional Programming, 4:77–88, 1994. (p. 32)

Pierre Corbineau. A declarative language for the Coq proof assistant. In TYPES07, pages 69–84.
(p. 160)

Olivier Coudert. Two-level logic minimization: an overview. Integration, the VLSI Journal, 17(2):
97–140, October 1994. (p. 150)

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In POPL82,
pages 207–212. (pp. 41, 44, 45, and 134)

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. Fast and loose
reasoning is morally correct. In POPL06, pages 206–217. (p. 61)

Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer. Theorem proving for functional
programmers—Sparkle: A functional theorem prover. In IFL01, pages 55–71. (p. 61)

Edsko de Vries. Serious bug in the type system, December 2007. Message on the Clean mailing
list. (p. 84)

—. Uniqueness typing simplified—technical appendix. Technical Report TCD-CS-2008-19,
Department of Computer Science, Trinity College Dublin, 2008a. (p. 159)

—. Status of unique modes in Mercury?, July 2008b. Message on the Mercury users mailing list.
(p. 110)

Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Equality-based uniqueness typing.
In TFP07pre. Technical report TR-SHU-CS-2007-04-1. (p. 129)

—. Uniqueness typing redefined. In IFL06, pages 181–198. (pp. 16, 87, and 115)

—. Uniqueness typing simplified. In IFL07, pages 181–198. (pp. 16 and 143)

Péter Diviánszky. Unique identifiers in pure functional languages. In TFP06pre. (p. 63)

Kosta Došen. Nonmodal classical linear predicate logic is a fragment of intuitionistic linear logic.
Theoretical Computer Science, 102(1):207–214, 1992. (p. 221)

Malcolm Dowse, Glenn Strong, and Andrew Butterfield. Proving Make correct: I/O proofs in
Haskell and Clean. In IFL02, pages 68–83. (p. 66)

Catherine Dubois. Proving ML type soundness within Coq. In THOLs00, pages 126–144.
Published version is incorrect; corrected version available from the author’s website. (p. 168)

234

Bibliography

Catherine Dubois and Valérie Ménissier-Morain. Certification of a type inference tool for ML:
Damas-Milner within Coq. Journal of Automated Reasoning, 23(3):319–346, November 1999.
(p. 44)

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for imperative
programming. In PLDI02, pages 13–24. (p. 77)

Matthew Fluet. Monadic and Substructure Type Systems for Region-Based Memory Management.
PhD thesis, Cornell University, January 2007. (pp. 114 and 143)

You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the theory-practice
gap. In TAPSOFT89, pages 167–183. Volume 2 of the conference proceedings. (p. 201)

Jacques Garrigue. Relaxing the value restriction. In FLOPS04, pages 196–213. (pp. 114 and 117)

Benedict R. Gaster. Records, variants and qualified types. PhD thesis, University of Nottingham,
July 1998. Technical report NOTTCS-TR-98-3. (p. 151)

Benedict R. Gaster and Mark P. Jones. A polymorphic type system for extensible records and
variants. Technical Report NOTTCS-TR-96-3, University of Nottingham, November 1996.
(pp. vi and 151)

Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer

Science, 45(2):159–192, 1986. (pp. 36, 39, and 54)

—. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987. (p. 87)

—. On the unity of logic. Technical Report 1467, Institut National de Recherche en Informatique
et en Automatique (INRIA), June 1991. (p. 87)

Dina Goldin and Peter Wegner. The Church-Turing thesis: Breaking the myth. In CiE05, pages
152–168. (p. 13)

Dina Q. Goldin. Persistent turing machines as a model of interactive computation. In FoIKS00,
pages 116–135. (p. 13)

R. L. Goodstein. Boolean Algebra. Dover Publications, Inc, 2007. Unabridged republicaton of
the 1966 printing of the work originally published by Pergamon Press, London, in 1963.
(p. 223)

Clemens Grelck and Sven-Bodo Scholz. Classes and objects as basis for I/O in SAC. In IFL95,
pages 30–44. (p. 106)

V. N. Grišin. Predicate and set-theoretic calculi based on logic without contractions. Mathematics

of the USSR-Izvestiya, 18(1):41–59, 1982. (p. 221)

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. In PLDI02, pages 282–293. (p. 113)

J. C. Guzmán and P. Hudak. Single-threaded polymorphic lambda calculus. In LICS90, pages
333–343. (pp. 95 and 219)

Juan Carlos Guzmán. On Expressing the Mutation of State in a Functional Programming

Language. PhD thesis, Yale University, 1993. (pp. 7, 95, 96, and 102)

235

Bibliography

Jurriaan Hage and Stefan Holdermans. Heap recycling for lazy languages. In PEPM08, pages
189–197. (pp. 87, 106, and 202)

Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. A generic usage analysis with
subeffect qualifiers. In ICFP07, pages 235–246. (pp. 16, 85, 86, 87, 106, 199, 200, 202, 204,
209, and 210)

Theodore Hailperin. Boole’s algebra isn’t boolean algebra. Mathematics Magazine, 54(4):
173–184, September 1981. (p. 25)

Chris Hankin. Lambda calculi: a guide for computer scientists. Oxford Clarendon, 1994. (p. 12)

Robert Harper. A note on “a simplified account of polymorphic references”. Information

Processing Letters, 57(1):15–16, 1996. (p. 58)

—. A simplified account of polymorphic references. Information Processing Letters, 51(4):
201–206, 1994. (p. 58)

Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal of

Functional Programming, 17(4-5):613–673, 2007. (p. 221)

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, 1993. (p. 221)

Dana Harrington. Uniqueness logic. Theoretical Computer Science, 354(1):24–41, 2006. (pp. 91,
92, 93, and 199)

Dana G. Harrington. A type system for destructive updates in declarative programming languages.
Master’s thesis, University of Calgary, 2001. (pp. 7, 88, 91, 92, and 203)

Tim Harris and Satnam Singh. Feedback directed implicit parallelism. In ICFP07, pages
251–264. (p. 86)

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Generalizing Hindley-Milner type
inference algorithms. Technical Report UU-CS-2002-031, Institute of Information and
Computing Science, July 2002. (p. 128)

Bastiaan Johannes Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht,
2005. (pp. 44 and 220)

Fergus Henderson. Strong modes can change the world!, November 1992. Honours Report,
Department of Computer Science, University of Melbourne. (p. 109)

Fritz Henglein, Henning Makholm, and Henning Niss. Effect types and region-based memory
management. In Pierce (2005). (pp. 113 and 114)

A. Heyting. Intuitionism: An Introduction. North-Holland Publishing Company, 1966. (p. 18)

R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the

American Mathematical Society, 146:29–60, December 1969. (p. 41)

Ralf Hinze. Generic programs and proofs, October 2000. Habilitationsschrift, Universität Bonn.
(pp. 15 and 216)

236

Bibliography

Tony Hoare, Manfred Broy, and Ralf Steinbruggen, editors. Engineering theories of software

construction. IOS Press, 2001. (p. 236)

Martin Hofmann. A type system for bounded space and functional in-place update. Nordic

Journal of Computing, 7(4):258–289, 2000. (p. 105)

Douglas R. Hofstadter. Gödel Escher Bach: An Eternal Golden Braid. Basic Books, Inc., 1999.
(p. 18)

Paul Hudak and Raman S. Sundaresh. On the expressiveness of purely functional I/O systems.
Technical Report YALEU/DCS/RR-665, Department of Computer Science, Yale University,
1988. (p. 13)

Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: being
lazy with class. In HOPL07, pages 12–1–12–55. (pp. 13, 37, 68, and 200)

J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989. (p. 56)

E. V. Huntington. Sets of independent postulates for the algebra of logic. Transactions of the

American Mathematical Society, 5:288–309, 1904. (pp. 25 and 159)

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about

Systems. Cambridge University Press, 2004. (p. 125)

S. S. Ishtiaq and D. J. Pym. A relevant analysis of natural deduction. Journal of Logic and

Computation, 8(6):809–838, 1998. (p. 221)

Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. Efficient interpretation by
transforming data types and patterns to functions. In TFP06, pages 73–90. (p. 12)

Mark P. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. In FPCA93, pages 52–61. (pp. 32, 37, and 143)

—. Qualified types: theory and practice. Cambridge Distinguished Dissertations In Computer
Science. Cambridge University Press, 1995a. (pp. 72, 200, and 201)

—. Simplifying and improving qualified types. In FPCA95, pages 160–169. (p. 72)

—. A theory of qualified types. Science of Computer Programming, 22(3):231–256, 1994. (p. 72)

Simon B. Jones. Experiences with Clean I/O. In FPWS95. (p. 69)

Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on Type

Theory—From its Origins until Today. Kluwer Academic Publishers, 2004. (p. 18)

A. J. Kfoury and J. Tiuryn. Type reconstruction in finite rank fragments of the second-order
λ-calculus. Information and Computation, 98(2):228–257, 1992. (p. 38)

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the
second-order λ-calculus. In LFP94, pages 196–207. (pp. 149 and 215)

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Journal of the ACM, 41
(2):368–398, 1994. (p. 150)

237

Bibliography

Oleg Kiselyov, William E. Byrd, Daniel P. Friedman, and Chung chieh Shan. Pure, declarative,
and constructive arithmetic relations (declarative pearl). In FLOPS08, pages 64–80. (p. 109)

Pieter Koopman and Rinus Plasmeijer. Generic generation of elements of types. In TFP05, pages
167–179. (p. 15)

Johannes John Carel Kuiper. Ideas and Explorations: Brouwer’s Road to Intuitionism. PhD
thesis, Universiteit Utrecht, 2004. (p. 19)

John Launchbury. A natural semantics for lazy evaluation. In POPL93, pages 144–154. (pp. 58
and 155)

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type inference
algorithm. ACM Transactions on Programming Languages and Systems (TOPLAS), 20(4):
707–723, 1998. (p. 44)

Daan Leijen. HMF: Simple type inference for first-class polymorphism. In ICFP08. To appear.
(pp. vi, 16, 35, 51, 149, 208, and 213)

—. Flexible types: robust type inference for first-class polymorphism. Technical Report
MSR-TR-2008-55, Microsoft Research, March 2008b. (p. 41)

—. A type directed translation of MLF to System F. In ICFP07, pages 111–122. (p. 41)

—. Extensible records with scoped labels. In TFP05, pages 179–194. (pp. 127 and 151)

—. wxHaskell: a portable and concise GUI library for Haskell. In HW04, pages 57–68. (p. 127)

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real world.
Technical Report UU-CS-2001-27, Department of Computer Science, Universiteit Utrecht,
2001. (p. 56)

Xavier Leroy. Coinductive big-step operational semantics. In ESOP06, pages 54–68. (pp. 58
and 59)

Xavier Leroy and Pierre Weis. Polymorphic type inference and assignment. In POPL91, pages
291–302. (pp. 113 and 117)

Ben Lippmeier. The Disciplined Disciple Compiler (DDC), July 2008.
http://www.haskell.org/haskellwiki/DDC. (p. 113)

Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial implementation of a
dependently-typed lambda calculus. Unpublished manuscript, 2008. (p. 40)

Bradley M. Lushman. Direct and Expressive Type Inference for the Rank 2 Fragment of System F.
PhD thesis, University of Waterloo, 2007. (pp. 41, 149, and 215)

Ian Mackie. Lilac: A functional programming language based on linear logic. Journal of

Functional Programming, 4(4):395–433, 1994. (p. 89)

Jan-Willem Maessen. Eager haskell: resource-bounded execution yields efficient iteration. In
HW02, pages 38–50. (p. 56)

238

Bibliography

Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time. In
POPL90, pages 382–401. (p. 150)

John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus. Journal of

Functional Programming, 8(3):275–317, 1998. (pp. 57, 58, 143, 155, 167, and 173)

Simon Marlow. Update avoidance analysis by abstract interpretation. In FPW93. (p. 86)

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on

Programming Languages and Systems (TOPLAS), 4(2):258–282, 1982. (pp. 24 and 25)

Adam Megacz. Relationship between uniqueness types and single-threaded lambda calculus?,
June 2007. Message on the Clean mailing list. (p. 219)

Bertrand Meyer. Object-Oriented Software Construction (Second Edition). Prentice Hall PTR,
1997. (p. 14)

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–358,
1992. (p. 50)

Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17(3):348–375, 1978. (p. 41)

Naftaly Minsky. Towards alias-free pointers. In ECOOP96, pages 189–209. (p. 77)

Rasmus Ejlers Mogelberg and Alex Simpson. Relational parametricity for computational effects.
In LICS07, pages 346–355. (p. 77)

James H. Morris. Lambda calculus models of programming languages. PhD thesis,
Massachusetts Institute of Technology, 1969. Also published as technical report
MIT-LCS-TR-057. (p. 70)

Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm W in
Isabelle/HOL. Journal of Automated Reasoning, 23(3):299–318, November 1999. (p. 44)

Sara Negri and Jan Von Plato. Structural Proof Theory. Cambridge University Press, 2001.
(p. 20)

Martin Odersky. Observers for linear types. In ESOP92, pages 390–407. (p. 90)

—. How to make destructive updates less destructive. In POPL91, pages 25–36. (pp. 7, 102,
and 104)

Martin Odersky and Konstantin Läufer. Putting type annotations to work. In POPL96, pages
54–67. (pp. 46 and 50)

Peter O’Hearn. On bunched typing. Journal of Functional Programming, 13(4):747–796, 2003.
(p. 112)

Peter W. O’Hearn. Linear logic and interference control. In CTCS01, pages 74–93. (p. 112)

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. The Bulletin of Symbolic

Logic, 5(2):215–244, June 1999. (pp. 87, 112, and 221)

239

Bibliography

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998. (p. 56)

David Overton. Precise and expressive mode systems for typed logic programming languages.
PhD thesis, The University of Melbourne, December 2003. (pp. 25, 109, and 110)

Christine Paulin-Mohring. Inductive definitions in the system Coq—rules and properties. In
TLCA93, pages 328–360. (p. 34)

R. Peña, C. Segura, and M. Montenegro. A sharing analysis for SAFE. In TFP06, pages 109–128.
(p. 113)

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,
exceptions and foreign-language calls in haskell. In Hoare et al. (2001), pages 47–96. (pp. 13,
66, 67, and 68)

—. Haskell 98 language and libraries—the revised report, December 2002. (p. 15)

—. Wearing the hair shirt: a retrospective on Haskell. Invited talk at POPL 2003, 2003. (p. 70)

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Simple
unification-based type inference for GADTs. In ICFP06, pages 50–61. (pp. vi, 140, and 142)

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type
inference for arbitrary-rank types. Journal of Functional Programming, 17(1):1–82, January
2007. (pp. vi, 16, 17, 43, 45, 46, 48, 49, 119, 121, 122, 125, 127, 135, 136, 137, 140, and 149)

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In POPL93,
pages 71–84. (p. 66)

Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus of
Constructions. In MFPS89, pages 209–228. (p. 34)

Benjamin Pierce, editor. Advanced Topics in Types and Programming Languages. The MIT Press,
2005. (pp. 232 and 239)

Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002. (pp. 17 and 39)

Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991. (p. 73)

Andrew M. Pitts. Nominal logic: A first order theory of names and binding. In TACS01, pages
219–242. (p. 161)

Rinus Plasmeijer and Peter Achten. The implementation of iData—a case study in generic
programming. In IFL05, pages 106–123. (p. 15)

Rinus Plasmeijer and Marko van Eekelen. Clean Language Report (version 2.1), November 2002.
(pp. 15, 84, 116, 215, and 216)

—. Keep it Clean: a unique approach to functional programming. ACM SIGPLAN Notices, 34(6):
23–31, 1999. (p. 69)

Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: executable specifications of
interactive work flow systems for the web. In ICFP07, pages 141–152. (p. 66)

240

Bibliography

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5(3):
223–255, December 1977. (p. 12)

David J. Pym. On bunched predicate logic. In LICS99, pages 183–192. (p. 221)

Willard Van Orman Quine. From a logical point of view. Harvard University Press, 1953. (p. 59)

Brian Rabern and Landon Rabern. A simple solution to the hardest logic puzzle ever. Analysis,
68(2):105–111, April 2008. (p. 20)

Didier Rémy. Simple, partial type-inference for system F based on type-containment. In ICFP05,
pages 130–143. (p. 213)

Greg Restall. An Introduction to Substructural Logics. Routledge, 2000. (pp. 53 and 54)

J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS02, pages
55–74. (p. 112)

John C. Reynolds. Towards a theory of type structure. In PROGSYM74, pages 408–423. (p. 36)

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12(1):23–41, 1965. (p. 24)

Amr Sabry. What is a purely functional language? Journal of Functional Programming, 8(1):
1–22, 1998. (pp. 62 and 219)

Sven-Bodo Scholz. Single assignment C: efficient support for high-level array operations in a
functional setting. Journal of Functional Programming, 13(6):1005–1059, 2003. (p. 106)

Ronny Wichers Schreur and Rinus Plasmeijer. Dynamic construction of generic functions. In
IFL04, pages 160–176. (p. 15)

Natarajan Shankar. Static analysis for safe destructive updates in a functional language. In
LOPSTR01, pages 1–24. (p. 77)

Tim Sheard. Putting Curry-Howard to work. In HW05, pages 74–85. (p. 143)

Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and Marinus J. Plasmeijer.
Guaranteeing safe destructive updates through a type system with uniqueness information for
graphs. In GRAPH94, pages 358–379. (p. 78)

Sjaak Smetsers, Arjen van Weelden, and Rinus Plasmeijer. Efficient and type-safe generic data
storage. In WGT08. Electronic Notes in Theoretical Computer Science. (p. 15)

Harald Søndergaard and Peter Sestoft. Referential transparency, definiteness and unfoldability.
Acta Informatica, 27(6):505–517, 1990. (p. 61)

M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
(pp. 12 and 17)

Christopher Strachey. Fundamental concepts in programming languages. Higher-Order and

Symbolic Computation, 13:11–49, 2000/1967. Reprint of lecture notes originally presented in
1967. (p. 61)

241

Bibliography

N. I. Styazhkin. History of Mathematical Logic from Leibniz to Peano. M.I.T. Press, 1969. (p. 25)

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System
F with type equality coercions. In TLDI07, pages 53–66. (pp. 35, 37, and 143)

Hugh Tredennick. Aristotle—Metaphysics, books I–IX. Harvard University Press, 1933. (p. 17)

A. S. Troelstra. Lectures on Linear Logic. Center for the Study of Language and Information,
1992. (p. 54)

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 1996.
(p. 19)

A. M. Turing. On computable numbers with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1937. (pp. 11 and 13)

David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theoretical

Computer Science, 227(1-2):231–248, 1999. (p. 77)

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In FPCA95, pages
1–11. (pp. 86, 90, and 91)

C. Umans, T. Villa, and A.L. Sangiovanni-Vincentelli. Complexity of two-level logic
minimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 25(7):1230–1246, July 2006. (p. 150)

S. van Bakel, L. Liquori, R. Ronchi della Rocca, , and P. Urzyczyn. Comparing cubes of typed
and type assignment systems. Annals of Pure and Applied Logic, 86(3):267–303, 1997. (pp. 39
and 203)

Steffen van Bakel, Sjaak Smetsers, and Simon Brock. Partial type assignment in left linear
applicative term rewriting systems. In CAAP92, pages 300–321. (p. 78)

Jean van Heijenoort, editor. From Frege to Gödel—A source book in mathematical logic,

1879–1931. Harvard University Press, 1967. (p. 18)

Arjen van Weelden, Sjaak Smetsers, and Rinus Plasmeijer. Polytypic syntax tree operations. In
IFL05, pages 106–123. (p. 15)

Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Polytypic programming in Coq. In
WGP08. To appear. (p. 216)

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Boxy types: inference for
higher-rank types and impredicativity. In ICFP06, pages 251–262. (pp. 16, 41, 68, and 149)

—. FPH: First-class polymorphism for Haskell. In ICFP08. To appear. (p. 41)

Philip Wadler. Linear types can change the world! In IFIP90, pages 561–581. (pp. 7, 89, and 90)

—. How to declare an imperative. ACM Computing Surveys (CSUR), 29(3):240–263, 1997.
(p. 70)

—. Monads for functional programming. In AFP95, pages 24–52. (p. 65)

242

Bibliography

—. There’s no substitute for linear logic. In MFPS92pre. (p. 77)

—. A syntax for linear logic. In MFPS94, pages 513–529. (p. 77)

—. A taste of linear logic. In MFCS93, pages 185–210. (pp. 17, 54, and 126)

—. Is there a use for linear logic? In PEPM91, pages 255–273. (pp. 7, 88, 89, and 90)

David Wakeling. Linearity and Laziness. PhD thesis, University of York, 1990. (p. 67)

David Walker. Substructural type systems. In Pierce (2005). (pp. 17, 126, 154, and 164)

Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In POPL99, pages
15–28. (pp. 86 and 87)

Peter Wegner. Why interaction is more powerful than algorithms. Communications of the ACM,
40(5):80–91, 1997. (p. 13)

J. B. Wells. The essence of principal typings. In ICALP02, pages 913–925. (p. 43)

—. Typability and type checking in System F are equivalent and undecidable. Annals of Pure and

Applied Logic, 98(1-3):111–156, 1999. (pp. 40 and 119)

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994. (p. 58)

Jialong Zhang and Fenrong Liu. Some thoughts on Mohist logic. In LORI07, pages 85–102.
(p. 18)

243

Bibliography

Conferences

AFP95. Johan Jeuring and Erik Meijer, editors. Proceedings of the 1st international spring

school on Advanced Functional Programming (AFP), volume 925 of Lecture Notes in

Computer Science, 1995. Springer-Verlag. (p. 238)

ASIAN99. P. S. Thiagarajan and R. Yap, editors. Proceedings of the 5th Asian computing science

conference (ASIAN), volume 1742 of Lecture Notes in Computer Science, 1999.
Springer-Verlag. (p. 230)

CAAP92. Jean-Claude Raoult, editor. Proceedings of the 17th Colloquium on trees in Algebra

And Programming (CAAP), volume 581 of Lecture Notes in Computer Science, 1992.
Springer-Verlag. (p. 238)

CiE05. S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors. Proceedings of the 1st

conference on Computability in Europe—New Computational Paradigms (CiE), volume 3526
of Lecture Notes in Computer Science, June 2005. Springer Berlin. (p. 231)

CTCS01. David H. Pitt, Pierre-Louis Curien, Samson Abramsky, Andrew M. Pitts, Axel Poigné,
and David E. Rydeheard, editors. Proceedings of the 4th international conference on Category

Theory and Computer Science (CTCS), volume 530 of Lecture Notes in Computer Science,
1991. Springer-Verlag. (p. 235)

ECOOP96. Pierre Cointe, editor. Proceedings of the 10th European Conference on Object

Oriented Programming (ECOOP), volume 1098 of Lecture Notes in Computer Science, July
1996. Springer-Verlag. (p. 235)

ESOP02. Daniel Le Métayer, editor. Proceedings of the 11th European Symposium on

Programming languages and systems (ESOP), volume 2305 of Lecture Notes in Computer

Science, 2002. Springer-Verlag. (p. 227)

ESOP06. Peter Sestoft, editor. Proceedings of the 15th European Symposium on Programming

languages and systems (ESOP), volume 3924 of Lecture Notes in Computer Science, 2006.
Springer-Verlag. (p. 234)

ESOP92. Bernd Krieg-Brückner, editor. Proceedings of the 4th European Symposium on

Programming (ESOP), volume 582 of Lecture Notes in Computer Science, 1992.
Springer-Verlag. (p. 235)

FLOPS04. Yukiyoshi Kameyama and Peter J. Stuckey, editors. Proceedings of the 7th

international symposium on Functional and Logic Programming (FLOPS), volume 2998 of
Lecture Notes in Computer Science, 2004. Springer-Verlag. (p. 231)

FLOPS08. Jacques Garrigue and Manuel Hermenegildo, editors. Proceedings of the 9th

international symposium on Functional and Logic Programming (FLOPS), volume 4989 of
Lecture Notes in Computer Science, 2008. Springer-Verlag. (p. 234)

FoIKS00. Klaus-Dieter Schewe and Bernhard Thalheim, editors. Proceedings of the 1st

international symposium on Foundations of Information and Knowledge Systems (FoIKS),
volume 1762 of Lecture Notes in Computer Science, 2000. Springer-Verlag. (p. 231)

244

Bibliography

FPCA93. Proceedings of the 6th international conference on Functional Programming languages

and Computer Architecture (FPCA), 1993. ACM. (p. 233)

FPCA95. Proceedings of the 7th international conference on Functional Programming languages

and Computer Architecture (FPCA), 1995. ACM. (pp. 233 and 238)

FPW93. Kevin Hammond and David N. Turner, editors. Proceedings of the 6th Glasgow

Workshop on Functional Programming, Electronic Workshops in Computing, 1993.
Springer-Verlag. (p. 235)

FPWS95. David N. Turner, editor. Proceedings of the 8th Glasgow Workshop on Functional

Programming, Electronic Workshops in Computing, 1995. Springer-Verlag. (p. 233)

FSTTCS93. R. K. Shyamasundar, editor. Proceedings of the 13th conference on Foundations of

Software Technology and Theoretical Computer Science, volume 761 of Lecture Notes in

Computer Science, December 1993. Springer-Verlag. (p. 228)

GRAPH94. Hans Jürgen Schneider and Hartmut Ehrig, editors. Proceedings of the international

workshop on graph transformations in computer science, volume 776 of Lecture Notes in

Computer Science, 1994. Springer-Verlag. (p. 237)

HOOTS00. Proceedings of the 4th international workshop on Higher Order Operational

Techniques in Semantics (HOOTS), volume 41 of Electronic Notes in Theoretical Computer

Science, September 2000. Elsevier. (p. 229)

HOPL07. Proceedings of the 3rd ACM SIGPLAN conference on History Of Programming

Languages (HOPL), 2007. ACM. (p. 233)

HW02. Haskell ’02: Proceedings of the 6th ACM SIGPLAN Workshop on Haskell, 2002. ACM.
(p. 234)

HW04. Haskell ’04: Proceedings of the 8th ACM SIGPLAN Workshop on Haskell, September
2004. ACM. (p. 234)

HW05. Haskell ’05: Proceedings of the 9th ACM SIGPLAN Workshop on Haskell, 2005. ACM.
(p. 237)

ICALP02. Peter Widmayer, Francisco Triguero, Rafael Morales, Matthew Hennessy, Stephan
Eidenbenz, and Ricardo Conejo, editors. Proceedings of the 29th International Colloquium on

Automata, Languages and Programming (ICALP), volume 2380 of Lecture Notes in Computer

Science, 2002. Springer-Verlag. (p. 239)

ICFP02. Proceedings of the 7th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2002. ACM. (p. 228)

ICFP03. Proceedings of the 8th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2003. ACM. (p. 229)

ICFP05. Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2005. ACM. (pp. 227 and 237)

ICFP06. Proceedings of the 11th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2006. ACM. (pp. 236 and 238)

245

Bibliography

ICFP07. Proceedings of the 12th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2007. ACM. (pp. 232, 234, and 236)

ICFP08. Proceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming (ICFP), 2008. ACM. (pp. 234 and 238)

IFIP90. M. Broy and C. B. Jones, editors. Proceedings of the IFIP TC2 WG 2.2/2.3 Working

Conference on Programming Concepts and Methods, April 1990. North-Holland. (p. 238)

IFL01. Thomas Arts and Markus Mohnen, editors. Proceedings of the 13th international

workshop on Implementation of Functional Languages (IFL), volume 2312 of Lecture Notes in

Computer Science, 2002. Springer-Verlag. (pp. 229 and 230)

IFL02. Ricardo Peña and Thomas Arts, editors. Proceedings of the 14th international workshop

on Implementation of Functional Languages (IFL), volume 2670 of Lecture Notes in Computer

Science, 2003. Springer-Verlag. (p. 230)

IFL04. C. Grelck, F. Huch, G. J. Michaelson, and Ph. Trinder, editors. Proceedings of the 16th

international workshop on Implementation and Application of Functional Languages (IFL),
volume 3474 of Lecture Notes in Computer Science, 2004. (p. 237)

IFL05. Andrew Butterfield, editor. Proceedings of the 17th international workshop on

Implementation and Application of Functional language (IFL), volume 4015 of Lecture Notes

in Computer Science, December 2005. (pp. vii, 236, and 238)

IFL06. Zoltán Horváth, Viktória Zsók, and Andrew Butterfield, editors. Proceedings of the 18th

international symposium on Implementation and Application of Functional Languages (IFL),
volume 4449 of Lecture Notes in Computer Science, 2007. Springer-Verlag. (p. 230)

IFL07. Olaf Chitil, Zoltán Horváth, and Viktória Zsók, editors. Proceedings of the 19th

international symposium on Implementation and Application of Functional Languages (IFL),
volume 5083 of Lecture Notes in Computer Science, 2008. Springer-Verlag. (p. 230)

IFL95. Thomas Johnsson, editor. Proceedings of the 7th international workshop on

Implementation of Functional Languages (IFL), 1995. Chalmers University. (p. 231)

LFP94. Proceedings of the 8th ACM conference on LISP and Functional Programming (LFP),
1994. ACM. (p. 233)

LICS02. Proceedings of the 17th annual IEEE symposium on Logic In Computer Science (LICS),
2002. IEEE Computer Society. (p. 237)

LICS07. Proceedings of the 22nd annual IEEE symposium on Logic In Computer Science (LICS),
2007. IEEE Computer Society. (p. 235)

LICS90. Proceedings of the 5th annual IEEE symposium on Logic In Computer Science (LICS),
June 1990. IEEE. (p. 231)

LICS96. Proceedings of the 11th annual IEEE symposium on Logic In Computer Science (LICS),
1996. IEEE Computer Society. (p. 228)

LICS99. Proceedings of the 14th annual IEEE symposium on Logic In Computer Science (LICS),
1999. IEEE Computer Society. (p. 237)

246

Bibliography

LOPSTR01. Alberto Pettorossi, editor. Proceedings of the 11th international workshop on Logic

based Program Synthesis and Transformation (LOPSTR), volume 2372 of Lecture Notes in

Computer Science, 2001. Springer-Verlag. (p. 237)

LORI07. Johan van Benthem, Shier Ju, and Frank Veltman, editors. A Meeting of the

Minds—Proceedings of the workshop on Logic, Rationality and Interaction (LORI), 2007.
College Publications. (p. 239)

MFCS93. Proceedings of the 18th international symposium on Mathematical Foundations of

Computer Science (MFCS), volume 711 of Lecture Notes in Computer Science, 1993.
Springer-Verlag. (p. 239)

MFPS06. Proceedings of the 22nd annual conference on Mathematical Foundations of

Programming Semantics (MFPS), May 2006. Electronic Notes in Theoretical Computer
Science, volume 158. (p. 228)

MFPS89. M. Main, A. Melton, M. Mislove, and D. Schmidt, editors. Proceedings of the 5th

international conference on Mathematical Foundations of Programming Semantics (MFPS),
volume 442 of Lecture Notes in Computer Science, 1990. Springer-Verlag. (p. 236)

MFPS92pre. Informal Proceedings of the 8th international workshop on the Mathematical

Foundations of Programming Semantics (MFPS), April 1992. (p. 239)

MFPS94. Proceedings of the 9th international conference on Mathematical Foundations of

Programming Semantics (MFPS), volume 802 of Lecture Notes in Computer Science, 1994.
Springer-Verlag. (p. 239)

PEPM08. Proceedings of the 18th ACM SIGPLAN symposium on Partial Evaluation and

semantics-based Program Manipulation (PEPM), 2008. ACM. (p. 232)

PEPM91. Proceedings of the 2nd ACM SIGPLAN symposium on Partial Evaluation and

semantics-based Program Manipulation (PEPM), 1991. ACM. (p. 239)

PHILPS95. Manuel Hermenegildo and S. Doaitse Swierstra, editors. Proceedings of the 7th

international symposium on Programming Languages: Implementations, Logics and Programs

(PLILPS), volume 982 of Lecture Notes in Computer Science, 1995. Springer-Verlag. (p. 228)

PLDI02. Proceedings of the 23rd ACM SIGPLAN 2002 conference on Programming Language

Design and Implementation (PLDI), June 2002. ACM. (p. 231)

POPL06. Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 2006. ACM. (p. 230)

POPL08. Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 2008. ACM. (p. 227)

POPL82. Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1982. ACM. (p. 230)

POPL90. Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1990. ACM. (p. 235)

247

Bibliography

POPL91. Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1991. ACM. (pp. 234 and 235)

POPL93. Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1993. ACM. (pp. 234 and 236)

POPL96. Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1996. ACM. (p. 235)

POPL99. Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL), 1999. ACM. (p. 239)

PROGSYM74. B. Robinet, editor. Proceedings of the 1st Symposium on Programming,
volume 19 of Lecture Notes in Computer Science, 1974. Springer-Verlag. (p. 237)

SEGRAGRA95. Corradini and Montanari, editors. Proceedings of the joint

COMPUGRAPH/SEMAGRAPH workshop on graph rewriting and computation (SEGRAGRA),
1995. Elsevier Electronic Notes in Theoretical Computer Science. (p. 228)

TACS01. Naoki Kobayashi and Benjamin C. Pierce, editors. Proceedings of the 4th international

symposium on Theoretical Aspects of Computer Software (TACS), volume 2215 of Lecture

Notes in Computer Science, 2001. Springer-Verlag. (p. 236)

TAPSOFT89. Josep Díaz and Fernando Orejas, editors. Proceedings of the 3rd international joint

conference on Theory And Practice of Software development (TAPSOFT), volume 352 of
Lecture Notes in Computer Science, 1989. Springer-Verlag. Volume 2 of the conference
proceedings. (p. 231)

TFP05. Marko van Eekelen, editor. Proceedings of the 6th symposium on Trends in Functional

Programming (TFP), volume 6 of Trends in Functional Programming, 2007. Intellect. (p. 234)

TFP06. Henrik Nilsson, editor. Proceedings of the 7th symposium on Trends in Functional

Programming (TFP), volume 7 of Trends in Functional Programming, 2007. Intellect. (pp. 233
and 236)

TFP06pre. Informal proceedings of the 7th symposium on Trends in Functional Programming

(TFP), 2006. (p. 230)

TFP07pre. Marco T. Morazán and Henrik Nilsson, editors. Informal proceedings of the 8th

symposium on Trends in Functional Programming (TFP), 2007. Seton Hall University.
Technical report TR-SHU-CS-2007-04-1. (p. 230)

THOLs00. Mark Aagaard and John Harrison, editors. Proceedings of the 13th international

conference on Theorem Proving in Higher Order Logics (TPHOLs), volume 1869 of Lecture

Notes in Computer Science, 2000. Springer-Verlag. (p. 230)

TLCA93. M. Bezem and J. F. Groote, editors. Proceedings of the 1st international conference on

Typed Lambda Calculi and Applications (TLCA), volume 664 of Lecture Notes in Computer

Science, 1993. (p. 236)

TLDI07. Proceedings of the 3rd ACM SIGPLAN international workshop on Types in Language

Design and Implementation (TLDI), 2007. ACM. (p. 238)

248

Bibliography

TPHOLs08. Otmane Ait Mohamed, César Mu noz, and Sofiène Tahar, editors. Proceedings of

21st international conference on Theorem Proving in Higher Order Logics (TPHOLs), volume
5170 of Lecture Notes in Computer Science, 2008. Springer-Verlag. (p. 228)

TYPES07. Marino Miculan, Ivan Scagnetto, and Furio Honsell, editors. Proceedings of the 6th

international conference on Types for proofs and programs (TYPES), volume 4941 of Lecture

Notes in Computer Science, 2008. Springer-Verlag. (p. 230)

WGP08. Proceedings of the 8th ACM SIGPLAN Workshop on Generic Programming (WGP),
2008. ACM. (p. 238)

WGT08. Proceedings of the Workshop on Generative Technologies (WGT), April 2008. Elsevier.
Electronic Notes in Theoretical Computer Science. (p. 237)

WRS07pre. Jürgen Giesl, editor. Informal proceedings of the 7th international Workshop on

Reduction Strategies in rewriting and programming (WRS), June 2007. (p. 229)

249

Index

“!”-style syntax, 77

Abramsky, 89
abstract use, 95, 105
abstraction, 11
adjoint, 74
adjunction, 74
admissible, 53
affine logic, 53, 88, 217
algebraic data type, 37

and recursion, 70
algorithmM, 44
algorithmW , 44, 125, 134
alpha-equivalence, 160
annotation, see type annotation
anonymous object (in the STPLC), 97
application, 11

in the sequent calculus, 22
apply, 123, 132
Aristotle, 17
arrow (in category theory), 73
aspect, 105
Attr (type-level operator), 143
attributes as types, 143, 203
axiom, 20

backwards compatibility with Clean, 214
backwards reasoning, 165
Barendregt convention, 20
Barendregt cube, 29
beta-reduction, 54
BHK interpretation, 19
BI, 112, 221
bidirectional type system, 48
big-step semantics, 58
Boole, 25
boolean attribute, 129

versus inequality constraints, 199
boolean unification, 25, 134
Boolos, 19
boxy types, 41
Brouwer, 19
Brouwer-Heyting-Kolmogorov interpretation,

see BHK interpretation
Bunched Implication, see BI

Calculus of Constructions, see Coq
call-by-name evaluation, 56, 154
call-by-need evaluation, 57, 154
call-by-value evaluation, 56
cartesian product

in linear logic, 105
see also dependent function space, 33

category, 73
category theory, 73
ceiling operator (de), 122, 138, 209
Church-style, see explicitly typed lambda cal-

culus
Church-Turing thesis, 11
Clean, 78
closure attribute, 117, 131, 147
closure typing, 113, 201, 204

and polymorphic uniqueness, 137
cofinite quantification, 162
Command-Query principle, 14
commutative monad, 70
compatible closure, 54
composition of substitutions, 23
compositionality, 43
computability, 11
conclusion, 20
conjunction, 20
conservativity, 218
consistency condition, 27

250

Index

constraint variable, 123, 139, 212
constructive logic, 17
context, 54
context splitting, 154, 164, 167
continuations, 13
contraction, 53
contravariance, 46
Coq, 34, 159
Curry, 70
Curry-Howard isomorphism, 12
Curry-style, see implicitly typed lambda calcu-

lus
Cyclone, 113

Damas/Milner type system, 41
data-type generic programming, see polytypic

programming
DDC, 113
De Bruijn indices, 161
definiteness, 14, 61
denotational semantics, 77
dependent function space, 33
dependent type, 32
dependent types, 221
dereliction, 88
disjunction, 20
domain

of a substitution, 23
domain free type system, 39
domain subtraction (), 131, 165
dup, 81, 97, 116, 146, 147, 156

elimination rule, 20
environment, 163
environment based I/O, 13
equational logic, 23
equational unification, 23
equivalence, 160
equivariance, 160
error messages, 220
essentially unique, see necessarily unique
evaluation context, 167
evaluation strategy, 54
exchange, 53
excluded middle, see law of

explicitly typed lambda calculus, 31

exponential (in category theory), 75
extensionality, 61

False (in Coq), 34
first-class pattern matching, 151, 211
first-class polymorphism, 38
fixed point combinator, 70
floor operator (bc), 210
Formal Metatheory, 162
formal proofs, 218
formalization, 218
forward reasoning, 165
FPH, 41
fresh variable, 44, 162
fst, 81
functional programming, 11
functor, 73

GADT, 140, 205
generalization, 39, 43
generalized algebraic data type, see GADT
generic programming, see polytypic program-

ming
Gentzen, 20
Girard, 36, 87
graph rewriting, 15, 78
ground expression, 26
Guzmán, 95

Harrington, 91
Heyting, 19
Hindley/Milner type system, 41
HMF, 51, 149, 208
HML, 41
hole, 54
Hom-functor, 74
Huntington, 25

identity, 23
imperative programming, 11
implication, 20
implicitly typed lambda calculus, 31, 39
impredicative, 51
impredicativity, 208
inductive data types, 34
instance

251

Index

of a substitution, 23
instantiation, 39
integration in Clean, 214
interaction, 13
interference (in separation logic), 112
introduction rule, 20
intuitionism, 18
invariance, 51, 209
inversion, 165

Jevons, William, 25
Jones, 72
judgement, 20

kind, 31, 203
inference, 144
row, 151
system, 143
T , 143
U , 143

Kleisli category, 75, 94
Kolmogorov, 19

lambda calculus, 11
law of the excluded middle, 18
lazy evaluation, 57

and side effects, 64
left introduction rule, 22
Leibniz’ Law, 60
let construct, 42
let polymorphism, 41
LFPL, 105
liability system, 95, 102
linear logic, 53, 86, 87

and partial application, 89
versus uniqueness typing, 88

LLF, 221
locally nameless approach, 161
logic, 12, 17
logical entailment, 125
Löwenheim’s Formula, 26

M, see algorithmM
Mercury, 108, 202
Metaphysica, 17
ML, 113

MLF, 41
mode

declaration, 109
system, 109

Mohist school, 17
monad, 13, 65

in category theory, 75
versus uniqueness typing, 66

monotype, 42
more general

substitution, 23
Morrow, 149, 208
most general

type, see principal type
unifier, 23

Mozi (¨P), 17
mutual recursion, 71

natural deduction, 20
natural semantics, see big-step semantics
natural transformation, 74
necessarily unique, 82, 126, 147, 204
negative occurrence, 35

object (in category theory), 73
observer types, 84, 90, 219
Odersky, 102
Odersky/Läufer type system, 45, 46
operational semantics, 54
ordered logic, 53
overloading, 215

paradox, 18
partial application, 82, 89, 92, 110, 117, 130,

146, 201, 204
partiality monad, 71
PCF, 12
polymorphic reference, 113
polymorphic type, 31
polytype, 42
polytypic programming, 15, 216
positivity requirement, 35
practical type inference for arbitrary rank types,

see PTI
predicative fragment of System F, 38
premise, 20

252

Index

prenex form, 41, 46
preservation lemma, see subject reduction
principal type, 40, 218
product (in category theory), 75
program equivalence, 77
progress lemma, 58, 155
Prolog, 108
Prop (in Coq), 34
propagation, 81, 110, 204, 219
propositional logic, 20
PTI, 46, 135, 136
purity, 60, 62, 219

qualified type, 72
Quine, 59

rank of a type, 38
rank-n fragment of System F, 38
read-only access, 83, 90, 100
records and variants, 151, 208
recursion, 70

and uniqueness, 83
recursive let, 71
recursive types, 70
reference count analysis, 84, 124, 148, 153
referential transparency, 59
regularity, 168
relational parametricity, 77
relevant logic, 53
reproductive unifier, 23
Reynolds, 36
right introduction rule, 22
Rigid MLF, 41
rigid type annotation, 208
RLF, 221
row, 151
Russell’s paradox, 18

SAC, 106
SAFE, 113
self-application, 70
self-reference, 18
separation logic, 112
sequent calculus, 22
Set (in Coq), 34
sharing, 57, 84

sharing analysis, 86
see also reference count analysis, 84

side effect, 59
signature, 23
simply typed lambda calculus, see STLC
Single Assignment C, see SAC
single threaded polymorphic lambda calculus,

see STPLC
skolem constants, 26
skolemization, 49
small-step semantics, 58
sneakyDup, 82, 97, 131, 146, 156
“some” binder (∃∃), 213
soundness, 58, 154, 159
split world state, 69
standard call-by-need reduction, 157
state, 14
steadfast linear types, 90
STLC, 20
STPLC, 84, 95

simplification by Odersky, 102
stream based I/O, 13
strictDup, 84, 97
structural rules, 53
stuck, 12
subject reduction, 58, 156
substitution, 23
substitution lemma, 156
substructural logic, 52

and side effects, 62
predicate ∼, 221

subsumption, 45, 122, 139
check, 49
evidence of, 46

subtyping, 80, 126, 147, 201
and polymorphism, 147

successive variable elimination, 26
swap, 83, 154, 207
syntactic unification, 24
syntax, 77, 211
syntax directed, 43
syntax directed version of the

Hindley/Milner type system, 43
Odersky/Läufer type system, 46

System F, 36

253

Index

System F2, 39
System FA, 37
System Fω, 37

tensor product, 105
term, 23
thunk, 86
to operator, 151, 210
triple, see monad
True (in Coq), 34
Turing machine, 11
type

abstraction, 39
annotation, 45, 208
application, 39
assignment system, 39
classes, 215
equivalence, 166
inference, 40, 218
scheme, 40, 203
system, 12

Type (in Coq), 34
type and effect systems, 112
typing

derivation, 20
judgement, 20

unambiguous (qualified) type, 72, 200
unfoldability, 61
unification, 24

under a mixed prefix, 50
unifier, 23
uniqueness

and higher rank types, 86, 118, 135
and principal types, 127
category, 93
correction, 82, 116, 127, 210
logic, 91
propagation, see propagation
typing, 13, 78
variables, 81
versus linear logic, 88
versus monads, 66

universal algebra, 22
Universal Turing machine, 11
universe, 31

variable, 11

W , see algorithmW
Wadler, 89
weakening, 53
world, 13, 63, 80
wrong (in big-step semantics), 58

254

	Title
	Declaration
	Summary
	Acknowledgements
	Contents
	List of Figures
	Notational Conventions
	Introduction
	Computability
	Type systems
	Interaction
	Purity
	Overview of this dissertation

	Background
	Logic
	On constructive logic
	Natural deduction
	Sequent calculus

	Universal Algebra
	Basic Definitions
	Unification
	Syntactic unification
	Boolean Unification

	Explicitly typed lambda calculus
	Explicit versus implicit typing
	Hierarchy of types
	Dependency
	The expression language
	Calculus of Constructions

	System FA
	System F
	Algebraic data types
	System FA
	Fragments of System F

	Implicitly typed lambda calculus
	Let polymorphism
	Odersky/Läufer
	Practical type inference for arbitrary rank types
	HMF

	Substructural logics
	Operational semantics and soundness
	Call-by-value
	Call-by-name
	Call-by-need
	Soundness
	On small-step semantics

	Side effects
	Referential transparency
	Leibniz' Law, extensionality, definiteness and unfoldability
	Purity
	Substructural logics
	Laziness
	Monads
	Uniqueness typing versus Monads

	Language extensions
	Recursion
	Qualified types

	Category theory
	Fundamental concepts
	Products, exponentials and currying
	Monads

	Related Work
	An aside on syntax
	Uniqueness typing
	Introduction
	Subtyping
	Uniqueness propagation and polymorphism
	Partial application
	Recursion
	Read-only access
	Reference count analysis
	Uniqueness typing and sharing analysis

	Linear logic
	Linear logic versus uniqueness typing
	Wadler's type systems
	Observable linear types

	Uniqueness logic
	Affinity
	Partial application
	Exponentials in a non-unique context

	Single-threaded polymorphic lambda calculus
	Intuition
	Typing rules
	Strict application
	Polymorphic liabilities
	``How to make destructive updates less destructive''
	Relevance of linearity

	Other related work
	LFPL
	SAC
	Mercury
	Bunched Implications
	Separation logic
	Type and effect systems

	Scaling Uniqueness Typing to Arbitrary Rank Types*
	Rank-1 typing rules
	The Language
	Integers
	Variables
	Abstractions
	Application

	Arbitrary Rank Types
	Variables
	Abstraction
	Application
	Annotated Lambda Abstractions
	Subsumption

	Examples
	Type Inference
	Comparison with Clean
	Notes

	Removing Inequality Constraints*
	Typing the core -calculus
	Variables
	Abstraction
	Application
	Examples
	Reflection on the core system
	Type inference

	Arbitrary Rank Types
	Arbitrary rank types
	Modifications to deal with uniqueness
	Polymorphic uniqueness and closure typing
	Complications due to inequalities

	Generalized algebraic data types
	Notes

	Simplifying the Type System*
	Attributes Are Types
	The core system
	Variables
	Partial Application
	Abstraction and Application

	On Subtyping
	Implementation in Morrow
	Modifying the type system
	Supporting records and variants
	Multiple field accesses

	Soundness
	Metatheoretical musings
	Notes

	Formalization*
	Note on the proofs
	Equivalence
	Lambda terms
	Environments
	Boolean expressions

	Inversion
	Domain subtraction
	Type equivalence
	Evaluation contexts

	Definitions
	Types
	Kinding relation
	Environment
	Operations on the typing context
	Typing relation
	Semantics

	Preliminaries
	Some additional lemmas about ok and binds
	Renaming Lemmas
	Term opening
	Domain subtraction
	Kinding properties
	Well-formedness of environments
	Regularity
	Well-founded induction on subterms
	Iterated domain subtraction
	Context split
	Type equivalence
	Non-unique types
	Equivalence of environments.
	Range

	Properties of the typing relation
	Kinding properties
	Free variables
	Consistency of E and fvars
	Weakening
	Exchange
	Inversion lemmas

	Soundness
	Progress
	Preservation

	Conclusions and Future Work
	An exploration of the design space
	Boolean attributes versus inequality constraints
	Subtyping
	Attributes as types
	Uniqueness propagation in constructors or destructors
	Number of aspects considered

	Future work
	Simplifying the type language
	Simplifying types
	Improving Impredicativity
	Syntactic sugar
	Integration in Clean
	Embedding affine logic
	Formalization
	Purity
	Observer types
	Improving error messages
	Dependent types

	Coda

	Boolean algebra
	Boolean algebra
	Abstraction over the structure of terms
	Huntington's postulates
	Setup for Coq setoids
	Derived Properties
	``Non-standard'' properties (not proven in Goodstein)
	Conditional

	Bibliography
	Index

