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Abstract

The aim of our work is to provide an infrastructure for formal
proofs over Generic Haskell-style polytypic programs. ths goal

to succeed, we must have a definition of polytypic prograngmin
which is both fully formal and as close as possible to the defim

in Generic Haskell. In this paper we show a formalizationha t
proof assistan€oqof type and term specialization. Our definition
of term specialization can be interpreted as a formal prbaf t
the result of term specialization has the type computed pg ty
specialization.

Categories and Subject Descriptors D.2.4 [Software/Program
Verificatior]: Formal methods

General Terms Languages, Theory, Verification

Keywords Polytypic programming, generic programming, theo-
rem proving, kind-indexed types, Coq, formalization

1. Introduction

The aim of our work is the development of an infrastructuréhim
proof assistan€oq (Bertot and Castéran 2004) for doing proofs
over polytypic programs in the style Gfeneric Haskel{Ldoh 2004)

or Generic Clean(Alimarine 2005) which can be used by practi-
tioners of these systems. This paper gives a formalizatiquoly-
typic programming in Coq and is therefore an important fiteps
towards our goal.

The approach to polytypic programming used in Generic Haske
was first introduced by Hinze (Hinze 2000b,a) and has beeteimp
mented as a preprocessor for Haskell and as a languageiekrtens
in Clean. It has since been recognized that in the contextds-a

pendently typed language polytypic programming can beesgad

entirely within the language and can be implemented simply as a

library (for example, see Altenkirch and McBride 2003). Gur
plementation too takes the form of a Coq library.

an ordinary functionf(T") over a datatypd’. The type of f(T")
is the specializatior¥'(T") to the kind ofT". Term specialization
(f(T)) is defined by induction on the structure'Bf type special-
ization (F'(T)) is defined by induction on thend of 7.

To illustrate this approach, we will consider the polytypip
function with typeMap (we will give the definitions ofhap andMap
in Section 2). The specialization akp to the type of integers is
simply the identity on integers:

Eval compute in specTerm tint map.

= fun (z:Z) = z : specType tint Map

“Eval compute in” instructs Coq to compute the normal form
of a term;specTerm and specType are our definitions of term
and type specialization, andint is the “code” that corresponds
to the type of integers. Coq reports the type of the resultes t
specialization oflap (the type ofnap) to tint; this evaluates to

Eval compute in specType tint Map.

=7Z — Z : Set

as expectedset is Coq's name for king).

As a second more interesting example consider thetypek,
defined asAa . (o, ). To map a function across a term of this
type we need a function to map across its elements. Thus the
specialization ofaap to tfork is

fun (A B:Set) (f:A — B) (x:A * A) =
let (a, b) := x in (f a, f b)
: specType tfork Map

Similarly, to map across a term of typerod, Aa- AS - (o, 3), We
need two functions to map its elements. The specializatiorap
to tprod is

Although there are many approaches to generic programming ¢, (A B:Set) (f:A — B) (C D:Set) (g:C — D)

both in dependently typed languages and in more convemtiona

functional programming languages (Section 7), few suppuet
kind-indexed types which characterize Hinze’s work. Theedédea
is that if f is a polytypic function of type” we canspecializef to
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(x:A * C) = let (a, c) :=
: specType tprod Map

x in (f a, g ©)

Finally, the specialization ofap to tapply, A¢-Aa- ¢ «, requires
two functions to translate the datatype and its elements.

fun (T T’:Set — Set)
(f:V (A B:Set), (A—-B) - TA — T’ B)
(A B:Set) (g:A - B) = f ABg

: specType tapply Map

The point of these various examples is to show that we canapec
izemap to types of any kind. For kind (tint) we get the identity
function. For first-order kinds such as — % or x — x — %
(tfork andtprod) we get a function which maps functions at the
base typesf{ andg) across the datatype. Finally, even higher-order
kinds such agx — x) — x — * (tapply) are supported.



The aim of this work is to provide an implementation of poly-
typic programming in Coq which is easily recognizable togpeon-
mers familiar with Generic Haskell or Generic Clean. In jgaittr,
our contributions are:

¢ We provide an infrastructure for defining polytypic funetio
and their types which is very similar to the infrastructure-p
vided by Generic Haskell or Generic Clean (Section 2).

¢ We formalize term specialization and type specializatio@oq
as defined in Generic Haskell/Clean. In particular, the dafin
of our type universe is identical (modulo syntactic diffeces).

¢ The definition in Coqg has one very important benefit over the
existing implementation in Generic Haskell. Since we use de
pendent types to specify that the resulsptcTerm 7' f must
be of the formspecType T' F', our implementation is a formal
proof that the term specializatiof7") must have type ' (T').

The final point is important since it paves the way towardsubtix
mate goal of providing an infrastructure in Coq to prove s
about Generic Haskell style programs. For this goal to sdce
we must have a definition of polytypic programming which istho
fully formal and as close as possible to the definition in Giene
Haskell or Generic Clean. This paper provides such as definit
Section 2 shows that the interface we provide to programiisers
very similar to the Generic Haskell interface. After a briietro-
duction to Coq in Section 3, we give the definition of the gener
view in Section 4 followed by the formalization of type andnte
specialization in Sections 5 and 6.

We assume that the reader is familiar with Haskell, and has at

least some cursory knowledge of Generic Haskell or GendeiarC
We will not assume any prior knowledge of Cog.

2. Defining polytypic functions

In this section we will explain how polytypic functions antketr
types can be defined using our library. We think that readers!f
iar with Generic Haskell or Generic Clean will experienceome
forting familiarity reading our definitions; we will explaispecifics
pertaining to Coq as they arise.

The type of a polytypic function is a (type-level) functiomigh,
givennp arguments, constructs a type of kird

Record PolyType (np:nat)
typeKindStar :
}.

: Type := polyType {
nary_fn np Set Set

The Record keyword introduces a record of named fields; the
difference between records in Coq and records in Haskelas t

records in Coq can be dependent. We will take a closer look at
dependent types in the next section; suffice to say here that a

dependent type is one that depends on a term (rather thae)y typ
PolyType has one parametenig) and one field {ypeKindStar)
of typenary_fn np Set Set. A termnary fn n A B denotes
the type
A— ...

We will refer to np as the number of arguments of the polytypic
function (it doesnot refer to the number of arguments of the
specialized function, which varies with the kind of the &trtype—
see previous section).

As readers who are familiar with polytypic programming will
know, map is a polytypic function of two arguments; its tyMep is

—A— B

Definition Map : PolyType 2 :=
polyType 2 (fun A B = A — B).

The type of the polytypic function describes the type of thera-
tion that gets performed by the polytypic function at themedets;
in this casemap transforms elements of typéto elements of type
B. Specialization of a polytypic function uniformly lifts ¢hopera-
tion on elements to an operation on structures containieigents.
The specialization of th&ype of the polytypic function describes
the type of the lifted operation.

To define a polytypic function, the user only needs to provide
the definition for the type constants; term specializatlmnttakes
care of the remaining types. A nice feature of an impleménat
of polytypic programming in a dependently typed languaghas
the definition of a polytypic function is simply another redo
Polytypic functions are therefore first-class (ordinanjects in
the host language) and can be passed as arguments or reasrned
results. We define a polytypic function as

Record PolyFn (np:nat) : Type := polyFn {
ptype : PolyType np ;

punit : specType tunit ptype ;

pint : specType tint ptype ;

pprod : specType tprod ptype ;

psum : specType tsum ptype

}.

In words, a polytypic function ofip arguments has a (polytypic)
type of np arguments, and contains definitions for the type con-
stantstunit, tint, tprod andtsum (for simplicity’s sake, we do
not consider other type constants). The type of these fielde
termined by type specialization (explained in Section 3)icl en-
sures that users cannot define ill-typed polytypic functidfor the
specific case dflap, this simplifies to

punit : unit — unit

pint : Z — Z

pprod : V (A B:Set), (A — B) —
V (C D:Set), (C — D) —
A*xC—B=x*D

psum : V (A B:Set), (A — B) —
vV (C D:Set), (C — D) —
A+C—=B+D

(We can ask Coq to simplify these types for us, as shown in the
introduction.) We can now define the polytypiep function as

Definition map : PolyFn 2 := polyFn Map
(fun (u:unit) = u)
(fun (z:2) = z)
(fun (A B:Set) (f:A — B)
(C D:Set) (g:C — D) (x:A x C) =
let (a, ¢) :=x in (f a, g c))
(fun (A B:Set) (f:A — B)
(C D:Set) (g:C — D) (x:A +0C) =

match x with

| inl a = inl D (f a)
| inr ¢ = inr B (g c)
end) .

This is virtually identical to the definition we would prowédn
Generic Haskell or Generic Clean, with one exception perhap
since Coq is explicitly typed, the fields of the polytypic @fion
take explicit type arguments. For example, in Haskell we ldiou
write the case for the product type as

Af -> Ag > Ax -> let (a, ¢) = x in (f a, g c)

To conclude this section, we will consider another classlgtgpic
function: polytypic equality. Unlikenap, equal only has a single
argument. Its type is defined as



Definition Equal : PolyType 1 :=
polyType 1 (fun A = A — A — Dbool).

The definition ofequal is

Definition equal :
(fun x y = true)
Zeq_bool
(fun (A:Set) (f:A — A — bool)

(B:Set) (g:B — B — bool)
(x:A * B) (y:A * B) =
let (a , b ) :=x in

let (a’, b’) :=y in

faa && g b b’)

(fun (A:Set) (f:A — A — bool)
(B:Set) (g:B — B — bool)
(x:A + B) (y:A + B) =

match (x, y) with

| (inl a, inl a’) = f a a’
| (inr b, inr b’) = g b b’
| otherwise = false

end) .

PolyFn 1 := polyFn Equal

3. Coq

Before we delve into our formalization of polytypic prograrimg,
we will first give a brief overview of Coq. Coq is a proof asaist
developed in Inria (Bertot and Castéran 2004) based onaloeic
lus of constructions (higher-order predicate logic) estsh with
inductive and co-inductive datatypes and an infinite h@rarof
universes. The examples we discuss in this section are rlbpa
our development, and will be needed in the rest of the paper.

3.1 Dependent types

The calculus of constructions (Coquand and Huet 1988) iparde
dently typed lambda calculus. This means that types arecfass
and can be passed as arguments to functions or returneduis.res
For example, we can define a functiomple A n which constructs
the type of homogeneous tuples of length

AXAx---xA
N— ————

n

as

Fixpoint tupleT (A:Type) (n:nat)
match n with

| 0 = unit

| Sm = A * tupleT A m

end.

: Type :=

Fixpoint introduces a recursive definition, amdtch denotes
pattern matching (comparable ¢ase in Haskell). Since all func-
tions in Cog must terminate, recursive functions must benddfby
structural induction on one of its arguments (here,The termina-
tion checker in Coq will verify that all recursive calls arade to
structurally smaller arguments. Notice that for the case f 0 we

return the unit type () in Haskell) which has one element denoted

by tt. Thus we will usett to denote the empty tuple.
To define a function that returns th&h element from an

n—tuple, we must first define a datatype that describes the set of

valid indices{0, 1, ...,n — 1}. This datatype is known &in and
is defined as

nat — Set :=
¥V n, Fin (S n)
V n, Fin n — Fin (S n).

Inductive Fin :
| fz :
| fs :

Inductive introduces an inductive datatypethe syntax can be
compared to the syntax for GADTSs in Haskell (Peyton Jones et a
2006): we specify the kind of the datatype and list the tyddb®
constructors. Sinc€in is parametrized by a natural number—a
term, not a type—it is a so-calledependentiatatype. It has two
constructorsfz corresponds to the natural number zero (and is an
element of any set of at least one element) asdorresponds to
the successor operation on natural numbers. For examplégrim

fs (fz 3)

denotes the second element in the &&tl, 2, 3,4}. Although £s
takes two arguments (a natural number and another element of
Fin), we only specify one since the firat can be inferred from
the second. We say thatis animplicit argumentof £s.

GivenFin we can write the indexing operator as

: Fin b5

Fixpoint getT (A:Type) (n:nat) (i:Fin n) {struct i}
: tupleT An — A :=
match i in Fin n return tupleT A n — A with

| fz m = fun tup = let (x, xs) := tup in x
| fs m i’ = fun tup =

let (x, xs) := tup in getT A i’ xs
end.

The syntaxthatch e in T return o”denotes adependent pat-
tern match ore : T, where the type of each branch has type
(which may depend on bothhandT'). Since the index must be
within bounds due to its typegetT is a total function. We use
{struct i} to tell Coq which argument we want to do structural
recursion on so that Coq can verify termination.

3.2 Universe inconsistencies

One definition that we will need later in our proof is a chagsiza-
tion of heterogeneous tuples, in which every element haffer-di
ent type. One natural way we might consider is to define a fomct
which given a tuple of types

(A,B,0)
constructs the type

Ax BxC
We can define this function as

Fixpoint gtupleT (n:nat) : tupleT Type n — Type :=
match n return tupleT Type n — Type with
| 0 = fun tup = unit
| Sm = fun tup =
let (t, ts) := tup in t * gtupleT m ts
end.

This takes a nested tuple (tuple of tuples) as argumentyé enust
construct a tuple of type

tupleT Type n

We will get an unpleasant surprise, however, when we attémpt
define

(tupleT Am,...): tupleT Type n
because Coq will come back with the uninformative error

Universe inconsistency

1 Although it may be slightly unusual to definmpleT recursively while
defining Fin inductively, we found this the most convenient setup. An
alternative is to define tuples functionally. This removies heed for an
indexing operator and makes some of the lemmas we need raukind
however, it also introduces some new lemmas and operatiothsnaore
importantly, it makes it impossible to prove that two tupdes equal.



To understand this error, we must know a little more about uni
verses in Cog. Like in Haskell, the natural number “5” hasetyp
nat. Like in Haskell, the typenat haskind (or type)Set (Set

is calledx in Haskell). Unlike in Haskell, however, this hierarchy
continues ad infinitunBet has typeTypeo, Typeo has typeType,
and generallyType; has typeType, ;. Moreover, there is a coer-
cion rule that ifT" : Type, thenT : Type, for anyj > . This
stratification of Type prevents the encoding of logical paradoxes
(e.g., Hurkens 1995).

The user cannot assign the universe levels manually, wkich i
why we simply wroteType in the examples above. Coq attempts
to assign a suitable level to each occurrenc&yge, infers the
constraints on these levels, and verifies that there arecuméis-
tencies. FotupleT we have

tupleT : Type; — nat — Type; (i < j)

Now consider what happens when we try to define our tuple of
tuple types. The elements of the tuple are the resulzpiieT and
therefore have typ&ype;. The constructed type itself must then
have type

tupleT Type; n
Since we pasSype; as the first argument toupleT of typeType;,
we must haveType; : Type, which will hold if j < 4. But the
constraintsi < j andj < ¢ cannot both be satisfied, and Coq
reports a universe inconsistency: there is no suitableyassnt
that does not result in an inconsistency.

The problem is that Cog does not support universe polymor-
phism (Harper and Pollack 1991). A work-around would be to du
plicate the definition otupleT. This is, however, not a very ele-
gant solution, especially since it would lead to furthereddplica-
tion elsewhere. Fortunately, we can follow Morris et al.qZPand
give an alternative definition of heterogeneous tuples himids
universe inconsistency without the need for duplicatiorofi4
et al. refer to this operator as the modality. Given a tuple

(z,y,2)
of elements of some typd, we construct the type

fr X fyx fz

This is implemented as

Fixpoint gtupleT (A:Set) (m:nat) (f:A — Type)
tupleS A n — Type :=
match n return tupleS A n — Type with
| 0 = fun tup = unit
| Sm = fun tup =
let (t, ts) :=
end.

tup in £ t * gtupleT m f ts

While this definition is not formally equivalent, it is eqiyauitable
for our purposes and avoids the universe inconsistencyiriex-
ing operator associated wigitupleT takes the following form:

ggetT : V (A:Set) (n:nat) (f:A — Type) (i:Fin n)
(tup:tupleS A n), gtupleT f tup — f (getS i tup)

3.3 Proofs

From a logical perspective, Coqg’s language correspondome ¢
structive higher order predicate logic where every progira@oq
denotes the proof of its type. This fascinating result iskmas the
Curry-Howard isomorphism, but a discussion of this topialdo
take us too far afield; we refer the reader to the excellertbtek
by Sgrensen and Urzyczyn (2006) instead.

Lemma MP : V (A B:Prop), A — (A—B) — B.
Proof (fun (A B:Prop) (a:A) (f:A—B) = £ a).

“Lemma...Proof” is alternative syntax forDefinition ... :=" to
make it clear that we are writing a proof rather than a progi@m
course, there really is no distinction and this is syntagatigar only.
We could also write

Definition MP :
(fun (A B :

V (A B:Prop), A — (A—B) — B :=
Prop) (a:A) (f:A—B) = f a).

The two definitions offP are indistinguishable. Coq does however
make a formal distinction between terms that are “prograamsf
terms that are “proofs” in the type system. The type of a @ogr
(say,nat) lives inSet, as we saw above. The type of a proof (that
is, a proposition such as= 1) lives in Prop (bothSet andProp

live in Typeo). The reason for the two different sorts is that Coq
supportgprogram extractionCoq can extract all the computational
content (that is, keep the programs but strip the proofs)eo b
exported to OCaml or Haskell for efficient compilation.

For more complicated proofs, however, writing proofs bycan
(as “programs”) becomes difficult. Instead, we can make titzce
tics. Tactics are small programs that can search for proofs im-a pa
ticular domain. The use of tactics enalfgsof automationwhere
Coq can handle most of the more mundane parts of our proafs aut
matically. This is a huge help in any realistic proof. Onehaf sim-
plest tactics imuto, which attempts to solve the proof by repeated
application of the currently available hypotheses. Othetits in-
clude tactics for induction (i.e., recursion), inversi@mithmetic,
etc. Moreover, Coq supports a language callat in which cus-
tom tactics can be written. All tactics will search for prepéind
thenreturn a proof if one can be found—which will be verified
by Cog. This means that a “rogue” tactic cannot compromise th
soundness of the system.

We will not make use of tactics in this paper, so we refer the
reader to (Bertot and Castéran 2004) for more informatitmw-
ever, the support for tactics and proof automation is an napo
reason for choosing Coq for our work (reasoning about ppigty
programs).

4. Definition of the Generic View

A generic view is a set ofodesthat represent the datatypes that
can be used as a target for specialization of polytypic fonst
For example, if we want to specialize the polytypic map fiorct
to the product typeprod in Coq), we must pass the code fafod
(tprod), as well as the definition afap itself, as arguments to term
specialization. However, the result of term specializatitould
be a function on the product datatype properod). This means
that we must define a mapping from codes in the generic view to
ordinary Coq datatypes. Such a mapping is known ds@der
The definitions for our generic view and the decoders aredigt
Figure 1.

4.1 Kinding derivations

In our definition of the generic view we do not define a datatjiae
encodes thgrammarof types, but rather encode kinding deriva-
tions to make sure that only well-kinded types can be reptede
An element

T : type nv ek k

is a type of kindk with at mostnv free variables, whose kinds are
defined in the kind environmeik. This corresponds to a kinding
derivation

ek T :k

For simple cases we can write these proofs as programs. ForThe type of the environmentk is envk nv, which is annv-tuple

example, here is a proof of modus ponens:

of kinds.



(x Codes for kinds x)
Inductive kind : Set :=
| star : kind
| karr : kind — kind — kind.

(* Grammar for type constants )
Inductive type_constant : kind — Set :=
| tc_unit : type_constant star

| tc_int : type_constant star
| tc_prod : type_constant (karr star (karr star star))
| tc_sum : type_constant (karr star (karr star star)).

(x Codes for types x)
Inductive type : V (nv:nat), envk nv — kind — Set :=

| tconst : V (nv:nat) (ek:envk nv) (k:kind), type_constant k — type nv ek k
V (nv:nat) (ek:envk nv) (i:Fin nv), type nv ek (getS i ek)

| tapp : V (nv:nat) (ek:envk nv) (k1 k2:kind), type nv ek (karr ki k2)
v

| tvar

— type nv ek k1l — type nv ek k2
(nv:nat) (ek:envk nv) (k1 k2:kind), type (S nv) (k1, ek) k2
— type nv ek (karr k1 k2).

| tlam

(x Syntactic sugar for types with no free variables x)
Definition closed_type (k:kind) : Set := type O tt k.

(x Syntactic sugar for type constants x)

Definition tunit := tconst O tt tc_unit.
Definition tint := tconst 0 tt tc_int.
Definition tprod := tconst O tt tc_prod.
Definition tsum := tconst O tt tc_sum

(x Decoder for kinds x*)

Fixpoint decK (k:kind) : Type :=
match k with
| star = Set
| karr k1 k2 = decK k1 — decK k2
end.

(x Decoder for types x)

Fixpoint decT (nv:nat) (k:kind) (ek:envk nv) (t:type nv ek k) {struct t} : envt nv ek — decK k :

match t in type nv ek k return envt nv ek — decK k with

| tconst nv ek k tc = fun et = match tc in type_constant k return decK k with

| tc_unit = unit

| tc_int = Z

| tc_prod = prod_set
| tc_sum = sum_set

end
| tvar nv ek i = fun et = ggetT i et
| tapp nv ek k1 k2 t1 t2 = fun et = (decT tl1l et) (decT t2 et)
| tlam nv ek k1 k2 t’ = fun et arg = (decT t’ (arg, et))

end.

(* Example: A(a: %) - a X a. *)
Definition tfork :=
(tlam (tapp (tapp (tconst 1 (star,tt) tc_prod)
(tvar 1 (star, tt) (fz 0)))
(tvar 1 (star, tt) (£z 0)))).

(* Example: A(a:* — %) - A(B: %) -« B.%)
Definition tapply :=
tlam (tlam (tapp (tvar 2 (star, (karr star star, tt)) (fs (f£z 0)))
(tvar 2 (star, (karr star star, tt)) (fz 1)))).

Figure 1. Generic View and Decoders



For example, the rule for lambda abstractions encodes tiuk ki
ing derivation
(k1,ek) T : ko
ekt AT : k1 — ko
Note that we are using De Bruijn indices to represent veemfde
Bruijn 1972). The indices in a type afv free variables are of type
Fin nv, which guarantees that no indices can be out of bounds.

LAmM

4.2 Decoding kinds

The decoder for kinds is straight-forward, but there is atlstyp
with the choice ofet as the decoding of kind. In the specializa-
tion of the arrow kind (Section 5), we will construct typestbé

form

(V («:decK star), ...) : decK star

Since the bound variabley ranges over the very type that is de-
fined, the type ofx must be impredicative. As explained in Sec-
tion 3, Type in Coq is not impredicative (but stratified) and return-
ing Type for the decoding of king will result in a universe incon-
sistency when we subsequently attempt to define type sjzeeial
tion. Hence we must chooset instead, enabling the impredica-
tive Set optiorf. It does not seem possible to give a formalization
of Generic Haskell-style polytypic programming withoutngsan
impredicative universe.

4.3 Decoding types

The decoder for types is more involved. To decode a peith

nv free variables, we must know the decoded types of the free
variables inT. Hence, we need an environmetit of type envt

that associates a decoded tyfewith every free variablé in T.
Since the type off; (its kind, if you prefer) depends on the kind
of 7, each element int has a different type. We therefore calculate
envt from the kind environmentk:

Definition envt nv (ek:envk nv) := gtupleT decK ek.

using the generalized product described in Section 3.

We have already introduced two different environmemts (
envk nv andet : envt nv ek) and we will need two more in
the remainder of the paper. As it may be difficult to keep track
of so many different environments we provide an overviewhef t
definitions and their purpose in Figure 2.

Armed with this environment we can now define the decoder for
types as shown in Figure 1. Type constants map to their Cogrcou
terparts, variables map to the corresponding elementseiekii-
ronmentet, application maps to Coq type application and lambda
abstraction maps to Coq type-level functions. To decodéntiuy
of a lambda abstraction we must add the type of the formahpara
eter to the environment.

Figure 1 also shows the encoding for two of the example types
that we considered in the introductioafork and tapply. The
result of decoding these types is

decT tfork tt
= fun (arg:Set) = arg * arg
: decK (karr star star)

decT tapply tt
= fun (f:Set — Set) (a:Set) = f a
: decK (karr (karr star star) (karr star star))

23et was impredicative in Coq by default before version 8; thisswa
changed mainly to support classical reasoning. We will reat classical
reasoning, however, and so makiggt impredicative does not compro-
mise the soundness of our proofs (see Coq Development Te@&).20

5. Type specialization

As we saw in Section 2, a polytypic functiatap has a polytypic
typeMap, and the specializatiotpecTerm 7 map Of map to a type
T has the specialized typgpecType T Map. In this section we
explain how to define

specType : V (np:nat) (k:kind),
closed_type k — PolyType np — Set

The full definition is shown in Figure 3.

Type specialization is a two-phase process. We first defime th
kind indexed typekit k Map. Hinze (2000a) denotes this by
Poly(k) for some polytypic typePoly and defines it by induc-
tion onk:

Poly(k:0O) = k— -+ —>k— %
Poly(x) T1...Tnp = (user defined)
P01y<k‘1 — k‘2> T1 .. .Tnp = VAl e Anp .
P01y<k1> Aq... Anp — P01y<k2> (T1 A1) L. (Tnp Anp)

The case for kind is the user-defined typ@41yType, Section 2).
We can rewrite the case for arrow kinds as

POly(k‘l — k‘2> :AT1...AT7LP .VAl...Anp L))

to make it more obvious that we must return a type-level fionct
which, givennp arguments, returns a universally quantified type.
It is however difficult to give a recursive definition of thige; a
seemingly trivial but very helpful insight is that it is mudasier

to work with an uncurried form (it is interesting to note thlt
tenkirch and McBride (2003) come to the same conclusionjs Th
gives us the following definition dfoly(ky — ko):3

ATy, ..., Thp) VAL... Anp .
Poly(k1) (A1,..., Anp) — Poly(k2) (Th A1,...,Tnp Anp)
To construct this function we first construct the functiorendboth
theT’s and A’s are uncurried:
ATy, .. Thp) - A(Ax, ..., Anp) .
Poly(k1) (A1,..., Anp) — Poly(k2) (Th A1,...,Tnp Anp)

This can be translated to the correct type using the function
quantify_tuple, which takes a function of the form

A(Ar, ..., Anp) . T
to the universally quantified type
VA1 .. VAn, . T

This function can be implemented as follows:

Fixpoint quantify_tuple (A:Type) (m:nat)
(tupleT A n — Set) — Set
match n return (tupleT A n — Set) — Set with
| 0 = fun f = f tt
| Sm = fun f = V a : A,
quantify_tuple A m (fun As = f (a, As))

end

Paraphrasingkit constructs a type that calculates the required
specialized type given a tupl&1, . .. T,y ); the second step in type
specialization is therefore to construct this tuple. Histaes that
specialization of a polytypic functiopoly of typePoly to a type

T has type

poly(T :: k) :: Poly(k) (|T]1,.--, | T )np)

3|tis possible to uncurry the first part of the definition besmthe function
is never partially applied. We could also leave the secohdfsgrguments
(the A’s) uncurried, but this generates unreadable types.




(x Every type has an associated kind environment which assigna kind to each free variable in the type x)

Definition envk (n:nat) : Set := tupleS kind n.

(x Type environment used by the decoder for the translation of fee variables . x)

Definition envt (nv:nat) (ek:envk nv)

(* Environment of the form ((a; ..
Definition enva (np nv:nat) (ek:envk nv)

:= gtupleT decK ek.

&.p), (b1 .. byyp), ..) to keep track of free variable replacements.x)
:= gtupleT (fun k = tupleT (decK k) np) ek.

(x Environment for functions associated with free variables x)
Definition envf (np nv:nat) (ek:envk nv) (Pt:PolyType np) (ea:enva np nv ek) :=
gtupleS (fun i = specType’ (tvar nv ek i) Pt ea) (elements_of_fin nv).

Figure 2. Overview of Environments

(x Specialize polytypic type Pt for kind k. x)

Fixpoint kit (k:kind) (np:nat) (Pt:PolyType np) {struct k} :
match k return tupleT (decK k) np — decK star with

| star = uncurry (typeKindStar Pt)

tupleT (decK k) np — decK star :=

| karr k1 k2 = fun tup = quantify_tuple (fun As = kit k1 Pt As — kit k2 Pt (apply_tupleT tup As))

end.

(* Apply kit k Pttothetuple (|¢]1,..., [t]np). %)

Definition specType’ (np nv:nat) (k:kind) (ek:envk nv) (t:type nv ek k) (Pt:PolyType np)

(ea:enva np nv ek) : decK star :=
kit k Pt (replace_fvs t ea).

(x Specialization of specType for closed types )

Definition specType (np:nat) (k:kind) (t:closed_type k) (Pt:PolyType np)

: decK star := specType’ t Pt tt.

Figure 3. Type specialization

The definition of the floor operatdr|; is slightly involved, so we
will consider an example firkt The type ofnap specialized to the
datatypel’ = AA B C'. A+ B x C should be

(A1 — A2) — (B1 — B2) — (C1 — C2)
—>TA1B101—>TAQBQOQ

Recall that the polytypic type afiap, which describes the type
of the operationmap performs at the elements of a structure, is
AA B . A — B.When we specializaap to a specific datatype,
we will need an instance of this operation for each of the mugnts

of that datatype. Hence if the datatype hasparameters, we will
neednwv copies of this operation, each of which will neegd type

arguments. To keep track of all of these types, we constmict a

environmenka : enva of the form

((A1, ..., Anp), (B1,.., Bnp), (C1,...,Cnp),...)

nv

The floor operatior{T”|; replaces each free variable T (each
argument of the datatype) by thi¢h variable associated with it by
creating the tupl€A;, B;, C;, .. .) and then decodin@” using this
new tuple as type environment (Section 4.3).

Returning to our example, for evelyA . - - - we encounter dur-
ing term specialization we will add the correct tuplé,, . .., A.p)
to ea (Section 6.4). The type of the specialization of biwelyof the
lambda abstractions i will then be

Poly(k) (JA+ B x Cl1,...,|[A+ B x Clnp)

4Hinze uses naming conventions to define the floor operatomffortu-
nately naming conventions do not work in a formal setting.

When we specialize a function to a closed type & 0), ea must
be empty and|(I"|1, ..., | T]»p) degenerates t@, ..., T"). From
a user’s perspective (who wdlwaysspecialize polytypic functions
to closed types), this means that aj) arguments of a polytypic
function will be initialized to thesametype (see also Section 2).
The full definition of type specialization is shown in Figi8e
kit calculates kind-indexed types am@decType returns the ap-
plication of a kind-indexed type to a tupléX(|1, ..., |T|np)-
This tuple is created byeplace_fvs, whose definition is straight-
forward and can be found in the Coq sources (Verbruggen 2008)

6. Term specialization

A polytypic function is fully specified by giving its polytyp type
and the cases for all constants. The cases for all other tgrebe
inferred. Hinze (2000a) gives the definition for the spézaion
of a polytypic functionpoly of typePoly to a typeT :: k as
poly(T :: k) = Poly(k) |T|1...|T]np
poly(C :: kc) = (user defined)
poly(A :: ka) = fa
poly(AA . T i ki — ko) = ANA1... Anp .
poly(T U :: k2) =
(pOly(T o k’l — k’g>) \_Ujl e

Afa . poly(T :: k2)

U |np (poly(U :: k1))

In this section, we will show how to define the equivalent dééin
in Cog. The type of this function is

specTerm : V (np:nat) (k:kind)
(t:closed_type k) (pf:PolyFn np),
specType t (ptype pf)



SincespecTerm returns a term of the type computeddpecType,

the definition ofspecTerm is a formal proof that term specializa-
tion returns terms of the required type. The definition offrtespe-
cialization is shown in Figure 4; it relies on a number of diaxy
lemmas which we do not show but will explain below. As always,
the full definitions can be found in the Coq sources. In theaiem
der of this section we will describe each of the clauses irdéfe
nition of specTerm.

6.1 Constants

The case for type constants seems straight-forward. Aftewa
should simply use the definition given by the user. But thera i
subtlety we must deal with. Consider the case for the prociuet
stant gprod). As part of the definition of the polytypic function,
the user will have provided a functigiprod of type

pprod : specType tprod ptype

Recall from Figure 1 thatprod is syntactic sugar for

tconst 0 tt tc_prod

As described in Section 4, instancesgpe encode kinding deriva-
tions; tprod encodes the derivation in the empty environment

CONST

0 F tconst tc_prod:* — x — %

Whentc_prod is used inside another type, however, it may well be
used in an environment where thene free variables. This arises,
for instance, in the use dfc_prod in the definition oftfork in
Figure 1, where instead we have a derivation of the form

ConsT
o : % tconst tcprod:x — *x — %

Generally, we need a function of type

specType’ (tconst nv ek tc_prod) ptype ea

for some number of free variables and associated kind environ-
mentek (ea is the environment we need for the type arguments in
the generated type, and will be discussed later). We couidrgé

ize the definition of the polytypic function to

Record PolyFn (np:nat)

ptype : PolyType np ;

pprod : V (nv:nat) (ek:envk nv) (ea:enva np nv ek),
specType’ (tconst nv ek tc_prod) ptype ea ;

: Type := polyFn {

}.
However, this complicates both the definition of a polytyfinc-
tion and the instances the user must provide. Fortunatetyrns
out that the specialized type @fonst nv ek tc_prod is the
same as the specialized typet@bnst 0 tt tc_prod, as proven
by the following weakening lemma:

LEMMA 1 (weakening tconst). For all nv, tc, ek, Pt, ea,

specType (tconst 0 tt tc) Pt
is the same type as

specType’ (tconst nv ek tc) Pt ea

Proof. Unfolding definitions (Figure 3), we find that we have to
prove

(|tconst 0 tt tc]i, ...) = ([tconst nv ek tc|i, ...)

The equalities between the elements are trivial, so we caplete
the proof by induction on the length of the tupleg). O

6.2 Variables

Recall from the definition of term specialization as giverHigize
(2000a) that in the case for variables we return the funcfien
constructed in the clause for lambda abstraction. Howeélieze's
definition relies on naming conventions which do not tratesta
a formal setting. Instead we need an environmgniith an entry
for each of these functions.

The tricky part is to assign a typenvf to ef, since each
element inef has a different type. We can computevf using
the generalized tuple from Section 3 as foll6ws

gtupleS (fun i = specType’ (tvar nv ek i) Pt ea)
(elements_of_fin nv).

The type of the'th function is the specialized type of thigh free
variable. Thus, we mappecType over the tuple0, 1, ..., nv —

1) constructed byelements_of_fin. Given ef we can simply
return thei'th element inef as the specialized term for variatilé
The constructionof ef will be considered in the case for lambda
abstraction (Section 6.4).

6.3 Application

To specialize a polytypic functiopf of typePt to a type applica-
tion (T" U) we first specialize td@” :: k1 — k2, which will create a
term of the form

specTerm’ T pf ea ef : V Ay ... App,
kit k1 Pt (A1, ..., Anp) —
kit k2 Pt (|T]1 A1, ..., |T|np Anp)

We instantiate the type variablgs. .. A,,, in specTerm T pf ea
ef to the elements of the tupl@U]4, ..., |U|~p) using

instantiate_tuple (A:Type) (n:nat)
V (args:tupleT A n) (X:tupleT A n — Set),
quantify_tuple X — X args

(see Coq source for a full definition). This leaves us with the
following term

(specTerm’ T pf ea ef) |U|i...|Ulnp :
kit k1 Pt ([U]1,..., |[Ulnp) —
kit k2 Pt (|T]1 |U]1,.., [Tlnp |Ulnp)
We can apply this to the specialized termdf which serendipi-
tously has exactly the right type, and get a term of type

[ Tlnp [Unp)

Since we are specializing an application, the return typexpect
here would be

kit k2 Pt (|T]1 |U]4,...

specType’ (tapp T U) Pt ea

We can use the following lemma to complete the definition for
application

LEMMA 2 (convert_tapp). For all np k1 k2 ea Pt and types
T :k1 — k2andU : k1, the type

kit k2 Pt (|T|1 [U]1,. ., |[T]np [Ulnp)

is the same type as

specType’ (tapp T U) Pt ea

Sgtuples is a version oftupleT that returns &et rather than &ype.

6Due to the way we calculatenvf, we do need one technical lemma
(ith_fin) that thei'th element ofelements_of _fin is .



(x Term specialization )

Fixpoint specTerm’ (np nv:nat) (ek:envk nv) (k:kind) (t:type nv ek k) (pf:PolyFn np) {struct t} :
V (ea:enva np nv ek), envf nv ek (ptype pf) ea — specType’ t (ptype pf) ea :=

match t in type nv ek k

return V (ea:enva np nv ek), envf nv ek (ptype pf) ea — specType’ t (ptype pf) ea with

| tconst nv ek k tc = fun ea ef =

match tc return specType’ (tconst nv ek tc) (ptype pf) ea with
| tc_unit = weakening_ tconst (punit pf)

| tc_int = weakening_tconst (pint pf)

| tc_prod = weakening_tconst (pprod pf)

| tc_sum = weakening_tconst (psum pf)

end
| tvar nv ek i

= fun ea ef = ith_fin (ggetS i ef)

| tapp nv ek k1 k2 t1 t2 = fun ea ef = convert_tapp
((instantiate_tuple (replace_fvs t2 ea) (specTerm’ tl pf ea ef)) (specTerm’ t2 pf ea ef))

| tlam nv ek k1 k2 t’
(dep_curry

= fun ea ef = convert_tlam

(fun tup = specType’ (tvar (S nv) (k1, ek) (fz nv)) (ptype pf) (tup, ea)
— specType’ t’ (ptype pf) (tup, ea))

(fun As :
(fun fa :

tupleT (decK k1) np =

specType’ (tvar (S nv) (k1, ek) (fz nv)) (ptype pf) (As, ea) =

specTerm’ t’ pf (As, ea) (weakening envf (fa, ef)))))

end.

(x Special case for closed types)

Definition specTerm (np:nat) (k:kind) (t:closed_type k) (pf:PolyFn np)

specTerm’ t pf tt tt.

: specType t (ptype pf) :=

Figure 4. Term specialization

Proof. Unfolding definitions (Figure 3), we find that we have to

prove that

([T ()1, [Thnp [U)np) = ([T UJ1, .o [T Ulp)

The equalities between the elements are trivial (replaitegvari-
ables before or after application gives the same resultyvescan
complete the proof by induction on the length of the tuples.

6.4 Lambda abstraction

To specialize a polytypic functiopf of type Pt to a lambda
abstraction { A . T') we first construct the term

fun (A1, ..., Anp) fa =

specTerm’ T pf ((A1, ..., Anp), ea) (fa, ef)

which we then curry to get the required term

fun Ay ... App a4 =

specTerm’ T pf ((A1, ..., Anp), ea) (fa, ef)

Currying this function is, however, not entirely straidgbtward.
The type of the body of this function

specType’ T Pt ((A1, ..., Anp), ea)

depends on the actual tuple supplied. We therefore nekspen-
dentcurry function, which can be defined as

Fixpoint dep_curry A n
: V (C : tupleT A n — Set)
(f : V (x : tupleT A n), C x),
quantify_tuple C :=
match n return V (C : tupleT A n — Set)
(f : V (x : tupleT A n), Cx),
quantify_tuple C

with
| 0 = funcf = f tt
| Sm = fun ¢c f a =
dep_curry A m (fun args = c (a, args))
(fun args = f (a, args))
end.

The result ofiep_curry is something of the formuantify_tuple,
which we described in Section 5. However, the return type aetw
is

specType’ (tlam T) Pt ea

We can prove that from a term of the given type we can construct
term of the required type:

LEMMA 3 (convert_tlam). For all k1, k2, nv, np, Pt, ea and
typeT : k1 — ko, given a term of type

quantify_tuple (fun As : tupleT (decK k1) np =
specType’ (tvar (S nv) (kl1l, ek) (fz nv)) Pt (As, ea)
— specType’ T Pt (As, ea))

we can construct a term of type

specType’ (tlam T) Pt ea

Proof. Unfolding definitions (Figure 3) we find that we have to
prove that given a term of type

quantify_tuple (fun As :
kit k1 Pt (replace_fvs

(tvar (S nv) (k1, ek) (fz nv)) (As, ea))
— kit k2 Pt (replace_fvs T (As, ea)))

tupleT (decK k1) np =

we can construct a term of type



quantify_tuple (fun As : tupleT (decK k1) np =
kit k1 Pt As — kit k2 Pt
(apply_tupleT (replace_fvs (tlam T) ea) As))

Note that we cannot prove in Coq that these two typesqual
Generally, we cannot prove that

Va.T a)= (Va.T a)

even if we can prove thal' o and7T’ o are equal for anyr. We
can, however, construct a term of tyge . T o given a term of
typeVa . T « (or vice versa): we can only prove that these two
types are isomorphic. To prove the isomorphism

quantify_tuple C 22 quantify_tuple C’

We need an auxiliary lemma thgtantify_tuple preserves ex-
tensional equality:

LEMMA 4 (quantify_tuple_ext). For all A,n, given
two functionsf,g : tupleT A n — Set, if fandg
are extensionally equal, that is

V (tup : tupleT A n), f tup = g tup

thenquantify tuple f andquantify_tuple g are iso-
morphic.

Proof. By induction onn. O

Applying this lemma leaves us to prove that the two argumemnts
quantify_tuple return the same result given the same input, i.e.
for any tupleds = (Ax,. .., Anp):

kit k1 Pt (replace_fvs
(tvar (S nv) (k1, ek) (fz nv)) (As, ea)) —
kit k2 Pt (replace_fvs T (As, ea))

kit k1 Pt As —
kit k2 Pt (apply_tupleT
(replace_fvs (tlam T) ea) As)

First we prove in lemmavar_tuple that, given the environment

((A17 ey Anp)7 6(1)
we have

(|tvar (8 nv) (k1, ek) (fz nv) |1, ...) = (A1, ...)

The equality on the individual elements is trivial: we arplaging
free variabletz, for which we always use elements in the first tuple
in the given environment, i.e. elementgifhy, . . ., A,.p); the proof

is therefore by induction onp. This reduces the problem to

kit k1 Pt As — kit k2 Pt (replace_fvs T (As, ea))
= kit k1 Pt As —
kit k2 Pt (apply_tupleT
(replace_fvs (tlam T) ea) As)

In lemmareplace_bound_var we then show that
([tlam T']1 A1,. .., |[tlam T |np Anp)
in environmentea is equivalent to

([T]1s - [T )

in environment((A, ..., A.p), ea). Recall that the bound vari-
able intlam T becomes free if" and will be replaced byl; in
|T']:. Itis then easy to see that replacing all free variableslim

T usingea and applying the result td; is the same as replacing all
free variables irf” with (A4, ..., A,,) added to the environment.
Therefore this proof can again be done by inductiompnwhich
completes the proof afonvert_tlam. (]

Another difficulty in constructing the specialized term for
lambda abstraction is in adding the functign to the environ-
mentef. The existing environmentf has an entry for each free
variable intlam 7', but variable: in the lambda abstraction will
become variablés i in the bodyT of the lambda abstraction.

Therefore each function

fx

associated with variablein the old environment, should have type

fx

: specType’ (tvar nv ek i) Pt ea

(tvar (S nv) (k, ek) (fs i)) Pt
(A1, ..., Anp)y ea)

in the new environment. When every functioreihhas been shifted
in this way, we can then add the new functifn to the start ofef.
The following lemma proves that the two types ff¢ above are
indeed equal:

: specType’

LEMMA 5 (weakening tvar). For all nv k ek i Pt As ea, the
type

specType’ (tvar nv ek i) Pt ea

is the same type as

specType’ (tvar (S nv) (k, ek) (fs i)) Pt (As, ea)
Proof. Unfolding definitions (Figure 3), we find that we have to
prove

)=
(|tvar (S nv) (k, ek) (fs i)]i,...)

The equalities between the elements are trivial, so we canplate
the proof by induction on the length of the tuple.

The lemmareakening_envf makes use of this result to ensure
that each of the elements #f can be converted to the correct type:

(|tvar nv ek i]q,..

LEMMA 6 (weakening_envf). Forall nv k ek Pt As ea, the type

(specType’ (tvar (S nv) (k, ek) (fz nv)) Pt (As, ea))
* (envf nv ek Pt ea)

is the same type as
envf (S nv) (k, ek) Pt (As, ea)

Proof. Unfolding the definition ofenv£, we find that we have to
prove that the type

gtupleS nv
(fun (i:Fin nv) = specType’ (tvar nv ek i) Pt ea)
(elements_of_fin nv)

is the same type as

gtupleS nv
(fun (i:Fin (S nv)) =
specType’ (tvar (S nv) (k, ek) i) Pt (As, ea))
(mapS fs (elements_of_fin nv))

As it stands, however, this lemma is impossible to prove. B&dn
to do induction on the length of the tuple

mapS fs (elements_of_fin nv)

but the length of that tuple isv—and we need to keejpv invariant
throughout the proof. Instead we prove a stronger propéry t
abstracts away fromalements_of fin and prove the lemma over
any tuple tup of lengthm; this decouples the two occurrences of
nv. Hence we need to prove that



gtupleS m
(fun (i:Fin nv) = specType’ (tvar nv ek i) Pt ea)
tup

is the same type as

gtupleS m
(fun (i:Fin (S nv)) =
specType’ (tvar (S nv) (k, ek) i) Pt (As, ea))
(mapS fs tup)

This is proven byweakening_envf _aux by induction onm. O

7. Related work

There are many different approaches to polytypic programmi

In the functional programming community alone these inelud
PolyP (Jansson and Jeuring 1997), Generics for the Maséeze(H
2006), Derivable Type Classes (Hinze and Jones 2000), &ener
Programming, Now! (Hinze and Loh 2006a), Scrap your Beiler
plate (Lammel and Jones 2003, 2005; Hinze and Loh 2006izeHi

et al. 2006b) and others. A detailed comparison of thesebappes

is beyond the scope of this paper and we refer to Hinze et al.
(20064a) for a thorough survey; none of these approachesJsow
support kind-indexed polytypic programming.

In the dependent programming community and the more the-
oretically oriented type theory community, there are alagous
proposals for generic programming (Pfeifer and Ruel3 19&8fdP
and Ruef’ 1999; Benke et al. 2003; Sheard 2007; Morris et@6,20
2007). Most of these proposals use a generic view (univeme)
struction like we did in this paper; the nature of the geneigw
dictates to a large extent which generic programs can beewrit
and how they are expressed. None of these approaches udes kin
indexed types, however, and we are specifically interestgdadv-
ing properties about Generic Haskell programs.

Our work is most closely related to that of Altenkirch and
McBride (2003), which gives an implementation of Generickl-
style polytypic programming in Oleg (the dependent languae-
veloped by Conor McBride in his doctoral thesis, McBride 999
and Norell (2002), which follows (a preprint of) the first gap
closely and presents a similar design in Alfa. The most irgar
difference between our work and theirs is the choice of loghich
must however not be underestimated. Every dependent pnegra
ming language comes with its own peculiarities, and a smhuti
in one logic will typically not easily transfer to anothemgio. As
mentioned in Section 3.3, an important reason for choosing i€
the support for proof automation, which is not available legor
Alfa (nor in their successors, Epigram and Agda). This walléx-
tremely beneficial once support for proofs over polytypiograms
is in place (see future work). As a second difference, we tresl
the transition from Generic Haskell to our library will besézx than
the transition to theirs; this is particularly true for (&tkirch and
McBride 2003). Modulo some minor syntactic differenceslypo
typic functions and their types are defined in our libraryatlya
as they are defined in Generic Haskell, and the specializafia
polytypic function to a datatype is a simple callg¢pecTerm. This
is important since we want our work to be accessible to Generi
Haskell or Generic Clean programmers.

Most of the work on proofs about generic programs comes
from the type theory community, rather than from the funuio
programming community. Consequently, there is very litierk
about proofs over Generic Haskell-style polytypic progsaother
than Hinze’s original thesis. One notable exception is (&887),
which is, however, concerned with termination only. Indetae is
exactly the hole that our work attempts to fill.

8. Conclusions and future work

The goal of our work is to provide an infrastructure in thegfro
assistant Coq to do proofs over Generic Haskell-style pplgt
programs. This paper is an important step towards this gugdl a
provides a formal definition of polytypic programming in Coq

We have given definitions for records that describe polytypi
functions and their types. Programmers who are familiah wit
Generic Haskell should easily recognize these structaeshey
are almost identical to the description of polytypic funa in
those systems. Moreover, we have presented the generiawitbw
associated decoders and defined type specialization andsteg-
cialization. Since the result of term specialization is rntef the
type computed by type specialization, our implementatsoa fior-
mal proof that term specialization returns terms of therééediype.

Like our view, the view in Generic Haskell does not support
recursion on the type level. Instead, recursive types grpasted
through value recursion. For example, consider the tyje:. Its
“structural” representation as a type in the generic view is

list° = Aa- -1+ a x list «

where 1 denotes the unit type. Note thatist® is defined in
terms of the ordinary list type: the recursive occurrencethe
list datatype are not replaced. We can then define two fumgtio

fromList : Vo, list o — list°«

and
toList : Vo, list’a — list «

which translate from a list to its structural representatiod back.
We can now definemapList over lists using the polytypi@ap
function as follows:

Fixpoint mapList (A B:Set) (f:A — B) (xs:list A)

: list B
tolList (specTerm’ tlisto map
((1ist, (list, tt)), tt)

(mapList, tt) A B f (fromList xs)).

Since “1ist” is a free variable in the definition dfist°, we need
a variantspecTerm’ on specTerm Which allows for open types
and accepts two environments of tygeva andenvt (Section 6).
In particular,envf must contain a function of type

V (A B:

which it will apply to the recursive occurrencesldfst. Obviously,
this is the very function we are defining, so we paspList
itself. Unfortunately, this definition is not accepted byodmecause
the recursive call tmapList is hot made to arguments that are
obviously structurally smaller—even though they will bee ieed
to convince Coq that this function terminates. The work b€
2007) might help to solve this problem, but this is future kfor
Since we have a formal definition of term specializationsit i
theoretically possible to prove properties about polytyfphctions
using only the infrastructure we describe in this paper. i@,
the definition of term specialization is sufficiently invely that
additional support is essential. Hinze describes one waydee
such properties in (Hinze 2000a,b); it is our intention tmfalize
his work in Coq. Once that is completed, we can start to inyatt
which tactics we can add to Coq that will help write these fsog0
that we can provide a truly usable framework for Generic ldlsk
programmers for developing proofs over polytypic funcsion

Set) (f : A — B), list A — 1list B

7Both (Altenkirch and McBride 2003) and (Norell 2002) defingeneric
view that supports arbitrary recursion with associatedodec This is
impossible in Coq, which does not support general typetHlmairsion so
that it can guarantee termination.
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