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Abstract

We formalize proofs over Generic Haskell-style polytypic programs
in the proof assistant Coq. This makes it possible to do fully formal
(machine verified) proofs over polytypic programs with little ef-
fort. Moreover, the formalization can be seen as a machine verified
proof that polytypic proof specialization is correct with respect to
polytypic property specialization.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods

General Terms Languages, Theory, Verification

1. Introduction

In the never ending quest for higher levels of abstraction in pro-
gramming language research, generic programming has been a hot
topic in the functional programming community for a while (Jans-
son and Jeuring 1997; Hinze and Jones 2000; Lammel and Visser
2002; Lammel and Jones 2003; Hinze 2006; Hinze and L6h 2006;
Hinze and Loh 2007; Rodriguez et al. 2009). Unfortunately, a con-
sensus on the best approach has yet to be reached, and the number
of approaches to generic programming almost equals the number
of papers written on the topic. The subject area can be bewildering;
survey papers by Hinze et al. (2006) and Rodriguez et al. (2008) try
to disentangle some of the various strands of research.

One particular strand that we are interested in is polytypic pro-
gramming as advocated by Hinze in his seminal habilitationsschrift
(Hinze 2000b), which has been incorporated in at least two lan-
guage designs: Generic Haskell (L6h 2004) and Generic Clean (Al-
imarine 2005). The goal of our work is to be able to do formal
(machine verified) proofs over polytypic programs written in these
languages.

A key component of polytypic programming is the specializa-
tion of kind-indexed types and the specialization of type-indexed
programs. In a companion paper which we published at the Work-
shop on Generic Programming 2008 (Verbruggen et al. 2008) we
demonstrated how type specialization and term specialization can
be formalized in the proof assistant Coq (Bertot and Castéran
2004). As well as an important and obvious stepping stone towards
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formal proofs about such programs, the paper also serves as a for-
mal proof that term specialization is correct with respect to type
specialization. We will recap the most important ideas from that
paper in Section 2, which will also serve as an introduction to the
most important ideas in polytypic programming for readers who
may not be familiar it.

In many ways, the current paper can be seen as the Curry-
Howard mirror image of the companion paper. Just like polytypic
types are types indexed by a kind, polytypic properties are proper-
ties indexed by a kind; and just like polytypic programs are terms
indexed by a type, polytypic proofs are proofs indexed by a type.
That should come as no surprise, since Curry and Howard tell us
that we can read “type” for “property” and “program” for “proof™.
Nevertheless, the structure of properties and proofs (interpreted as
types and programs or not) is sufficiently different from the struc-
ture of types and programs that it introduces many new difficulties
that need to be overcome in order to formalize polytypic proofs.

The purpose of this paper is to describe these difficulties and
present their solutions. We make the following contributions.

e Although the formal definition of type and term specialization
that we have given in the companion paper makes it theoreti-
cally possible to do machine verified proofs over polytypic pro-
grams, in reality this is almost impossible without further sup-
porting infrastructure. We provide this infrastructure in the cur-
rent paper, so that formal proofs over polytypic programs can be
done with very little effort (we give an example in Section 3.3).

e This paper can be seen as a formal proof that

= property specialization, the process of specializing a poly-
typic property to a particular kind, yields well-formed prop-
erties (Section 5), and that

= proof specialization, the process of specializing a polytypic
proof to a particular type, is correct with respect to property
specialization (Section 6).

e Seen in another light, it is a formal proof that to do proofs over
polytypic programs it suffices to give the instances of the proof
for the type constants—just like it suffices to give the instances
of a function for the type constants when defining a polytypic
function.

Some challenges remain; in particular, we do not yet have a fully
complete treatment of (co)recursion or (co)induction. However, we
have experimented with some approaches and have found two that
work. We discuss these in Section 8, and the accompanying Coq
scripts contain proofs of concept.

The Coq sources for the formalization described in the paper
can be found on the first author’s homepage at
http://wuw.cs.tcd.ie/~verbruwj.



2. Polytypic Functions and their types

This section serves both as an introduction to polytypic program-
ming and as a recap of the companion paper. We will introduce
the polytypic (type-indexed) map function, along with its polytypic
(kind-indexed) type Map. We will demonstrate how Map can be spe-
cialized to specific kinds and how map can be specialized to specific
types. We will use the polytypic map function as our running ex-
ample throughout the paper, and we will see in later sections how
to prove the usual functor laws for map, polytypically. For reasons
of space, we will have to be brief in this section. For more details,
we refer the reader to (Verbruggen et al. 2008) or (Hinze 2000b).

2.1 Type specialization

The type of a polytypic function is a (type-level) function which,
given np arguments, constructs a type of kind :

Record PolyType (np:nat) : Type := polyType {
typeKindStar : nary_fn np Set Set

The Coq Record keyword introduces a (dependent) record of
named fields. PolyType has one parameter (np) and one field
(typeKindStar) of type nary_fn np Set Set (Set is the Coq
equivalent of kind *). A term nary_fn n A B denotes the type

A—...—-A—B
—_—
n
We will refer to np as the number of type arguments to the polytypic

function. We can define the type Map of the polytypic map function
as a polytypic function of two type arguments:

Definition Map : PolyType 2 :=
polyType 2 (fun A B = A — B).

Type specialization is a two-phase process. First we define the kind-
indexed type by induction on the kind k. For some polytypic type
Pt we can informally define this as:

Pt(k) : k — ---

Pt(x) T ... Ty = (user defined)

Pt(kl — k2> Ty ... Tnp =VA;... Anp.

Pt(k1) A1...App — Pt(ka) (Th A1) ...(Thp Anp)
Pt (k) is a type-level function in np arguments; we construct these
arguments in the second step. The specialization of a polytypic
function pfn of type Pt to a type 1" has type
pEn(T: k) : Pe(k) (T )1, . [T]n)

where |T'|; is the type T' where each free variable A is replaced by
A;. Of course, such naming conventions are not tenable in a formal
development. The companion paper explain this in detail; suffice
to say here that decoding |T'|; with 1 < ¢ < np is defined with
respect to an environment ets of the form

((A1,Br,...),(A2,B2,...),...,(Anp, Bup, . ..))
where each subtuple (A;, B;, .. .) contains a Coq datatype for each
free variable in T'. Then to decode |T"|; we choose the ith subtuple

from ets and decode T using that mapping’.
The Coq formalization of type specialization takes the form

— k — %

I'The structure of ets has changed slightly since the previous paper, where
it was represented as ((A1, A2, ..., Anp), (B1,B2,...,Bnp),...). The
new structure makes extracting the correct tuple from the environment
straight-forward, but it complicates extending the environment somewhat;
however, extraction occurs much more frequently than extension.

specType : V (np:nat) (k:kind),
closed_type k — PolyType np — Set

That is, given a closed type of kind k (Section 2.3) and the defini-
tion of a polytypic type, we create a “real” Coq type of kind Set
(which can be read as ). As an example, the type Map of map spe-
cialized to Texample = AA BC . A+ B x C'is

V (A1 A2 : Set), (Al — A2) —
V (B1 B2 : Set), (Bl — B2) —
vV (C1 C2 : Set), (C1 — C2) —
Al + B1 X C1 — A2 + B2 x C2

2.2 Term specialization

A polytypic function is fully specified by giving its polytypic type
and the cases for all constants. The terms for all other types can
be inferred. Informally, term specialization of a polytypic function
pfn of type Pt to atype 1" : k can be defined as:

pEn(T : k) : Pt(k) (|T]1,..., [T |np)

pfn(C : k¢) = (user defined)

pfn(A: ka) = fa

pfn(AA . T : k1 — ko) = NA1 ... Anp . Afa . pEn(T : k2)

pfn(T U : ko) =

(PEn(T : k1 — k2)) (U1, .-, [U]np) (pEn(U : k1))

For each free variable A in T this definition assumes the existence
of a function fa4 which defines what to do with terms of type
A. Again, such naming conventions cannot be used in a formal
development, and we will make use of an environment ef of the

form (f1,..., fne) Which contains functions for each of the nv
free variables in 7. In Coq, we define a polytypic function as

Record PolyFn (np:nat) : Type := polyFn {
ptype : PolyType np ;

punit : specType tunit ptype ;

pint : specType tint ptype ;

pprod : specType tprod ptype ;

psum : specType tsum ptype

}.

For the specific case where ptype is Map, this simplifies to

punit : unit — unit

pint : Z — Z

pprod : V (A B:Set), (A — B) —
V (C D:Set), (C — D) —
AxC—BXxD

psum : V (A B:Set), (A — B) —
vV (C D:Set), (C — D) —
A+C—=B+D

We can now define the polytypic map function as

Definition map : PolyFn 2 := polyFn Map
(fun (u:unit) = u)
(fun (z:2) = z)
(fun (A B:Set) (f:A — B)
(C D:Set) (g:C — D) (x:A X C) =
let (a, ¢) :=x in (f a, g c))
(fun (A B:Set) (f:A — B)
(C D:Set) (g:C — D) (x:A +C) =
match x with
| inl a = inl D (f a)
| inr ¢ = inr B (g c)
end) .



This is virtually identical (modulo syntactic differences) to the
definition we would provide in Generic Haskell or Generic Clean.
Formally, term specialization takes the form

V (np:nat) (k:kind)
(t:closed_type k) (pf:PolyFn np),
specType t (ptype pf)

specTerm :

Since specTerm returns a term of the type computed by specType,
the definition of specTerm is a formal proof that term specializa-
tion returns terms of the required type. Specializing map to Texample
(above) yields

fun (A1 A2 : Set) (f : Al — A2)
(B1 B2 : Set) (g : B1 — B2)
(C1 C2 : Set) (h : C1 — C2)

(x : A1 + B1 x C1) =
match x with
| inl x1 = inl (f x1)
| inr xr = let (xrl, xr2) := xr in
inr (g xrl, h xr2)
end

2.3 The generic view

A generic view is a set of codes that represent the datatypes that
can be used as a target for specialization of polytypic functions.
Since the result of term specialization should be a function on the
“real” Coq datatype, we have to define a mapping from codes in the
generic view to ordinary Coq types. Such a mapping is known as
a decoder.* The definition of the generic view and the types of the
decoders are listed in Figure 1.

In our definition of the generic view we do not define a datatype
that encodes the grammar of types, but rather encode kinding
derivations to make sure that only well-kinded types can be rep-
resented.® An element

T : type nv ek k

is a type of kind k with at most nv free variables, whose kinds are
defined in the kind environment ek. This corresponds to a kinding
derivation

ektT: k

The type of the environment ek is envk nwv, which is an nv-tuple
of kinds.

The definition of the decoder for kinds is straight-forward,
choosing Set as the decoding of kind x. However, for reasons
explained in the companion paper, this will require Set to be im-
predicative.

The implementation of the decoder is slightly involved, and we
refer the reader to the companion paper for details. Its type can be
read as: given a type of kind k with nv free variables, where the
kinds of the free variables are given by ek, we can construct a Coq
type of kind k£ when given the Coq types of the appropriate kinds
for each of the free variables.

2 The requirement for a decoder places restrictions on the universe that we
can consider; we will come back to this point in Section 8.

3 We use De Bruijn indices to represent variables (de Bruijn 1972). The in-
dices in a type of nv free variables are of type index nwv, which guarantees
that no indices can be out of bounds. This is a minor deviation from the def-
inition in the companion paper, where we use a different, but isomorphic,
type Fin n. The only difference is that Fin is defined inductively, whereas
index is defined recursively on n; this makes some Coq proofs easier.

3. Polytypic Properties and Proofs

The functor laws for map state that map must preserve identity
and composition. The most familiar instance of these laws for
functional programmers is the instance for lists, which is usually
stated as
map id = id
map (f o g) = map f omapg

However, it is far from evident how to state these properties for an
arbitrary datatype T of arbitrary kind k; much less how to prove
them.* Fortunately, it turns out that we can state and prove such
properties in much the same way as we state the types of poly-
typic functions and give their implementations. In this section, we
will first give a high level description of how polytypic properties
can be stated, and then discuss how this can be formalized in Coq.
Section 3.3 describes polytypic proofs and finally, Section 3.4 dis-
cusses some arguably simpler ways we considered for formalizing
polytypic properties, and why none of them were appropriate.

3.1 Stating polytypic properties

To specify a polytypic property we have to give the types of the
functions that the property ranges over and the property itself. Take
the example that map preserves identity. This property ranges over
functions of type Map; since Map is kind-indexed, it follows that the
property itself is kind-indexed:

Id(k) T : Map(k) T'T — Prop
In the case for kind « the type Map(x) T T specializes to the
function type 7' — T, and the corresponding definition of the
property is:
Id(x) T: (T — T) — Prop
Idx) T =Af:T—->T .Yz:T.fzx=x
To prove that this property (for kind «) holds for the polytypic map

function specialized to a type 7T', we must prove that the property
holds for f = map(T), i.e.

Ve: T .map(T)z ==z
In other words: in the case for kind x we have to prove that map(7T")
is itself the identity function.
From the definition of the type of the property and the case for

kind %, we can derive the property for other kinds. For example, the
instance for kind x — % will be:

Id{x — %) T':
(VA1 A2 : x. (A1 — A2) = T A1 — T Az) — Prop
Id(x — %) T =
AMf VAL Agix . (A1 —> A2) =T A1 - T Ag) .
VA :x.Id(x) A — Id(x) (T A)
=N VA:ix. Ag: A—-A. Vy:A.gy=y)—
Ve:TA. fAAgae==
Instantiating f by map(T") gives the property familiar from lists:
Id(x — %) T map(T) =
VA: % . Ag: A—A.(Vy:A.gy=y) —
Ve:T A . map(T) AAge ==

Given a type A : % and a function g : A — A such that g is the
identity function on A, we must show that the property holds for

4 As is well-known from category theory, for an arbitrary type 7" of fixed
first-order kind x — *x we can state these laws easily, but this does not scale
to arbitrary kinds of arbitrary order.



(* Codes for Kkinds x*)
Inductive kind : Set :=
| star : kind
| karr : kind — kind — kind.

(* Grammar for type constants x)
Inductive type_constant : kind — Set :=

| tc_unit : type_constant star

| tc_int : type_constant star

| tc_prod : type_constant (karr star (karr star star))
| tc_sum : type_constant (karr star (karr star star)).

(* Codes for types x*)

Inductive type : V (nv:nat), envk nv — kind — Set :
V (nv:nat) (ek:envk nv) (k:kind), type_constant k — type nv ek k

type nv ek (karr k1 k2) — type nv ek k1 — type nv ek k2

| tconst :

| tvar : V (nv:nat) (ek:envk nv) (i:index nv), type nv ek (getS i ek)
| tapp : V (nv:nat) (ek:envk nv) (k1 k2:kind),

| tlam : V (nv:nat) (ek:envk nv) (k1 k2:kind),

type (S nv) (k1, ek) k2 — type nv ek (karr k1 k2).

(x Syntactic sugar for types with no free variables x)

Definition closed_type (k:kind) : Set := type O tt k.

(x Syntactic sugar for type constants x)

Definition tunit := tconst 0 tt tc_unit.
Definition tint := tconst O tt tc_int.
Definition tprod := tconst O tt tc_prod.
Definition tsum := tconst O tt tc_sum

(* Decoders x)
decK : kind — Type

decT : V (nv:nat) (k:kind) (ek:envk nv), type nv ek k — envt nv ek — decK k

Figure 1. Recap: Generic View and Decoders

map(T’) A A g. Rephrased, we have to prove that given an identity
function g, map(7T : x — %) g is also an identity function.

The property that map preserves composition is more compli-
cated: composition ranges over three functions of type Map, each
instantiated at a different type:

Comp(k) T1 1o T3 :
Map(k) T T3 x Map(k) T1 T> X Map(k) T} T3 — Prop

In the case for kind « the type Map(x) 71 T% specializes to the
function type 17 — 1%, and the property is defined as:

Comp(*) Th T> T5 :
(Tz — Tg) X (T1 — T2) X (T1 — Tg) — Prop
Comp(*) T1 Tz T3 : )\(f17f27f3) Vo : T1 . f1 (fz :C) = f3 T

As before, the definition of the property for other kinds can now be
derived. For example, the instance for kind x — * is:

Comp(x — %) T1 Th T3 : Map(x — *) T T5x
Map(x — %) T1 T» X Map(x — %) T} T3 — Prop

Comp(x — x) T1 To T3 = A(f1, fo, f3) . VA1 A2 Az : % .
Comp(*) A1 Az As — Comp(x) (Th A1) (T2 A2) (T3 As)

= M f1, fo, f3) . VAL A2 Az : x . A(g1, 92, 93) -
Vy:Ar.g1(929) =g3y) —
Vo :T1Al. fi Ao As g1 (fo A1 A2 gax) = f3 A1 Az gz x

The property for map will then be
Comp(x — x) T'T T (map(T"),map(T"), map(T)) =
VA1 Az Az i x . A(g1, 92, 93) -
Vy:Ar.g1(92y) =g3y) —
Vo : (T Ay) .map(T) A2 As g1 (map(T") A1 Az g2 )
=map(T) A1 Az g3 x

This is a generalization of the usual property, which we can obtain
by instantiating g3 by g1 o go.

3.2 Polytypic properties, formally
We define a polytypic property using the following record type:

Record PolyProp (nt nx np:nat) (Pt:PolyType np):=
polyProp {
idxs : tupleT (tupleT (index nt) np) nx;
propKindStar : V (types:tupleT (decK star) nt),
gtupleTS (kit star Pt)
(reindex_tuple idxs types) — Prop

}.

The record contains two fields: the first (idxs, described in more
detail below) gives information about the type of the property, and
the second (propKindStar) gives the property for kind *.



The record is dependent on four arguments:’
Id Comp
nt number of type arguments of the property 1 3
nx number of function arguments of the property 1 3
np number of type arguments of the polytypic type 2 2
Pt  polytypic type the property ranges over Map Map

Given nt type arguments 11 ... T, the type of a polytypic prop-
erty indexed by a kind % generally looks like’

P(k) (T1,..., Tu) X oo X Pe(k) (T1,. ., Tt)

1 Aa~AnAAAAN g

— Prop

where (11, ...,Tw) picks the correct np type arguments for each

occurrence of Pt from the tuple (T4, ..., Tyt ); e.g., for the case of

preservation of composition for map, we have that (71,72, T3) =
NI

(T T3), (1, T3), = (13,3) and (13,15, Ty) = (13, To):
compare to the type of Comp, above. This mapping is given by idxs
in the description of the polytypic property.

The property for kind « is given by propKindStar, given the
same tuple (71, ..., Tn:) and a tuple

(g1 : Pt(x) (Tu,... ,Tm)l, ey Gna PR (T, Tae) )

bbbt dd DN T
Since every element in this second tuple has a different type, the
type of the entire tuple is described as a generalized tuple.” A
generalized tuple gtupleTS f (z1,...,2n) is a tuple of type
(f 1 x +-- X f xy). In this case, the function f that we ap-
ply is kit star Pt, which is the Coq equivalent of Pt(x); and
the tuple (x1,...,2») that we supply is the tuple of tuples of
types ((T1,...,Tnt) ..., (Th,...,Tnt) ), which is created by

1 IO NI
reindex_tuple.
Hopefully two examples will go a long way towards clarifying
these definitions. The property that map preserves identity can be
stated using our library in Coq as®

Definition Id : PolyProp 1 1 Map :=
polyProp 1 1 Map
, 1))

(fun Tf=Vx:T, fx=x).

Note that we only provide three arguments to PolyProp: nt,
nx and Pt, the argument np is implicit in the type of Map
PolyType np and can therefore be omitted. Similarly, the prop-
erty that map preserves composition can be stated as

Definition Comp :
polyProp 3 3 Map
2, 3, 10, 25, 1, 3))
(fun (T1, T2, T3) (f1, £2, £3) =
Vx : T1, f1 (f2 x) = £3 x).

PolyProp 3 3 Map :=

5 For the examples which we consider in this paper, nt = nz. However,
there are examples in which this is not true; for instance, see the fusion law
in (Hinze 2000b, Section 4.3.2, p. 102). This property and its proof can also
be found in the Coq sources that accompany this paper.

This limits the expressiveness of polytypic properties, as they can only
refer to a single polytypic type. A generalization should not be difficult, but
is left as future work.

7gtupleTs is a particular variety of a generalized tuple; details can be
found in the Coq formalization but are not important here. We discuss
generalized tuples in more detail in (Verbruggen et al. 2008, Section 3.2).

8 We have taken some liberties with notation to keep things simple: we use
natural numbers for indices, and assume that we can decompose tuples as
part of a function definition. Such syntactic sugar can be added to the Coq
library as well, but we have left this to future work for now.

3.3 Polytypic Proofs

When we define a polytypic (that is, type-indexed) function, it
suffices to give the implementation for the type constants; all other
cases can be derived. Likewise, in a polytypic proof it suffices to
prove the property for the type constants. Indeed, our development
in this paper can be regarded as a formal proof that this is indeed
sufficient.

The definition of a polytypic proof mirrors the definition of a
polytypic function (Section 2.2):

Record PolyProof (nt nx np:nat) (pf:PolyFn np) :=
polyProof {
prop : PolyProp nt nx (ptype pf) ;

prflUnit specProp tunit prop

(cst_closed tunit pf (idxs prop)) ;
prfint specProp tint prop

(cst_closed tint pf (idxs prop)) ;
prfProd : specProp tprod prop

(cst_closed tprod pf (idxs prop)) ;
prfSum specProp tsum prop

(cst_closed tsum pf (idxs prop))
}

(where cst_closed generates the tuple of polytypic functions for
which we want to prove the property prop, instantiated at the
correct types). That is, we specify the property prop and the proofs
for the type constants tunit, tint, tprod and tsum. Here is an
example: the proof that map preserves composition.

Lemma map_Comp
Proof.

apply (polyProof map Comp);

compute; auto; intros.

destruct x ; rewrite H ; rewrite HO ; auto.

destruct x ; [rewrite H | rewrite HO] ; auto.
Defined.

: PolyProof 3 3 map.

Same as for PolyProp, the argument np to PolyProof is implicit
in the type of map and can therefore be omitted. The details of the
proof will be obscure to people not familiar with Coq, but they do
not matter for our current purposes. Suffice to say that the proof
is easy; the cases for unit and int are solved automatically (by the
auto tactic), and the other cases follow straightforwardly from the
appropriate assumptions about the components of the pair or the
value in the sum respectively. It is probably possible to write a Coq
tactic (proof search algorithm) to prove many of these polytypic
proofs fully automatically, but we have left this to future work.

To anticipate the development of proof specialization in Sec-
tion 6, we can now prove that map specialized to Texample pre-
serves composition simply by applying proof specialization to the
Lemma map_Comp:

specProof Texampie map_Comp

3.4 Alternative definitions

To specify a property using our formalization, the user must specify
the type of the property by means of the idxs tuple of tuples of
indices, and the property for kind x. The mechanism for specifying
the type of the property may seem non-obvious. In this section,
we give the rationale for choosing this approach; it can safely be
skipped should the reader wish to.

In the definition of a polytypic type (PolyType, Section 2.1) we
do not ask the user to specify the kind of the type. We do not need
to, because we can construct it given np: it will always be



k—k— - —k—x

np
That is, given np type arguments of kind k&, we construct a type of
kind *.

Unfortunately, the situation is not so simple for properties: as
mentioned in Section 3.2, the type of a property looks like

Pt(k) (Th,...,Tnt) X --- xPt(k) (Th,...,Tnt) — Prop
AAANAAAANAA T AAAANAANANAN
where the problem is to find the mapping (71, ...,Tnt) -

The most obvious solution might seem to simply ask the user
to provide the complete type of the property, given the tuple
(T1, ..., Tnt). However, this is far too liberal: specialization relies
on a particular shape of the type of the property (see Section 5).
Intuitively, the more leeway we give to the user, the less we can
assume about the type of the property and the more difficult it
becomes to derive properties for kinds other than %, much less
automate the derivation of the corresponding proofs.

One possible alternative is to ask the user for a tuple of tuples
of types, rather than the tuple of tuples of indices idxs:

fnTypeArgs : V k : kind, tupleT (decK k) nt —
tupleT (tupleT (decK k) np) nx

Temporarily denoting this function by [-], during the development
of property specialization we need a lemma that says that

[(T1,...,T)] [(As, ..., A)] = [(Ty Av,..., T An)]

In other words, fnTypeArgs should only “shuffle” its input argu-
ments. Since this is not true for an arbitrary fnTypeArgs, we would
have to require it as a separate lemma in the record. We felt it was
simpler to ask for the indices and do the shuffling ourselves.

We attempted to avoid the problem altogether by leaving this
shuffling to the case for kind x. The type of the property would
then become

(VTs: k™ . Pt{k) Ts)x---x (VTs: k" .Pt(k) Ts) — Prop

where k™ is the tuple of n types of kind k. Again, this does not give
us enough information for property specialization. In particular,
when specializing the property for kind k1 — k2, we need to
construct the property for kind k2 given the property for kind k1. As
part of the property, we need to construct the function arguments to
the property; if the function argument for kind k1 — k2 is f (e.g.,
map) and the function argument for kind k; is x (e.g., the function
that we are mapping across the data structure), then the function
argument for kind k2 is f x. To be able to apply f to z we need
to find the right type parameters to instantiate f, and using this
approach we do not have this information.

4. Reasoning about Equality

One of the important technical difficulties in ferm specialization
was to find the appropriate type conversions (such as weakening).
Proof specialization reasons about specialized terms and conse-
quently reasoning about conversions was one of the major technical
difficulties in the formalization of proof specialization. In particu-
lar some of the definitions of term specialization had to be adapted
to make this reasoning feasible. In this section, we explain some of
these difficulties.
The standard definition of equality in Coq only allows to state
equality between terms of the same type:
(e:T)=r(e:T) REFL
This definition is often too restrictive as it does not allow us to state,
much less prove, that e, : 11 is equal to ex : T for two provably

equal but not syntactically equal types T and T>. Heterogeneous
or John Major equality (McBride 2002) is a generalization of
the standard equality relation which allows us to state equalities
between terms of a different type, even though its only constructor
still only allows us to prove equality between terms of the same
type:

JM-REFL

(6 : T) >~ T (6 : T)
To prove (e1 : Th) ~1,, 1, (e2 : T2) one first shows that 71 = T,
then that e; = ez, at which point JM-REFL finishes the proof.
Unfortunately, given some property P : VA : Set, A — Prop
and e; ~7, 1, ez, proving Pr, ez given Pr, e1 is not entirely
straightforward: simply replacing e; by ez in Pr; e; would yield
the ill-typed term Pr, es. Instead, the proof usually looks like

Pr,e1 — Pryez
{ generalize over the proof that e1 ~p, 1, e2 }
< Y(pf:e1~r.1 €2),Prier — Pryes
{ generalize over e; }
< Y(z:T)(pf:x~n,1 €2), Pz — Pryes
{ replace T by 1> }
= V(l’:Tg)(pf LT T, T, 62),PT2LE—>PT2€2

The final case is easily proven, as we can use pf to replace x by es
(which now both have type 7%).

Such a proof is not always as straight-forward, however. First,
when the terms get large it is not always obvious which terms need
to be generalized over and in which order. Second, suppose we
have some dependent type D : T' — Set, and we have a function
f:¥(t:T),Dt— T Suppose also that we have two elements
ti,t2 : T and an element di : D t; and d2 : D t2, and that we
know that di ~p,,p+t, d2 (but t1 # t2). Now, it may be the
case that f uses its first argument only to determine the type of the
second argument (i.e., that f is parametric in its first argument), in
which case we should be able to show that

ftidi=ftads

but this will not hold generally for arbitrary f. Depending on the
structure of f (and its argument), this may or may not be difficult
to prove.

In particular, one common function that we will use in the
proofs is

convert : VA B:Set, A=B—A— B
with associated lemma
LEMMA 1 (Convert Identity).
VAB (z:A),A=B — x ~4 p convert x

However, even armed with this lemma proofs about heterogeneous
equality are often difficult as convert x cannot simply be replaced
by x (since this would yield ill-formed terms). For example, con-
sider the case where f takes an additional argument 4, which it uses
to index the vector d. Then proving that

fitidi = fits (convert di)

may be difficult: this proof needs to be proven as a property of f,
but the occurrence of convert on the right hand side might make it
near impossible to do a proof by induction. In such cases, it is often
better to “push down” converts deeper into terms (so that every
element of the vector is converted, rather than the entire vector).
Unfortunately, the term specialization of a polytypic function to
a particular type contains many calls to convert. To consider one
(simple) example, recall that our type universe type encodes kind



derivations rather than the syntax of types. If C' is a type constant
of kind k, we have that ) - C : k: since C' does not have any free
variables, C' has kind k in the empty environment. However, we
also have that I' - C' : k for all environments I'; this is known as
weakening.

When the user defines a polytypic function, they must give the
definition of the function for each type constant C, which will have
type Pt(k) (|0 + C : k]1,...,|0+ C : k|,). Term specialization
however is defined over open types, that is, over kind derivations of
the form I' - 7" : k for some type 7" and kind k.

This is important, because even though the user may only apply
term specialization to closed types, term specialization is defined
by induction on types; when it encounters an abstraction, it needs
to introduce a new type assumption into the environment and the
body of the lambda is no longer closed.” In the companion paper,
we therefore proved that

LEMMA 2.
Pt(k)([OF C : k]1,...,|0F C:k],)
=Pt(k)([T'HC :k|1,...,[I'FC:kln).

We can prove this lemma by showing that both argument tuples
are the same; since type constants contain no free variables, both
tuples evaluate to (C™,...,C") where C* is the Coq type that
corresponds to C' (the decoding of C). The specialization of a
polytypic function for a type constant is then the definition given
by the user converted using the Lemma 2:

convert (Lemma 2) (user definition)

During proof specialization we have to prove a similar conver-
sion: when we construct a proof of a property Pp for some polytypic
function pfn, we have to show that

LEMMA 3.
Pp(k) (|0 F C : ko, ..
=Ppk) (|IT'+C: k]o,-.

D) (pfn(@ - C : k), ...)
D (pftn(TEC :k),...).

To prove this lemma, we again show that the two argument tuples
are the same. We already proved this for the first tuple; remains to
show that the second argument tuples are identical. Since terms of
the form pfn(0 + C : k) have type Pt(k) (|0 - C : k|1,..., |0+
C : k]np) but terms of the form pfn(I' - C : k) have type
Ptk) ([T F C : k|1,...,|T F C : klnp), we will need to
use heterogeneous equality:

LEMMA 4.
pftn(F C : k)
=pe (k) (LO-C:k]q,...),Pt(k) (|[TFC:k]g,...)
pfn(l'H C : k)

The specialization of a polytypic function to a type constant simply
returns the definition that was given by the programmer converted
by Lemma 2. Hence, both sides of the equality reduce to

convert (Lemma 2 at ) (user definition)

=pe(k) ([OFC:k]o,...),Pt(k) (|[THC:k]g,...)
convert (Lemma 2 at ') (user definition)

91t is not possible to close the body, because the type assumption corre-
sponds to a real Coq datatype, whereas the body of the lambda is a code for
a type in the universe.

which follows from Lemma 1. We can now prove Lemma 3 using
the method that we sketched above: generalize over Lemma 4,
rewrite with Lemma 2, and complete the proof.

Although this was a simple example, this kind of reasoning
about heterogeneous equalities involving converts is very common
throughout the proof.

5. Property Specialization

Section 3.2 explains the general form of the type of a polytypic
property. For a specific property, the user specifies the type of
the property and gives the property for kind %; the case for kind
k1 — k2 can then be derived. The informal definition of property
specialization is very similar to that of type specialization (Sec-
tion 2.1):

Pp(k) Th ... Tt :

Pt<k> (Tl,...,Tm) X oo X Pt(k) (Tl,...,Tm) — Prop
’\1\1\1\1\1\1\1\1\1\11 AN

nT

Pp(x) T1 ... Tn: = (user defined)
Pp(k1 > ko) Th ... Tht =
Af1y e foa) - VAL A s Ky Y(91s s gns) -
Pp(k1) (A1,..., Ant) (91, Gna) —
Pp(ko) (Th A1,...,Tnt Ant)
(aBD_£5 (- -+ fow) (91, - Gns))

The Coq formalization of this definition is given as kip (kind-
indexed property) in Figure 2.

When we compare this definition to the definition of type spe-
cialization (Section 2.1), we see that the only significant difference
(other than its type) is that the kind-indexed property takes an ex-
tra tuple of function arguments (f1, ..., faz). Consider the prop-
erty that map preserves composition (Section 3.1). For lists, we can
state this property as

Vg1 g2 93 - (g1 © g2) = gs — map g1 omap g» = map g3

In this case, nt = 3, (f1, f2, f3) will all be instantiated to
map(List), the tuple (g1, g2, g3) corresponds to the three func-
tions in the informal statement of the property, and

app-fs (f1,.- -, fnz) (91, -+, gne)

corresponds to the application of map to each of (g1, g2, g3). This is
not quite straight-forward application, however. The types of each
fi and g; are

fiiPr(by — ko) (T, ..., Tt)

K3

gi:Prlkn) (A1 Am)

7

From Section 2.1 we know that a polytypic type specialized to an
arrow kind k1 — k2 takes the form

VA ...A"p sk .Pt<k1> (A17.H,Anp) — e
Hence, we first instantiate A1 ... App in fi by (A1,..., Ant) to

7

get a term of type

Peikn) (A1 ooy Ane) = Pt(ka) (Ty Ay Toe An)

We see that the argument expected here matches the type of g;
exactly, so we apply this to g; to get a term of type

Pt<k2> (Tl Al, ey Tt Ant)
7
The function app_fs does exactly this: instantiate f; with the
appropriate type arguments and then apply it to g; (the definition
can be found in the Coq sources but is straight-forward).



Fixpoint kip (k : nat) (Pt :
V types :
match k return

V types :

kind) (nt nx np :

| karr k1 k2 = fun types fns = quantify_tuple
(fun types’ : tupleT (decK k1) nt =
V fns’

PolyType np) (Pp :
tupleT (decK k) nt, gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) — Set :=

PolyProp nt nx Pt) {struct k} :

tupleT (decK k) nt, gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) types) — Set with
| star = fun types fns = propKindStar Pp types fns

: gtupleTS (kit k1 Pt) (reindex_tuple (idxs Pp) types’),

kip k1 Pp types’ fns’ — kip k2 Pp (apply_tupleT types types’) (app_fs fns fns’))

end.

Definition specProp’ (nt nx np nv : nat) (k :

(Pt : PolyType np) (Pp :

kind) (ek :
PolyProp nt nx Pt) (ets :

envk nv) (t :
envts nt nv ek)

type nv ek k)

: gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) (replace_fvs t ets)) — Set :=

kip Pp (replace_fvs t ets).

Definition specProp (nt nx np : nat) (k :
(Pt : PolyType np) (Pp : PolyProp nt nx Pt)

kind) (t :

closed_type k)

: gtupleTS (kit k Pt) (reindex_tuple (idxs Pp) (replace_fvs t (ets_tt nt))) — Set :=

specProp’ t Pp (ets_tt nt).

Figure 2. Property Specialization

Given Pp(k), we can now define property specialization as
Pp(k) ([T]1,. ., [Tnt)

This follows type specialization (Section 2.1) exactly. The corre-
sponding Coq definition is given as specProp’ in Figure 2 (like
specType, specProp instantiates specProp’ to closed types) .

6. Proof specialization

Informally, proof specialization can be defined as:
prf(T : k) : Pp(k) (|T|1,..., [T |nt) (PEn(T)1, ...
prf{C : kc) = (user defined)

pri{A: ka) =pa

Prf(AA . T : k1 — ko) = AA1... Apt . Apa . prE(T : ko)
o [U]nt)

»PEn(T) )

pri(T U : k2) = (prf(T : k1 — k2)) (|[U]1, ...
(pfn{U)1,...,pEn(U)ns) (prf{U : k1))

This definition is very similar to the definition of term specializa-
tion that we gave in Section 2.2, except that proofs need an addi-
tional tuple of arguments (pfn(T)1, ..., pfn(T") ) corresponding
to the polytypic functions for which we want to prove the property.
Like the definition of term specialization, this truly is an infor-
mal definition: many details are omitted. In particular, since 7" can
be open (contain free variables), we need some information about
these free variables, which is provided by three environments:

ets For each of the nt type arguments to the property, this contains
a mapping ets; (1 < i < nt) from the free variables in 7" to
Coq datatypes so that we can define the decoding |7']; of T'.
As explained in Section 2.1, each function argument pfn(7T’);
(1 £ 7 < nz) requires a similar environment with a mapping
for each of its np type arguments; this environment is given by

(ets)j.

efs As explained in Section 2.2, each function argument pfn(T");
requires an environment ef containing functions for the free
variables in T'; efs is a tuple of nz such environments, one for
each argument pfn(7T’);.

ep Finally, the definition of proof specialization assumes the exis-
tence of a proof pa for each free variable A. In the formaliza-
tion, environment ep contains a proof that the property holds at
type A for each free variable A in T

Figure 3 shows the formal statement (specProof’) that given an
open type t, a polytypic proof prf over a polytypic function pfn,
and given the environments ets, efs and ep, we can specialize the
proof to t. The proof is by induction on ¢, as expected. We do
not show the full Coq proof here (it can be found in the sources).
Instead, we will discuss the individual cases of the proof below.

Since users will mostly be interested in proofs over closed types,
we also provide a lemma (specProof) which states that for a
closed type ¢ and a polytypic proof prf over a polytypic func-
tion pfn, we can specialize the proof to ¢; specProof simply calls
specProof’ with the appropriately constructed empty environ-
ments.

6.1 Constants

The case for constants is given by the user except that, as explained
in Section 4, we need a weakening lemma that says

Pp(k) (|0F C : klo,...) (pEn(D - C : k),...)
=Pp(k) (|IT'+C :klo,...) (pfn("F C : k),...).

The proof of this lemma was also given in Section 4.

6.2 Variables

Recall from Section 2.3 that variables in our universe are repre-
sented by De Bruijn indices. To construct the proof for a free vari-
able i, we simply look up the i’th element in environment ep. As
for term specialization (Verbruggen et al. 2008, Section 6.2), the
trickiest part is to define the type of ep. Informally, the ith element
in ep, corresponding to the proof for the ¢th variable, has type

Pp(k) (Li]1;- -+ [i)ne) (PER(D)1, - - - PER(E)ns)

The formal definition of ep is given in Figure 3. The construction
of ep will be considered when we consider type lambdas in Sec-
tion 6.4.



(x+ Environment containing proofs for all free variables xx)

Definition envp (nt nx np nv:nat) (ek:envk nv)

(Pt:PolyType np) (Pp:PolyProp nt nx Pt) (ets:envts nt nv ek)
(fns_i:V i, gtupleTS (kit (getS i ek) Pt) (reindex_tuple (idxs Pp) (replace_fvs (tvar nv ek i) ets))):=
gtupleS (fun i = specProp’ (tvar nv ek i) Pp ets (fns_i i)) (elements_of_index nv).

(xx Proof specialization for open types sxx)
Lemma specProof’ (nt nx np nv : nat) (k :
(t : type nv ek k) (pfn : PolyFn np) (prf :

kind) (ek :
PolyProof nt nx pfn) (ets

envk nv)
: envts nt nv ek)

(efs : gtupleTS (fun ea’ = envf nv ek (ptype pfn) ea’) (reindex_tuple (idxs (prop prf)) ets))
(ep : envp (prop prf) (fun i = cst (tvar nv ek i) pfn (idxs (prop prf)) ets efs))
: specProp’ t (prop prf) ets (cst t pfn (idxs (prop prf)) ets efs).

Proof.

(x See Coq sources. The individual cases are explained in the text. x)

Defined.

(xx Proof specialization for closed types xx)
Definition specProof (nt nx np : nat) (k :
(pfn : PolyFn np) (prf : PolyProof nt nx pfn)

kind) (t :

closed_type k)

: specProp t (prop prf) (cst_closed t pfn (idxs (prop prf))):=

specProof’ t prf (ets_tt nt)

(create_empty_gtup (envts np O tt) nx (reindex_tuple (idxs (prop prf)) (ets_tt nt))) tt.

Figure 3. Proof Specialization

6.3 Application

For application (1" U) we are given the two induction hypothesis
for the types 1" and U:

IHr : V(A1 ., Aw) (91, Gna) -
Pp(k1) (A1,..., Ant) (91, Gna) —
Pp(k2) (|T]1 A1y .oy [T ne Ant)
(app£s (pEn(T)1, ..., PEn(T)na) (91, -+ -, )
IHy : Pplk1) (U], .-, [U]ne) (PEn(U)1, ..., PEn(U)ns)
and we need to prove:
Pp(k2) (|TUl1,...,|T U|nt) (pEn(T U)1,...,pfn(T U)nz)

If we instantiate (A1, ..., An) by ([U]1,..., |U]n) and
(g15-- -5 Gne) by (pEn(U)1, ..., pfn(U)ns ) in IH7 and then apply
this to ITHy we get something of type

Pp<k2> (\_TJ 1 |_UJ 1y.00) |_TJ nt \_UJ 7“5)
(app-fs (pfn(T)1,...,pIn(T)ns) (pE(U)1, ..., pEn(U)na))

To get the type we actually need we specify two conversion lem-
mas. The first conversion is fairly straight-forward, and its proof
can be found in the companion paper:

LEMMA 5 (convert_tapp_specTerm). For all types T and U
(IT] WOy [T [Une) = ([T Ulx, oo [T Ue)

The second lemma is a little trickier:

LEMMA 6 (convert_tapp-specProof). For all types T and U
(app-fs (pEn(T)1, ..., pEn(T)na) (LU]1, .., [U]nr))
= (Pt(ks) (melx <), (Pe(ky) (T U ,m)lx )
(pEn(T U)1,...,pEn(T U)nz)

Proof. The proof involves some manipulation of heterogeneous
equalities. Note that Lemma 5 proves that the two types involved
in the heterogeneous equality in Lemma 6 are equal. [J

6.4 Lambda abstraction

In the case of a lambda abstraction AA . T we get the induction
hypothesis for the body of the abstraction:

IH7 : Pp(k2) (|T]1,..-, | T)nt) (PEn(T)1,...,pEn(T)ns)

for suitably extended environments ets, efs and ep (not shown in
the informal notation). We need to prove:

Pp(k1 — k2) (|JAA.T]1,...,|AA . T]|nt)
(pfn{AA . T)1,...,pfn{AA . T)n2)

We know that the Pp(k1 — k) takes the form
VA1L... Ant (91, -+, Gna) -

Pp(k1) (A1,...,Ant) (g1, -, Gna) —

Pp(ka) (|JAA.T]1 A1,..., |[AA . T |nt Ant)

(app-fs (pfn(AA . T)1,...,pfn(AA . T)nz) (91, -+, Gna))
Recall that for each free variable A in T', we need

e A set of nt types, given by ets, which is used to define the
decoding of T, | T']; (1 <14 < nt)

e For each of the nx function arguments to the property, a func-
tion that handles occurrences of terms of type A, given by efs

o A proof of the property at A, given by ep

In the body of the abstraction, we have one additional free vari-
able, so we will need to extend these three environments: we add
(A1,...,Ant) to ets, (g1,...,9nz) to efs and the proof of the
property Pp(ki1) (A1,..., Ant) (91, ., Gna) to ep.

Unfortunately, extending these environments is not quite as
trivial as it may seem. The original environment ep contains proofs
of type

Pp(k) (L)1, [i)ne) (PER(i)1, .. -, PED(E)ns)



for each type variable ¢ of kind k, where the decoding is interpreted
with respect to the original environment ets. However, in the body
of the lambda abstraction each of these variables is shifted and is
now known as ¢ + 1; variable O refers to the variable bound by
the lambda. That means that we need to convert every proof in the
original ep environment to a proof of type

Pp(k) ([e4+1]1,..., ¢+ 1]ne) (PE(i + 1)1, ..., pfn(i + 1)ng)

where the decoding is now interpreted with respect to the extended
environment ets. This involves proving that'

LEMMA 7. For each variable i of kind k
PER(E)1 puth) (il penoliland PR Lt U elidd ) PER(E+ 1)1
1 1

where the left side of the equality is interpreted with respect to the
original environments ets and efs, and the right side is interpreted
with respect to the extended environments.

Though this lemma may look innocent, it is in fact the most difficult
proof in the entire formalization, and we needed to modify term
specialization slightly to make the proof feasible. The difficulty
comes from the many calls to convert that are generated by term
specialization, so that the proof involves a lot of reasoning about
various heterogeneous equalities. By making sure that these calls to
convert are applied at a smaller granularity, the reasoning in proof
specialization is somewhat simplified. A slightly different choice
of universe might make it possible to reduce the number of places
where we need conversion lemmas; we will come back to this in
the section on related work.

Once all environments have been extended we need to apply the
induction hypothesis IHr, but first we will need two conversion
lemmas to get a proof of the correct type. The first lemma is again
a lemma that we have already proven in the companion paper:

LEMMA 8 (convert_tlam_specTerm_aux). For all types
A1 ... A and the type T

(JAA.T|1 A1,y [AA T nt Ane) = ([T 1y oy [T ne)

where each | T |; is decoded with ets extended as described above.

The second conversion lemma we need deals with the function
arguments:

LEMMA 9 (convert_tlam_specProof).
app-fs (pfn(AA . T)1,...,pIn(AA . T)ns)

(ptn(A)1, ..., ptn(A)ns)
E(Pe(ky—ka) (JAAT] Ay,.) X ), (Pt(ki—ko) ([T|1;00) X =)
1 1
(PEn(T)1, . .., PEN(T) o)

Proof. Again, this proof is mostly a matter of juggling with hetero-
geneous equalities. [

7. Related work

As mentioned in the introduction, different approaches to polytypic
(“(data-type) generic”, “type parametric”, “shape parametric”) pro-
gramming abound and the literature is vast: we can only give refer-
ences for further reading here, and highlight the most important dif-

ferences. We distinguish between two broad categories: approaches

101n the abstraction case for term specialization, we have a similar but
simpler problem, where we needed to prove that the two types in this
heterogeneous equality are equal.

proposed by the functional programming community and proposed
by the type theory community.

In the first category, we find PolyP and derivatives (Jansson
and Jeuring 1997; Rodriguez et al. 2009), Generics for the Masses
(Hinze 2006), Derivable Type Classes (Hinze and Jones 2000),
Generic Programming, Now! (Hinze and Loh 2006), Scrap your
Boilerplate (Ldmmel and Jones 2003; Hinze and Loh 2007) and
many others. A detailed comparison of these approaches is beyond
the scope of this paper; (Hinze et al. 2006) and (Rodriguez et al.
2008) are two survey papers that are good starting points. None of
these approaches however are concerned with proofs over generic
programs, and none of these approaches support the kind-indexed
programs that typify the approach to polytypic programming we
are working with.

Some approaches rely on the representation of datatypes as ini-
tial algebras; the “origami” programming presented by Gibbons
(2006) is a good example. The same approach has been used in the
type theory community; an early example is given by Pfeifer and
RueB (1999). They also give an example of a polytypic proof con-
structed in this fashion, but no proofs about polytypic programs.
The class of datatypes captured by such characterizations is of-
ten limited; Benke et al. (2003) extend this class and give more
examples of proofs (such as reflexivity of polytypic equality), but
datatypes are still limited to first-order kinds.

It is a well-known fact in the dependently typed programming
community that generic programs can be written by defining a
universe with corresponding decoder; a polytypic program is then
defined by induction on codes in the universe (as we have done in
this paper). The choice of universe decides the range of types that
are covered, the range of programs that can be written, and the style
of polytypic programs.

Morris et al. (2006) define a universe with an explicit fixed point
combinator, but which is carefully defined so that it covers strictly
positive types only. Although their universe does not contain type
abstraction and type application, the authors show that polymorphic
types can be simulated by codes with free variables; thus, the
universe covers polymorphic types of first order kinds. The authors
give a definition for a polytypic map function, and prove the two
functor laws (“by easy induction”). So it seems that proofs in
their universe do not need the sort of infrastructure we define in
this paper. On the other hand, the style of programming is very
different and a Generic Haskell programmer would not recognize
the definition of map; moreover, the definition of the functor laws
is not as direct (for example, a special composition operator needs
to be defined for composition of morphisms over environments).

Their universe differs from ours in two other interesting ways.
First, decoding types requires an environment of codes, rather than
an environment of (decoded) types. As a consequence equality can
be defined polytypically even over open types (without requiring
additional arguments), because even those free types must be rep-
resentable in the universe and hence the same polytypic equality
function can be used to compare them. Second, their universe does
not contain the equivalent of our tvar constructor. Instead, they
have two constructors: one for accessing the “first” (most closely
bound) variable, and one for weakening the environment. The au-
thors claim that this simplifies proofs; it would be interesting to see
if a similar approach can be adopted in our setup.

Various other researchers have suggested universes that in many
ways go well beyond our universe. For example, Morris et al.
(2007) extend their earlier work to cover dependent datatypes,
although this universe is still restricted to first-order kinds. A very
different (but equally expressive) sort of universe is the universe
of containers; since the universe looks very different, polytypic
programs (programs that are parametrized by a container) are also
quite different from their counterparts in our style.



The approach to polytypic programming we use, characterized
by the use of kind-indexed types and properties, is based on that
proposed by Hinze (2000a,b) in his habilitationsschrift and which
found its way into two mainstream functional programming lan-
guages, Generic Haskell (Loh 2004) and Generic Clean (Alimarine
2005). The informal definitions of type, term and property special-
ization given in this paper are directly from Hinze, although he
gives no explicit definition of proof specialization.

This approach has been the subject of various formalizations
in type theory; Altenkirch and McBride (2003) implemented it in
Oleg, Norell (2002) presents a similar design in Alfa, and Sheard
(2007) goes some way towards a design in {2mega. None of these
formalizations attempt to do any proofs over polytypic programs.

Finally, Abel (2009) gives an alternative formalization of the
universe of strictly positive types by annotating the function kind by
its variance, and uses sized types to guarantee that induction is well-
founded. This work is based closely on Hinze’s, and in particular
Abel considers kind-indexed types. However, he does not consider
proofs about polytypic programs.

8. Future Work

The careful reader will have noticed that our universe does not
contain any notion of recursion. We cannot simply add a general
recursion operator; since Coq does not support generic recursion at
the type level, we would be unable to define the decoder. As we
have seen in the section on related work, it is possible to define a
fixed point combinator which is restricted to strictly positive types.
However, since our primary goal is to do proofs about Generic
Haskell or Generic Clean-style programs, and since the choice of
universe determines the style of programs one writes, we wanted
our universe to be as close as possible to the universes used in
these languages. For instance, the universe suggested by Morris
et al. (20006) yields programs that are unrecognizable to Generic
Clean programmers. The approach suggested by Abel (2009) is
a lot closer, but is restricted to first-order types. Ultimately, the
universe of strictly positive types is not large enough.!!

In fact, the universe used in Generic Clean does not include re-
cursion at all (Alimarine 2005). Instead, recursion is handled at the
term level. To define the map function over lists (say), one defines a
datatype List® = AA . 1+ A x List A (its “structural representa-
tion”), which corresponds to the top-level (shallow) deconstruction
of a list. Note that List® is not recursive: the tail is an ordinary
list. Obviously, List and List® are isomorphic; given the two wit-
nesses of the isomorphism toList and fromList (the “bimap”)
we can now define map over lists as follows:

mapList : (a — b) — List a — List b
mapList f =
toList - map(List®) f mapList - fromList

That is, we first decompose the list, then apply the polytypic map
function, and finally compose the list again. Since List is a free
variable in List®, map(List®) needs an argument that tells it what
to do with objects of type List: obviously, this is the very function
mapList that we are defining.

Although this definition is perfectly adequate in Haskell or
Clean, it is rejected by Coq because Coq cannot verify that it
terminates. We have experimented with various solutions to this
problem, and although we have to leave the details to future work,
we have found two approaches that work well (proof of concepts
can be found in the accompanying Coq scripts).

T Although we have not included the function space type constant in our
grammar, we can easily add it. This will not affect the formalization of
term or proof specialization, but it will affect examples, as not all polytypic
functions (such as equality) can be defined over this larger universe.

Both solutions rely on coinduction. This is justifiable, as we are
reasoning about Haskell programs; in particular, the list datatype
in Haskell describes both finite and infinite lists. Coinductive func-
tions do not have to terminate, but must be productive (speaking
informally, they must always be able to produce the next part of
the result in finite time). Like termination, productivity is enforced
by Coq syntactically: every recursive call must be guarded by a
constructor of a coinductive datatype (Bertot and Castéran 2004,
Section 13.3).

The simplest way to define mapList in a coinductive way is to
make use of the partiality monad (Capretta 2005). The partiality
monad can be defined as follows in Coq:

CoInductive Delay (A : Set) : Set :=
| Now : V a : A, Delay A
| Later : V (d : Delay A), Delay A.

This monad can be thought of as capturing the essence of produc-
tivity: the productivity requirement for a function can be satisfied
simply by guarding each recursive call of a function with the Later
constructor. The exciting feature of the partiality monad is that it al-
lows us to define a general fixpoint combinator'?, which makes it
possible to give a straightforward definition of mapList. Moreover,
partial functions (such as equality, if we include the function space
type constant) can easily be defined. The disadvantage of the use
of the partiality monad is that all polytypic functions must now be
defined in monadic style. For example, the case for products in map
becomes

fun (A B : Set) (f : A — Delay B)
(CD : Set) (g : C — Delay D)
(x : A*xC) =

let (a, c) := x in

bindD (f a) (fun b = (

bindD (g ¢) (fun d = (

returnD (b, d)))))

Moreover, proofs over functions that are defined using this general
fixpoint operator are far from straightforward, although this can
probably be alleviated using a good partiality library.

The other solution is to try and define mapList directly as a
coinductive function:

CoFixpoint mapStream ... :=
toStream - map(Stream®) f mapStream - fromStream.

(where Stream is a coinductive definition of “lists”.) Although the
occurrence of mapList here is not obviously guarded, guardedness
is checked with respect to various reductions, and this definition
almost works: the only use of mapStream is when dealing with the
tail of the stream, which will always be guarded by the constructor
inserted by toStream. Unfortunately, Coq’s guardedness checker
is not quite clever enough to detect this, and the definition is
rejected. However, following a suggestion by Russell O’Connor
and Bruno Barras on the Coq mailing list (de Vries 2009), if
we change map(Stream®) to continuation passing style and pass
toStream as the continuation, then the definition does pass the
termination checker.

This appears to be the simplest and most promising solution yet,
but since generating CPS style functions involves modifying all of
the type, term, property and proof specialization, we have left a
detailed exploration of this as future work.

121t seems however that in an explicitly typed language such as Coq, we
need a kind-indexed family of fixpoint operators, all of which have the same
basic functionality but pass different type arguments around. This needs
further research.



In Generic Haskell or Generic Clean, the compiler can auto-
matically generate the structural representation of a type, the corre-
sponding bimap, and definitions such as mapStream, above. In Coq
we could implement this through tactics, but this is unsatisfactory:
although each definition generated by the tactics can be verified by
the Coq proof verifier, we cannot give a formal proof that the fac-
tic is correct. We leave the formalization of this aspect as an open
question for now.

Finally, we have not covered extensions such as type-indexed
datatypes (Hinze et al. 2004) which are used in Generic Haskell.

9. Conclusions

The goal of our work is to be able to give fully formal—machine
verified—proofs over Generic Haskell-style programs. In a com-
panion paper (Verbruggen et al. 2008), we gave a formalization of
type and term specialization in Coq. This was an important first
step, and made it theoretically possible to do formal proofs over
polytypic programs. However, in reality such proofs are almost im-
possible without further infrastructure.

In this paper we provide this infrastructure: we give a formal
definition of polytypic properties and polytypic proofs, and formal-
ize property and proof specialization. This does not just make for-
mal proofs over polytypic programs possible, it makes them easy.
For example, the proof that the polytypic map function preserves
composition is only a few lines, and specializing this proof to par-
ticular types is as easy as invoking proof specialization with the
desired polytypic proof and the target type as arguments.

This paper can also be interpreted as a fully formal proof that
proof specialization is correct with respect to property specializa-
tion, and that to do a proof over a polytypic function it indeed suf-
fices to give the proof for the specific instances of the polytypic
function for the type constants. This means that even for people that
are not interested in fully formal proofs but prefer to do “pencil-
and-paper” proofs (as many do), this paper should be interesting as
a formal guarantee that pencil-and-paper methods are correct.
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