
Equality-Based Uniqueness Typing

Edsko de Vries⋆1, Rinus Plasmeijer2, and David M Abrahamson1

1 Trinity College Dublin, Ireland, {devriese,david}@cs.tcd.ie
2 Radboud Universiteit Nijmegen, Netherlands, rinus@cs.ru.nl

Abstract

Uniqueness typing can be used to add side effects to a functional programming lan-

guage without losing referential transparency. Unfortunately uniqueness types often

involve implications between uniqueness attributes, which complicates type infer-

ence and incorporating modern extensions such as arbitrary rank types. In this paper

we show how to avoid these difficulties by recoding attribute inequalities as attribute

equalities, and use this technique to define an arbitrary rank uniqueness type system.

1 INTRODUCTION

Referential transparency is an important feature of languages such as Clean and

Haskell and is treasured because it facilitates reasoning about programs. A conse-

quence of insisting on referential transparency is that functions must not be allowed

to modify their arguments. For example, given the definition of split (△):

f △ g= λx · (f x,gx)

we would expect to be able to prove that for all functions f ,

snd◦ (f △ id) = id

but this will only hold if f does not modify its argument. It is however safe for a

function to modify its argument if the function has the sole reference to that argu-

ment. This is the basis of substructural type systems such as Clean’s uniqueness

type system and the one we present here. As an example, consider a function clear-

Array that sets all values in an array to zero. Since clearArray will destructively

modify its argument, it has the following type:

clearArray :: Array•
u f
−→
×
Array•

The details of this type will become clear in the rest of this paper. Suffice to say

at this point that the uniqueness attribute (•) in the domain of the function type
indicates that clearArray requires a unique reference to an array; likewise, the

codomain of the function indicates that clearArray promises to return a unique

reference to an array. An expression such as clearArray △ id then is ill-typed be-

cause clearArray must share its argument with id. We will consider the type of △

in Section 3.3.
⋆Supported by the Irish Research Council for Science, Engineering and Technology.

XI–1

Uniqueness typing is a more fundamental approach to adding side effects to a

functional language than the monadic approach used in Haskell, since uniqueness

typing can be used to typecheck the definition of the monad. Besides, using unique-

ness typing we can write more informative types: a function in the IOmonad could

have any effect at all, whereas clearArray is very explicit about what it affects. Fi-

nally, functions that require their arguments to be unique can be applied and com-

posed like any other function, but functions with a monadic type require quite a

different style of programming. Of course, monads are useful even in a language

with uniqueness typing, but are better regarded as a design pattern rather than “the

way to do side effects”.

However, uniqueness types often have constraints (implications between unique-

ness attributes) associated with them. InClean, for example, fst (the function which

returns the first element of a pair) has type

fst :: (au,bv)w→ au, [w ≤ u,w ≤ v]

The constraint [w ≤ u] denotes that w must be unique if u is (u implies w). To
understand the need for this constraint, suppose we have a pair with elements x :: a

and y :: b. The only references to these elements are from this pair, so a and b get

a unique (•) attribute. Further, suppose that there are two references to the pair,
making the attribute of the type of the pair non-unique (×). Visually:

(·, ·) :: (a•, b•)×

x :: a• y :: b•

If we could extract a unique element from a non-unique pair, we could extract x

from the pair and modify it. But then the value of x as seen through the second

reference will also change, and referential transparency is lost. So, we can only

extract a unique element from a container if the container is unique itself (w≤ u).
Although these constraints are important, they complicate the work of the type

checker (unification cannot deal with inequalities) and make extending the type

system to support modern features such as arbitrary rank types difficult (Section

6.3). In this paper we show how we can recode the attribute inequalities as attribute

equalities. This results in a uniqueness type system which is sufficiently like the

Hindley/Milner type system that standard type inference algorithms can be applied,

and that modern extensions can easily be incorporated using existing techniques.

2 SHARING ANALYSIS

The typing rules we will present in this paper depend on a sharing analysis which

marks variable uses as exclusive (⊙) or shared (⊗). This sharing analysis could
be more or less sophisticated [1], but if in any derivation of the program the same

XI–2

variable could be evaluated twice, it must be marked as shared. In this paper, we

assume sharing analysis has been done, leaving a formal definition to future work.

Here we consider a few simple examples only. The identity function is marked as

id= λx · x⊙

since there is only one reference to x in the body of id. In the definition of split,

however, there are two references to the same variable, which must therefore be

marked as shared:

f △ g= λx · (f⊙ x⊗,g⊙ x⊗)

The sharing analysis does not make a distinction between variables that correspond

to functions and variables that correspond to function arguments. For example, the

function twice is marked as

twice= λ f ·λx · f⊗ (f⊗ x⊙)

3 TYPING THE CORE λ−CALCULUS

We present a uniqueness type system for the lambda calculus which does not in-

volve implications. The expression and type language are defined in Figure 1.

The expression language is the standard lambda calculus, except that variables are

marked as exclusive (x⊙) or shared (x⊗). The type language includes base types,

type variables and the function space, all of which get a uniqueness attribute in-

dicating whether there is more than one reference to a term. For instance, a term

of type Int• is a unique integer (only one reference), but a term of type Int× is a

non-unique integer (unknown number of references). We call such a type together

with its uniqueness attribute an attributed type. The domain and codomain of the

arrow (function space constructor) are both attributed types, and the arrow itself

gets two attributes: the “normal” uniqueness attribute ν (indicating whether there

is more than one reference to the function) and an additional “closure attribute” νc,

which is the disjunction of all attributes on the types of the elements in the closure

of the function. This is further discussed in Section 3.2.

We treat a uniqueness attribute as a boolean expression, reading True (unique)

for “•” and False (not unique) for “×”, and allow for arbitrary boolean expres-
sions involving variables, negation, conjunction and disjunction as uniqueness at-

tributes1. This definition of attributes is different from their definition in our pre-

vious paper [2] where (like in Clean) we only allow for unique, non-unique and

variables. It may not be immediately obvious why this is useful, but as it turns out,

all the improvements of the system as presented in this paper over the previous are

made possible by this one change in the type language.

The typing relation itself takes the form

Γ ⊢ e : τν|fv
1Although the typing rules only introduce disjunctions, unification may introduce

more complicated types also involving conjunctions and negation.

XI–3

e ::= expression ν ::= attribute

x⊙ variable (exclusive) u attribute variable

x⊗ variable (shared) • unique

λx · e abstraction × non-unique

ee application ¬ν negation

ν1&ν2 conjunction

τν ::= attributed type ν1|ν2 disjunction

Bν base type

aν type variable

τν1
1

ν
−→
νc

τν2
2 function space

FIGURE 1. Expression and type language for the core system

which reads as “in environment Γ, expression e has attributed type τν; the attributes

on the types of the free variables in e are fv”. We represent fv as a relation Var×
Attribute; its purpose will become clear when we discuss the rule for abstraction in

Section 3.2. The environment maps expression variables to attributed types.

Note the conspicuous absence of constraints in the type language. We will

explain how we deal with this when we discuss the individual typing rules.

3.1 Variables

To check that a variable x marked as exclusive has attributed type τν, we simply

look up the variable in the environment2 . For shared variables, we need to correct

the type found in the environment to be non-unique. In both cases we also record

the uniqueness attribute of the type of the variable (see Section 3.2).

Γ,x : τν ⊢ x⊙ : τν|(x,ν)
VAR⊙

Γ,x : τν ⊢ x⊗ : τ×|(x,×)
VAR⊗

VAR⊗ does not require the type in the environment to be non-unique. This effec-

tively means that variables can lose their uniqueness3 . For example, consider the

function mkPair = λx · (x⊗,x⊗). Both components of the pair point to the same
element, which is therefore non-unique by definition. Thus the type of mkPair is

mkPair :: au
u f
−→
×

(a×,a×)v

The attributes on the arrow will be explained in the next section.

2When a variable usage is marked as exclusive, that does not automatically make its

type unique; for example, the identity function λx · x⊙ has type au→ au, not au→ a•. In
other words, sharing analysis just notes that there is only one reference to x in the body of

the identity function; however, when a non-unique argument is passed to id, it will still be

non-unique when it is returned again.
3This is also the main difference between a uniqueness type system and an affine type

system, where variables are either affine or not, but cannot lose their “affinity”.

XI–4

3.2 Abstraction

Before we discuss the rule for abstraction, we must first point out a subtlety due to

partial application. Consider the function that returns the first of its two arguments:

const = λx ·λy · x⊙

Temporarily ignoring the attributes on arrows, const has type

const :: au→ bv→ au

Given const, what would be the type of

funnyMkPair = λx · let f = const x⊙ in (f⊗ 1, f⊗ 2)

It would seem that since f has type bv→ au, this term has type

funnyMkPair :: au→ (au,au)w

but this is clearly wrong: the elements in the result pair are shared, so the attribute

on their types must be non-unique.

Recall from the introduction that if we want to extract a unique element from

a container, the container must be unique itself. When we execute a function, the

function can extract elements from its closure (the environment which binds the

free variables in the function body). If any of those elements is unique, executing

the function will involve extracting unique elements from a container (the closure),

which must therefore be unique itself. Since we do not distinguish between a

function and its closure in the lambda calculus, this means that the function must

be unique. Thus a function needs to be unique on application (that is, a function can

be applied only once) if the function can access unique elements from its closure.

The function type must therefore be modified to indicate whether there are any

unique elements in the closure of the function. This is the purpose of the second

uniqueness attribute on arrows (νc), which is the disjunction of all the attributes

on the types of the elements in the closure of the function4. Going back to the

example, the full type of f in the definition of funnyMkPair is therefore

f :: bv
u f
−→
u
au

One way to read this type is that if you want a unique a to be returned from f , f

must be unique on application. In the definition of funnyMkPair, f is not unique

(u f = ×) when applied since it is marked as shared, so the actual type of funnyMk-
Pair is (see also Section 4):

funnyMkPair :: a×
u f
−→
×

(a×,a×)w

4Those elements which are used. Unused elements can safely be ignored.

XI–5

It should now be clear why the typing rules record the attributes on the free vari-

ables in an expression: we need this information to determine νc. Using
W

fv to

denote the disjunction of all attributes in the range of fv, and x fv (domain subtrac-

tion) to denote fv with x removed from the domain of fv, we obtain

Γ,x : τν1
1 ⊢ e : τν2

2 |fv

Γ ⊢ λx · e : τν1
1

ν f
−−−−→
W

(x fv)

τν2
2 |

x fv

ABS

We must remove x from fv because x is not free in λx · e5.

3.3 Application

As we have seen, some functions must be unique on application; this is enforced

in the typing rule for application. Perhaps the most natural way to model this

requirement is to use an inequality:

Γ ⊢ e1 : τ
ν1
1

ν f
−→
νc

τν2
2 |fv Γ ⊢ e2 : τ

ν1
1 |fv′ ν f ≤ νc

Γ ⊢ e1 e2 : τ
ν2
2 |fv∪ fv′

CONSTRAPP

The implication [ν f ≤ νc] (νc implies ν f) expresses the requirement that the func-

tion must be unique (ν f) if it has any unique elements in its closure (νc). How can

we model the requirement ν f ≤ νc without using constraints? The easiest solution

is to require that ν f = νc:

Γ ⊢ e1 : τ
ν1
1

νc−→
νc

τν2
2 |fv Γ ⊢ e2 : τ

ν1
1 |fv′

Γ ⊢ e1 e2 : τ
ν2
2 |fv∪ fv′

APP

While this rule is technically more restrictive than CONSTRAPP, in practice the

programmer will not notice the difference. We will discuss this issue in more depth

in Section 4.

3.4 Examples

We discuss two examples. First, we consider the type of apply = λ f ·λx · f⊙x⊙:

apply :: (au
uc−→
uc
bv)

u f
−→
×
au
u f ′
−→
uc
bv

Unsurprisingly, apply takes a function f from a to b, and a term of type a, and

returns a term of type b. Since apply f applies f , if f must be unique on application,

it must be unique when passed as an argument to apply (in the type of apply, this

requirement is encoded by specifying that f must have the same attribute below

5We use the Barendregt convention and assume that all bound variables are distinct.

XI–6

and above the arrow). Finally, if f is unique, then apply f must be unique on

application, since it can extract a unique element from its closure (to wit, f).

The type of △, discussed in the introduction, may look a bit intimidating, but

is only slightly more complicated:

△:: (a×
u1−→
u1
bv)

u f
−→
×

(a×
u2−→
u2
cw)

u f ′

−→
u1
au

u f ′′

−−−→
u1|u2

(bv,cw)z

In words, △ wants two functions f and g, which return a bv and a cw, given a non-

unique a, and returns a pair of type (bv,cw)z. If either f or g must be unique on
application, then they must be unique when they are passed as arguments to △, as

△ will apply them. Finally, f △ g must itself be unique on application when either

f or g is unique, because if they are, f △ g will be able to extract unique elements

from its closure (i.e., f and g) when it is applied. The function clearArray from

the introduction cannot be passed as an argument to △ since it does not accept

non-unique arguments (Array• does not unify with a×).

4 REFLECTION ON THE CORE SYSTEM

In Section 3.3, we removed the implication from CONSTRABS by replacing the

implication [ν f ≤ νc] by [ν f = νc]. It is possible to remove the implication without
giving a more restrictive rule by using disjunction with a free variable:

Γ ⊢ e1 : τ
ν1
1

ν f |νc
−−−→

νc
τν2
2 |fv Γ ⊢ e2 : τ

ν1
1 |fv′

Γ ⊢ e1 e2 : τ
ν2
2 |fv∪ fv′

APP′

When νc =×, ν f |νc reduces to ν f (a free variable), but when νc = •, ν f |νc reduces
to •. So, when νc =× (when there are no unique elements in the function closure),
the function may or may not be unique, but when νc = •, the function must be
unique, which is exactly what the constraint [ν f ≤ νc] specified. We nevertheless
prefer rule APP (requiring that ν f = νc), since it leads to more readable types. For

example, based on rule APP′, split would have the type

△ :: (a×
u f1 |ua1−−−−→
ua1

bv)
u f
−→
×

(a×
u f2 |ua2−−−−→
ua2

cw)
u f ′

−−−−→
u f1 |ua1

au
u f ′′

−−−−−−−−→
u f1 |ua1 |u f2 |ua2

(bv,cw)z

However, we claimed that rule APP is not as restrictive as it may seem. An expres-

sion will be rejected by APP but allowed by APP′ if and only if the function that

we are applying is unique, but does not have any unique elements in its closure; so,

if we have an expression f x where f has type

f :: au
•
−→
×
bv

Clearly • does not unify with ×, so rule APP will reject this application. The cor-
responding error message will be a bit mystifying: “The function you are applying

XI–7

is too unique. Use it more often!”. Of course, this is a consequence of replacing

the implication by an equality. However, barring type annotations, that type will

never be inferred for a term! Instead, the following type would be inferred:

f :: au
u f
−→
×
bv

That is, the function will be polymorphic in its uniqueness rather than actually be

unique. None of the typing rules even mention • anywhere! The typing rules force
terms to be non-unique if they are shared, but they never force them to be unique.

Given the latter type of f , rule APP has no difficulty typing the application, since

u f trivially unifies with ×.
The reader might wonder why it is useful to distinguish between the unique-

ness of the function and the (disjunction of) the uniqueness of the elements in the

closure of the function, if we insist that they must be the same on application. It

is in fact possible to collapse these two attributes into the one attribute, and use

the uniqueness attribute of the function for both. Then a function must be unique

if it has any unique elements in its closure, and must remain unique. This is the

approach taken in Clean, but it complicates the type system. For example, the func-

tion mkPair from Section 3.1 must be assigned the type a×
u f
−→
×

(a×,a×)v instead of

au
u f
−→
×

(a×,a×)v, because the latter type would allow us to duplicate a function with

unique elements in its closure (and then apply that function twice). To make this

type less restrictive, Clean then introduces subtyping, but that brings complications

of its own. By distinguishing between the two attributes (which really do represent

different properties of the function), the requirement that a function with unique

elements in its closure must be unique on application becomes a local requirement

in the rule for application, and does not complicate the rest of the type system.

Finally, the reader may have been surprised and expected the type inferred

for funnyMkPair to be the same as the type for mkPair. The reason that it is not

(but is more restrictive) is due to rule VAR⊙. When a variable usage is marked as

exclusive, rule VAR⊙ states that the type of the variable is equal to the type listed

for the variable in the environment. It is possible to relax this rule to

Γ,x : τν|ν′ ⊢ x⊙ : τν|(x,ν)

VAR′⊙

With this rule a variable whose type is listed as non-unique in the environment must

be non-unique (as before), but when the type of the variable in the environment is

listed as unique, this rule places no restrictions on the attribute of the type derived

for x (if ν|ν′ = •, either ν or ν′ must be unique, but they do not both have to be

unique). With VAR′⊙ funnyMkPair will indeed have the same type asmkPair, but at

a cost: types become more complicated. For example, the identity function would

have the type

λx · x⊙ :: au|v
u f
−→
×
au

XI–8

which is correct, but perhaps more difficult to understand than the type derived for

the identity function using rule VAR⊙ (au
u f
−→
×
au).

5 TYPE INFERENCE

One advantage of removing constraints from the type language is that standard

inference algorithms (such as algorithm W [3]) can be applied without any mod-

ifications. The inference algorithm will depend on a unification algorithm, which

must be modified in two ways. It must treat a unification goal τν1
1

.
= τν2
2 as two sep-

arate goals τ1
.
= τ2 and ν1

.
= ν2 (in other words, base types and their attributes must

be unified independently), and it must be adapted to deal with boolean expressions.

The rest of this section explains how boolean unification works.

Suppose we have two terms g and h

g :: a•
u f
−→
×

. . . h :: au|v

Should the application gh be allowed? If so, we must be able to unify u|v and •.
Of course, this equation has many solutions, for example

[

u 7→ •
v 7→ v

] [

u 7→ u
v 7→ •

] [

u 7→ •
v 7→ •

]

(Recall that we treat attributes as boolean expressions.) Unfortunately none of

the solutions listed above is most general, and it not obvious that the equation

u|v = • even has a most general unifier, which means we would lose principal
types. Fortunately, unification in a boolean algebra is unitary [4]. In other words,

if a boolean equation has a solution, it has a most general solution. In the example,

one most general solution is
[

u 7→ u
v 7→ v|¬u

]

There are two well-known algorithms for unification in a boolean algebra, known

as Löwenheim’s formula and successive variable elimination. For the core sys-

tem from Section 3 either will work, but when we introduce arbitrary rank types

(Section 6), only successive variable elimination is practical6. The description of

successive variable elimination we give here combines the methods from [4] and

[5]. Switching temporarily to the usual notation for boolean algebra (using + for

6Löwenheim’s formula maps any unifier to a most general unifier, reducing the

problem of finding an mgu to finding a specific unifier. For the two-element boolean

algebra, that is very simple (just try all possible instantiations of the variables) but it is not

so easy in the presence of skolem constants (Section 6.3). Skolem constants introduce new

elements into the boolean algebra, making it much more difficult to guess ground unifiers.

For example, assuming that uR and vR are skolem constants, and w is a uniqueness

variable, the equation uR|vR
.
= w has an obvious solution [w 7→ uR|vR], but we can no

longer guess this solution by instantiating all variables to either true (•) or false (×).

XI–9

unify0 :: BooleanAlgebra a⇒ [Var] → a→ (Subst a,a)

unify0 [] t = ([], t)

unify0 (x : xs) t = (st ∪se,cc)

where

st = [x 7→ se t0+ x · se (¬t1)]

(se,cc) = unify0 xs (t0 · t1)

t0 = [x 7→ 0] t

t1 = [x 7→ 1] t

FIGURE 2. Boolean unification

disjunction, · for conjunction, ¬ for negation, and 1 and 0 for True and False), to
unify two terms p and q of a boolean algebra it suffices to unify

t = (p ·¬q)+ (¬p ·q) = 0

This is implemented by unify0, shown in Figure 2, which gets a term t in a

boolean algebra a and the list of free variables in t as input, and returns a substitu-

tion and the “consistency condition”, which will be zero if unification succeeded.

6 ARBITRARY RANK TYPES

We claim in this paper that our core uniqueness system is sufficiently similar to a

standard Hindley/Milner type systems that modern extensions can be added with-

out much difficulty. To substantiate this claim we show in this section how to

extend the core type system to support arbitrary rank types using the techniques

described in a recent paper by Peyton Jones et al. [6].

Section 6.1 explains what arbitrary rank types are and outlines how they are

dealt with. This section is not newmaterial, but serves as background material only.

Section 6.2 explains how we must modify the typing rules from [6] to deal with

uniqueness, and Section 6.3 explains why these modifications are much simpler in

a system without inequalities than in a system with inequalities.

6.1 Arbitrary rank types

The core type system described in Section 3 does not have an explicit notion of

universal quantification. When we say that the identity function has the type

id= λx · x :: au
u f
−→
×
au

XI–10

what we mean is that for any instantiation of a, u and u f , the identity function has

that (instantiated) type. But this is a meta-level notion: the type language defined in

Figure 1 does not allow universal quantification over type or uniqueness variables.

We can make universal quantification an object-level notion by introducing

“type schemes”: (attributed) types together with a list of universally quantified

type (and uniqueness) variables.

σ ::= ∀a,u.τν type scheme

The typing rules can then be modified to assign a type scheme, rather than a type,

to an expression. For example, the type scheme assigned to id would be

λx · x :: ∀auu f .a
u u f−→

×
au

So far we have not gained much by introducing type schemes, but we can go one

step further. We can modify the type language so that the domain of the function

type constructor becomes a type scheme σ, rather than an (attributed) type τν:

τν ::= attributed type

Bν base type B

aν type variable

σ1
ν
−→
νc

τν2
2 function space

With this change we have suddenly gained a lot more expressive power in the type

system. The example given in [6] (in the context of a type without support for

uniqueness) is

g :: (∀a.[a] → [a]) → ([Bool], [Int])

g= λ f · (f [True,False], f [1,2,3])

In this example, g is a function that takes another function f as argument and

applies f to two lists of different types. This example is type-correct because g

insists that the type of f must be ([a] → [a]) for all type variables a, which is only
possible because we allow for type schemes in the domain of the function type

constructor.

Unfortunately type inference for higher rank types (types with nested universal

quantifiers) is undecidable, but we can support higher rank types by combining

type inference with type checking. We therefore use a slightly modified typing

relation

Γ ⊢δ e : τ
ν|fv

This is different from the typing relation in Section 3 in two ways: the environment

Γ now maps expression variables to type schemes (not types), and we introduce a

“typing mode” δ: ⇑ for type inference or ⇓ for type checking.

XI–11

⊢instσ
δ

σ ≤ τν

Γ,x : σ ⊢δ x
⊙ : τν|(x,ν)

VAR⊙
⊢instσ

δ
σ ≤ τν

Γ,x : σ ⊢δ x
⊗ : τ×|(x,×)

VAR⊗

Γ,x : ∀.τν1
1 ⊢⇑ t : τ

ν2
2 |fv

Γ ⊢⇑ λx · t : ∀.τν1
1

u f
−−−→
W

x fv

τν2
2 |

x fv

ABSτ Γ,x : σ ⊢⇓ t : τ
ν|fv

Γ ⊢⇓ λx · t : σ
u f

−−−→
W

x fv

τν|
x fv

ABSσ

Γ ⊢⇑ t : σ
νc−→
νc

τ′ν
′
|fv Γ ⊢

gen

⇓ u : σ|fv′ ⊢instτ
δ

τ′ν
′
≤ τν

Γ ⊢δ t u : τ
ν|fv∪ fv′

APP

Γ ⊢
gen

⇓ t : σ|fv ⊢instσ
δ

σ ≤ τν

Γ ⊢δ (t :: σ) : τν|fv
ANN

Γ ⊢
gen

⇑ u : σ|fv Γ,x : σ ⊢δ t : τ
ν|fv′

Γ ⊢δ let x= u in t : τν|
fv∪(x fv

′)

LET

(a,u) = ftuv(τν)− ftuv(Γ)
Γ ⊢δ t : τ

ν|fv

Γ ⊢
gen

δ
t : ∀a,u.τν|fv

GEN
⊢
instρ

δ
[a 7→ τ][u 7→ ν]τν ≤ τ′ν

′

⊢instσ
δ

∀a,u.τν ≤ τ′ν
′ INSTσ

⊢
instρ
⇑ τν ≤ τν

INST⇑
⊢subs τν ≤ τ′ν

′

⊢
instρ
⇓ τν ≤ τ′ν

′
INST⇓

(a,u) /∈ ftuv(σ) ⊢subs σ ≤ τν

⊢subs σ ≤ ∀a,u.τν
SKOL

⊢subs [a 7→ τ][u 7→ ν]τν1
1 ≤ τν2

2

⊢subs ∀a,u.τν1
1 ≤ ρν2

2

SPEC

⊢subs σ2 ≤ σ1 ⊢subs τν1
1 ≤ τν2

2

⊢subs (σ1
ν f
−→
νc

τν1
1) ≤ (σ2

ν f
−→
νc

τν2
2)
FUN

⊢subs τν ≤ τν
MONO

FIGURE 3. Arbitrary Rank Typing Rules

The full typing rules are shown in Figure 3. A detailed discussion of the ar-

bitrary rank typing rules is beyond the scope of this paper (in fact, a detailed dis-

cussion took 82 pages [6]), but we want to emphasize that the typing rules shown

in this paper (which support uniqueness) closely resemble the original typing rules

(which do not). We highlight the differences in the next section.

6.2 Modifications to deal with uniqueness

In this section we briefly highlight how a type system based on [6] must be modi-

fied to deal with uniqueness. Our starting point is the “bidirectional” typing rules

from [6, Fig. 8], except for simplicity of presentation we do not show the rules for

annotated lambda abstractions (rules AABS1 and AABS2), and we require types

to be in prenex form: we allow for type schemes in the domain of the function

type (as explained in the previous section), but not in the codomain. This choice

is discussed in [6, Section 4.6.2], and simplifies the type system (in particular, the

definition of skolemisation). We make the following modifications:

XI–12

1. We refer to an attributed type τν wherever the original rules refer to a type τ.

2. We add a rule VAR⊗ to deal with sharing.

3. We record fv, the attributes on the free variables in a term, and remember to

remove a variable from fv at all binding sites (rules ABSτ, ABSσ and LET).

4. Any rule that mentions the function space constructor (
ν f
−→
νc
) is modified to

deal with ν f and νc. The modifications to rules ABS
τ, ABSσ and APP follow

directly from the core system. Rule FUN compares two attributed types to

check if one is at least as polymorphic as the other. For attributed types

this is generally only true if both are equal (rule MONO), except rule FUN

deals with the type schemes in the domain of the function type. However,

the atributes on the arrow are simply part of the attributed types, and must

therefore be equal (like in rule MONO).

5. Finally, all the rules that deal with type schemes are modified to allow for

universal quantification of attribute variables in addition to universal quan-

tification over type variables (rules GEN, INSTσ , SKOL and SPEC). The

function ftuv returns the free type and uniqueness variables in its argument.

We argue that all of these modifications follow in a straightforward way given

the core system we presented in Section 3, and moreover do not change the type

system presented in [6] in any essential way: the structure of the type system (with

the exception of rule VAR⊗) is still the exact same. Moreover, the implementation

of the type system, including techniques such as skolemisation as described in [6,

Sections 5 and 6] can be applied without any major modifications.

The typing rules do not include a rule for recursive let expressions. It is possible

to add such a rule, but the current presentation of the rules makes it a bit awkward

to express. It is not difficult to reorganize the rules to solve that problem, but that

would make a superficial comparison between the type system presented in this

paper and the original type system in [6] more difficult, so we opted not to. Either

way, the rule for recursive let expressions must make sure that a term which is

defined recursively gets a non-unique type (as it refers to itself [1]).

6.3 Complications due to inequalities

We have shown in the previous section that it is straight-forward to extend our core

system with support for arbitrary rank types. This extension is not so trivial when

the type system involves inequalities (constraints). In this section we explain why,

and compare the type system in this paper with our previous type system, which

did make use of inequalities [2].

In Clean constraints are never explicitly associated with types in the typing

rules. Rather, the typing rules simply list the constraints as additional premises.

However, that approach does not scale up to arbitrary rank types. When we gener-

alize a type τνa
a to a type scheme σ, τνa

a may be constrained by a set of constraints

C . Those constraints should be associated with the type scheme σ, because if at

a later stage we instantiate σ to get a type τνb
b , the same set of constraints should

XI–13

apply to τνb
b as well. Thus in [2] we defined a type scheme σ as

∀x.τν,C

In other words, a type scheme is an attributed type τν, together with a set of univer-

sally quantified (type and uniqueness) variables x, and a set of constraints C . The

typing rules then are careful to manipulate constraint sets. For example, the rule

for instantiating a type scheme read

∀x.τν,C ≤ Sxτν|SxC
OLDINST

With this rule we can instantiate a type scheme to a type using a substitution Sx,

but only if the constraints associated with the type scheme are satisfied.

If we want to allow for arbitrary rank types we must modify the domain of

the arrow (the function type constructor) to be a type scheme. Unfortunately that

means that we now have constraints appearing in multiple places in type schemes.

For example, we might have

id′ :: ∀auu f .(∀.au, /0)
u f
−→
×
au, /0 = λx · x

We could add some syntactic sugar to make this type more readable (to get au
u f
−→
×
au

or even au→ au), but that hides a more fundamental problem: the type of id′ only
accepts arguments of type au, if those arguments have type au under the empty set

of constraints. If a term has type au only if a particular set of constraints is satisfied,

that term cannot be used as an argument to id′. To get around this problem we need

to introduce types that are polymorphic in their constraint sets. This is what we did

in the previous paper. The type of id would then be

id :: ∀auu f c.(∀.au,c)
u f
−→
×
au,c

which says that id accepts terms that have type au under the set of constraints c; the

result then also has type au, if the same set of constraints is satisfied. This becomes

particularly cumbersome for functions with many arguments, and especially for

higher order functions (functions taking functions as arguments).

The definition of subsumption (checking whether one type scheme is at least

as general as another) is also complicated by the presence of the constraint sets

and constraint variables associated with type schemes. To check whether a type

scheme σ1 subsumes σ2, we need to check whether the constraints associated with

σ2 logically entail σ1. For details we refer to [2]; here we consider an example

only. Suppose we have two functions f , g with types

f :: (∀uv.au
u f
−→
uc
bv, /0) → . . .

g :: au
u f
−→
uc
bv, [u≤ v]

XI–14

Should the application f g type-check? Intuitively, f expects to be able to use the

function it is passed to obtain a b with uniqueness v (say, a unique b), independent

of the uniqueness of a. However, g only promises to return a unique b if a is

also unique; the application f g should therefore be disallowed. Conversely, if we

instead define f ′ and g′ as

f ′ :: (∀uv.au
u f
−→
uc
bv, [u≤ v]) → . . .

g′ :: au
u f
−→
uc
bv, /0

the application f ′ g′ should be allowed because the type of g′ is more general than

the type expected by f ′. But it is not completely clear how to define subsumption

in a completely general fashion. For example, suppose f was defined as

f :: (∀uv.au
u f
−→
uc
bv,c1∪ c2) → . . .

(Recall that c1 and c2 are constraint sets.) Then should the application f g be al-

lowed? Intuitively it should, since we can instantiate c1 to u≤ v and c2 to the empty
constraint (the constraint that is vacuously satisfied), but it is not easy to define this

formally. When constraints are remodelled as boolean expressions, however, this

problem is taken care of by boolean unification.

The fact that we do not have to do anything special to define subsumption in

this paper is interesting, and further evidence for our claim that the core system is

sufficiently similar to the Hindley/Milner type system that modern extensions can

easily be incorporated. It is instructive to reconsider the last two examples. Recast

in the new type system, the types of f and g are

f :: (∀uv.au
u f
−→
uc
bv) → . . .

g :: au|v
u f
−→
uc
bv

where we have remodelled the implication u ≤ v as a disjunction u|v. Of course,
by the same argument as the one used above, the application f g should still be dis-

allowed. This will be detected by the subsumption check. Part of the subsumption

check will try to solve uR
.
= u|v and vR

.
= v (where uR and vR are skolem constants,

that is, fixed but unknown attributes). Taken individually, each equation can be

solved. However, as soon as we solve one, the other becomes insoluble and the

subsumption check fails with an error message such as

Cannot unify vR and v&uR

On the other hand, given the types of f ′ and g′

f ′ :: (∀uv.au|v
u f
−→
uc
bv) → . . .

g′ :: au
u f
−→
uc
bv

XI–15

subsumption will need to solve the equations uR|vR
.
= u and vR = v, which have

a trivial solution [u 7→ uR|vR,v 7→ vR], and the application f
′ g′ is therefore ac-

cepted. So, where we needed to check for logical entailment before, the technique

of skolemisation (which we needed anyway) will suffice in the new system.

7 CONCLUSIONS

Uniqueness typing can be used to add side effects such as destructive updates to

a pure functional language without loosing referential transparency. Uniqueness

types in the type system of Clean or in the system we proposed in a previous paper

[2] often involve inequalities (implications) between uniqueness attributes. This

complicates type inference and makes incorporating modern extensions such as

arbitrary rank types difficult; Clean for example does not fully support arbitrary

rank types. We have shown how to avoid these difficulties by recoding attribute

inequalities as attribute equalities. The new type system is sufficiently similar to

the standard Hindley/Milner type system that standard inference algorithms can

be applied, and modern extensions such as arbitrary rank types or GADTs can be

incorporated using existing techniques [7], although the length of this paper did

not permit us to demonstrate the latter.

Future work includes a formalization of the type system, and an investigation

into which syntactic conventions we can introduce to make the type system easier

to use. We would like the programmer to be able to write type annotations, and the

compiler to report inferred types, omitting uniqueness attributes unless considered

relevant.

REFERENCES

[1] Barendsen, E., Smetsers, S.: Conventional and uniqueness typing in graph rewrite

systems. Technical Report CSI-R9328, University of Nijmegen (1993)

[2] De Vries, E., Plasmeijer, R., Abrahamson, D.: Uniqueness typing redefined. In

Horváth, Z., Zsók, V., Butterfield, A., eds.: Revised selected papers from IFL 2006,

LNCS 4449. (2007)

[3] Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL

’82: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, New York, NY, USA, ACM Press (1982) 207–212

[4] Baader, F., Niphow, T.: Term Rewriting and All That. Cambridge University Press

(1998)

[5] Brown, F.M.: Boolean Reasoning, The Logic of Boolean Equations. Dover Publica-

tions, Inc. (2003)

[6] Peyton Jones, S., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for

arbitrary-rank types. Journal of Functional Programming 17(1) (2007) 1–82

[7] Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based

type inference for GADTs. In: Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming. (2006) 50–61

XI–16

