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Abstract
The aim of our work is to provide an infrastructure for formal
proofs over Generic Haskell-style polytypic programs. Forthis goal
to succeed, we must have a definition of polytypic programming
which is both fully formal and as close as possible to the definition
in Generic Haskell. In this paper we show a formalization in the
proof assistantCoqof type and term specialization. Our definition
of term specialization can be interpreted as a formal proof that
the result of term specialization has the type computed by type
specialization.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods

General Terms Languages, Theory, Verification

Keywords Polytypic programming, generic programming, theo-
rem proving, kind-indexed types, Coq, formalization

1. Introduction
The aim of our work is the development of an infrastructure inthe
proof assistantCoq (Bertot and Castéran 2004) for doing proofs
over polytypic programs in the style ofGeneric Haskell(Löh 2004)
or Generic Clean(Alimarine 2005) which can be used by practi-
tioners of these systems. This paper gives a formalization of poly-
typic programming in Coq and is therefore an important first step
towards our goal.

The approach to polytypic programming used in Generic Haskell
was first introduced by Hinze (Hinze 2000b,a) and has been imple-
mented as a preprocessor for Haskell and as a language extension
in Clean. It has since been recognized that in the context of ade-
pendently typed language polytypic programming can be expressed
entirely within the language and can be implemented simply as a
library (for example, see Altenkirch and McBride 2003). Ourim-
plementation too takes the form of a Coq library.

Although there are many approaches to generic programming
both in dependently typed languages and in more conventional
functional programming languages (Section 7), few supportthe
kind-indexed types which characterize Hinze’s work. The core idea
is that iff is a polytypic function of typeF we canspecializef to
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an ordinary functionf〈T 〉 over a datatypeT . The type off〈T 〉
is the specializationF 〈T 〉 to the kind ofT . Term specialization
(f〈T 〉) is defined by induction on the structure ofT ; type special-
ization (F 〈T 〉) is defined by induction on thekind of T .

To illustrate this approach, we will consider the polytypicmap
function with typeMap (we will give the definitions ofmap andMap
in Section 2). The specialization ofmap to the type of integers is
simply the identity on integers:

Eval compute in specTerm tint map.

= fun (z:Z) ⇒ z : specType tint Map

“Eval compute in” instructs Coq to compute the normal form
of a term;specTerm and specType are our definitions of term
and type specialization, andtint is the “code” that corresponds
to the type of integers. Coq reports the type of the result as the
specialization ofMap (the type ofmap) to tint; this evaluates to

Eval compute in specType tint Map.

= Z → Z : Set

as expected (Set is Coq’s name for kind?).
As a second more interesting example consider the typetfork,

defined asΛα . (α, α). To map a function across a term of this
type we need a function to map across its elements. Thus the
specialization ofmap to tfork is

fun (A B:Set) (f:A → B) (x:A * A) ⇒
let (a, b) := x in (f a, f b)
: specType tfork Map

Similarly, to map across a term of typetprod, Λα ·Λβ · (α, β), we
need two functions to map its elements. The specialization of map
to tprod is

fun (A B:Set) (f:A → B) (C D:Set) (g:C → D)
(x:A * C) ⇒ let (a, c) := x in (f a, g c)

: specType tprod Map

Finally, the specialization ofmap totapply, Λφ·Λα·φ α, requires
two functions to translate the datatype and its elements.

fun (T T’:Set → Set)
(f:∀ (A B:Set), (A → B) → T A → T’ B)
(A B:Set) (g:A → B) ⇒ f A B g

: specType tapply Map

The point of these various examples is to show that we can special-
izemap to types of any kind. For kind? (tint) we get the identity
function. For first-order kinds such as? → ? or ? → ? → ?
(tfork andtprod) we get a function which maps functions at the
base types (f andg) across the datatype. Finally, even higher-order
kinds such as(? → ?) → ? → ? (tapply) are supported.



The aim of this work is to provide an implementation of poly-
typic programming in Coq which is easily recognizable to program-
mers familiar with Generic Haskell or Generic Clean. In particular,
our contributions are:

• We provide an infrastructure for defining polytypic functions
and their types which is very similar to the infrastructure pro-
vided by Generic Haskell or Generic Clean (Section 2).

• We formalize term specialization and type specialization in Coq
as defined in Generic Haskell/Clean. In particular, the definition
of our type universe is identical (modulo syntactic differences).

• The definition in Coq has one very important benefit over the
existing implementation in Generic Haskell. Since we use de-
pendent types to specify that the result ofspecTerm T f must
be of the formspecType T F , our implementation is a formal
proof that the term specializationf〈T 〉 must have typeF 〈T 〉.

The final point is important since it paves the way towards ourulti-
mate goal of providing an infrastructure in Coq to prove properties
about Generic Haskell style programs. For this goal to succeed,
we must have a definition of polytypic programming which is both
fully formal and as close as possible to the definition in Generic
Haskell or Generic Clean. This paper provides such as definition;
Section 2 shows that the interface we provide to programmersis
very similar to the Generic Haskell interface. After a briefintro-
duction to Coq in Section 3, we give the definition of the generic
view in Section 4 followed by the formalization of type and term
specialization in Sections 5 and 6.

We assume that the reader is familiar with Haskell, and has at
least some cursory knowledge of Generic Haskell or Generic Clean.
We will not assume any prior knowledge of Coq.

2. Defining polytypic functions
In this section we will explain how polytypic functions and their
types can be defined using our library. We think that readers famil-
iar with Generic Haskell or Generic Clean will experience a com-
forting familiarity reading our definitions; we will explain specifics
pertaining to Coq as they arise.

The type of a polytypic function is a (type-level) function which,
givennp arguments, constructs a type of kind?:

Record PolyType (np:nat) : Type := polyType {
typeKindStar : nary_fn np Set Set

}.

The Record keyword introduces a record of named fields; the
difference between records in Coq and records in Haskell is that
records in Coq can be dependent. We will take a closer look at
dependent types in the next section; suffice to say here that a
dependent type is one that depends on a term (rather than a type).
PolyType has one parameter (np) and one field (typeKindStar)
of type nary fn np Set Set. A term nary fn n A B denotes
the type

A → . . . → A
| {z }

n

→ B

We will refer to np as the number of arguments of the polytypic
function (it doesnot refer to the number of arguments of the
specialized function, which varies with the kind of the target type—
see previous section).

As readers who are familiar with polytypic programming will
know,map is a polytypic function of two arguments; its typeMap is

Definition Map : PolyType 2 :=
polyType 2 (fun A B ⇒ A → B).

The type of the polytypic function describes the type of the opera-
tion that gets performed by the polytypic function at the elements;
in this case,map transforms elements of typeA to elements of type
B. Specialization of a polytypic function uniformly lifts the opera-
tion on elements to an operation on structures containing elements.
The specialization of thetypeof the polytypic function describes
the type of the lifted operation.

To define a polytypic function, the user only needs to provide
the definition for the type constants; term specialization then takes
care of the remaining types. A nice feature of an implementation
of polytypic programming in a dependently typed language isthat
the definition of a polytypic function is simply another record.
Polytypic functions are therefore first-class (ordinary objects in
the host language) and can be passed as arguments or returnedas
results. We define a polytypic function as

Record PolyFn (np:nat) : Type := polyFn {
ptype : PolyType np ;
punit : specType tunit ptype ;
pint : specType tint ptype ;
pprod : specType tprod ptype ;
psum : specType tsum ptype
}.

In words, a polytypic function ofnp arguments has a (polytypic)
type of np arguments, and contains definitions for the type con-
stantstunit, tint, tprod andtsum (for simplicity’s sake, we do
not consider other type constants). The type of these fields is de-
termined by type specialization (explained in Section 5), which en-
sures that users cannot define ill-typed polytypic functions. For the
specific case ofMap, this simplifies to

punit : unit → unit
pint : Z → Z
pprod : ∀ (A B:Set), (A → B) →

∀ (C D:Set), (C → D) →
A * C → B * D

psum : ∀ (A B:Set), (A → B) →
∀ (C D:Set), (C → D) →
A + C → B + D

(We can ask Coq to simplify these types for us, as shown in the
introduction.) We can now define the polytypicmap function as

Definition map : PolyFn 2 := polyFn Map
(fun (u:unit) ⇒ u)
(fun (z:Z) ⇒ z)
(fun (A B:Set) (f:A → B)

(C D:Set) (g:C → D) (x:A * C) ⇒
let (a, c) := x in (f a, g c))

(fun (A B:Set) (f:A → B)
(C D:Set) (g:C → D) (x:A + C) ⇒

match x with
| inl a ⇒ inl D (f a)
| inr c ⇒ inr B (g c)
end).

This is virtually identical to the definition we would provide in
Generic Haskell or Generic Clean, with one exception perhaps:
since Coq is explicitly typed, the fields of the polytypic function
take explicit type arguments. For example, in Haskell we would
write the case for the product type as

λf -> λg -> λx -> let (a, c) = x in (f a, g c)

To conclude this section, we will consider another classic polytypic
function: polytypic equality. Unlikemap, equal only has a single
argument. Its type is defined as



Definition Equal : PolyType 1 :=
polyType 1 (fun A ⇒ A → A → bool).

The definition ofequal is

Definition equal : PolyFn 1 := polyFn Equal
(fun x y ⇒ true)
Zeq_bool
(fun (A:Set) (f:A → A → bool)

(B:Set) (g:B → B → bool)
(x:A * B) (y:A * B) ⇒

let (a , b ) := x in
let (a’, b’) := y in
f a a’ && g b b’)
(fun (A:Set) (f:A → A → bool)

(B:Set) (g:B → B → bool)
(x:A + B) (y:A + B) ⇒

match (x, y) with
| (inl a, inl a’) ⇒ f a a’
| (inr b, inr b’) ⇒ g b b’
| otherwise ⇒ false
end).

3. Coq
Before we delve into our formalization of polytypic programming,
we will first give a brief overview of Coq. Coq is a proof assistant
developed in Inria (Bertot and Castéran 2004) based on the calcu-
lus of constructions (higher-order predicate logic) extended with
inductive and co-inductive datatypes and an infinite hierarchy of
universes. The examples we discuss in this section are all part of
our development, and will be needed in the rest of the paper.

3.1 Dependent types

The calculus of constructions (Coquand and Huet 1988) is a depen-
dently typed lambda calculus. This means that types are firstclass
and can be passed as arguments to functions or returned as results.
For example, we can define a functiontuple A n which constructs
the type of homogeneous tuples of lengthn:

A × A × · · · × A
| {z }

n

as

Fixpoint tupleT (A:Type) (n:nat) : Type :=
match n with
| O ⇒ unit
| S m ⇒ A * tupleT A m
end.

Fixpoint introduces a recursive definition, andmatch denotes
pattern matching (comparable tocase in Haskell). Since all func-
tions in Coq must terminate, recursive functions must be defined by
structural induction on one of its arguments (here,n). The termina-
tion checker in Coq will verify that all recursive calls are made to
structurally smaller arguments. Notice that for the case ofn = 0 we
return the unit type (() in Haskell) which has one element denoted
by tt. Thus we will usett to denote the empty tuple.

To define a function that returns thei’th element from an
n−tuple, we must first define a datatype that describes the set of
valid indices{0, 1, . . . , n− 1}. This datatype is known asFin and
is defined as

Inductive Fin : nat → Set :=
| fz : ∀ n, Fin (S n)
| fs : ∀ n, Fin n → Fin (S n).

Inductive introduces an inductive datatype1; the syntax can be
compared to the syntax for GADTs in Haskell (Peyton Jones et al.
2006): we specify the kind of the datatype and list the types of the
constructors. SinceFin is parametrized by a natural number—a
term, not a type—it is a so-calleddependentdatatype. It has two
constructors:fz corresponds to the natural number zero (and is an
element of any set of at least one element) andfs corresponds to
the successor operation on natural numbers. For example, the term

fs (fz 3) : Fin 5

denotes the second element in the set{0, 1, 2, 3, 4}. Althoughfs
takes two arguments (a natural number and another element of
Fin), we only specify one since the firstn can be inferred from
the second. We say thatn is animplicit argumentof fs.

GivenFin we can write the indexing operator as

Fixpoint getT (A:Type) (n:nat) (i:Fin n) {struct i}
: tupleT A n → A :=

match i in Fin n return tupleT A n → A with
| fz m ⇒ fun tup ⇒ let (x, xs) := tup in x
| fs m i’ ⇒ fun tup ⇒

let (x, xs) := tup in getT A i’ xs
end.

The syntax “match e in T return σ” denotes a dependent pat-
tern match one : T , where the type of each branch has typeσ
(which may depend on bothe andT ). Since the indexi must be
within bounds due to its type,getT is a total function. We use
{struct i} to tell Coq which argument we want to do structural
recursion on so that Coq can verify termination.

3.2 Universe inconsistencies

One definition that we will need later in our proof is a characteriza-
tion of heterogeneous tuples, in which every element has a differ-
ent type. One natural way we might consider is to define a function
which given a tuple of types

(A, B, C)

constructs the type
A × B × C

We can define this function as

Fixpoint gtupleT (n:nat) : tupleT Type n → Type :=
match n return tupleT Type n → Type with
| 0 ⇒ fun tup ⇒ unit
| S m ⇒ fun tup ⇒

let (t, ts) := tup in t * gtupleT m ts
end.

This takes a nested tuple (tuple of tuples) as argument, i.e.we must
construct a tuple of type

tupleT Type n

We will get an unpleasant surprise, however, when we attemptto
define

(tupleT A m, . . .) : tupleT Type n

because Coq will come back with the uninformative error

Universe inconsistency

1 Although it may be slightly unusual to definetupleT recursively while
defining Fin inductively, we found this the most convenient setup. An
alternative is to define tuples functionally. This removes the need for an
indexing operator and makes some of the lemmas we need redundant;
however, it also introduces some new lemmas and operations and, more
importantly, it makes it impossible to prove that two tuplesare equal.



To understand this error, we must know a little more about uni-
verses in Coq. Like in Haskell, the natural number “5” has type
nat. Like in Haskell, the typenat haskind (or type) Set (Set
is called? in Haskell). Unlike in Haskell, however, this hierarchy
continues ad infinitum:Set has typeType0, Type0 has typeType1,
and generallyTypei has typeTypei+1. Moreover, there is a coer-
cion rule that ifT : Typei thenT : Typej for any j ≥ i. This
stratificationof Type prevents the encoding of logical paradoxes
(e.g., Hurkens 1995).

The user cannot assign the universe levels manually, which is
why we simply wroteType in the examples above. Coq attempts
to assign a suitable level to each occurrence ofType, infers the
constraints on these levels, and verifies that there are no inconsis-
tencies. FortupleT we have

tupleT : Typei → nat → Typej (i ≤ j)

Now consider what happens when we try to define our tuple of
tuple types. The elements of the tuple are the result oftupleT and
therefore have typeTypej . The constructed type itself must then
have type

tupleT Typej n

Since we passTypej as the first argument totupleT of typeTypei,
we must haveTypej : Typei which will hold if j < i. But the
constraintsi ≤ j and j < i cannot both be satisfied, and Coq
reports a universe inconsistency: there is no suitable assignment
that does not result in an inconsistency.

The problem is that Coq does not support universe polymor-
phism (Harper and Pollack 1991). A work-around would be to du-
plicate the definition oftupleT. This is, however, not a very ele-
gant solution, especially since it would lead to further code duplica-
tion elsewhere. Fortunately, we can follow Morris et al. (2007) and
give an alternative definition of heterogeneous tuples which avoids
universe inconsistency without the need for duplication (Morris
et al. refer to this operator as the modality�). Given a tuple

(x, y, z)

of elements of some typeA, we construct the type

fx × fy × fz

This is implemented as

Fixpoint gtupleT (A:Set) (n:nat) (f:A → Type) :
tupleS A n → Type :=

match n return tupleS A n → Type with
| O ⇒ fun tup ⇒ unit
| S m ⇒ fun tup ⇒

let (t, ts) := tup in f t * gtupleT m f ts
end.

While this definition is not formally equivalent, it is equally suitable
for our purposes and avoids the universe inconsistency. Theindex-
ing operator associated withgtupleT takes the following form:

ggetT : ∀ (A:Set) (n:nat) (f:A → Type) (i:Fin n)
(tup:tupleS A n), gtupleT f tup → f (getS i tup)

3.3 Proofs

From a logical perspective, Coq’s language corresponds to con-
structive higher order predicate logic where every programin Coq
denotes the proof of its type. This fascinating result is known as the
Curry-Howard isomorphism, but a discussion of this topic would
take us too far afield; we refer the reader to the excellent textbook
by Sørensen and Urzyczyn (2006) instead.

For simple cases we can write these proofs as programs. For
example, here is a proof of modus ponens:

Lemma MP : ∀ (A B:Prop), A → (A→B) → B.
Proof (fun (A B:Prop) (a:A) (f:A→B) ⇒ f a).

“Lemma...Proof” is alternative syntax for “Definition ... :=” to
make it clear that we are writing a proof rather than a program. Of
course, there really is no distinction and this is syntacticsugar only.
We could also write

Definition MP : ∀ (A B:Prop), A → (A→B) → B :=
(fun (A B : Prop) (a:A) (f:A→B) ⇒ f a).

The two definitions ofMP are indistinguishable. Coq does however
make a formal distinction between terms that are “programs”and
terms that are “proofs” in the type system. The type of a program
(say,nat) lives inSet, as we saw above. The type of a proof (that
is, a proposition such as1 = 1) lives in Prop (bothSet andProp
live in Type0). The reason for the two different sorts is that Coq
supportsprogram extraction: Coq can extract all the computational
content (that is, keep the programs but strip the proofs) to be
exported to OCaml or Haskell for efficient compilation.

For more complicated proofs, however, writing proofs by hand
(as “programs”) becomes difficult. Instead, we can make use of tac-
tics. Tactics are small programs that can search for proofs in a par-
ticular domain. The use of tactics enablesproof automation, where
Coq can handle most of the more mundane parts of our proofs auto-
matically. This is a huge help in any realistic proof. One of the sim-
plest tactics isauto, which attempts to solve the proof by repeated
application of the currently available hypotheses. Other tactics in-
clude tactics for induction (i.e., recursion), inversion,arithmetic,
etc. Moreover, Coq supports a language calledLtac in which cus-
tom tactics can be written. All tactics will search for proofs, and
then return a proof if one can be found—which will be verified
by Coq. This means that a “rogue” tactic cannot compromise the
soundness of the system.

We will not make use of tactics in this paper, so we refer the
reader to (Bertot and Castéran 2004) for more information.How-
ever, the support for tactics and proof automation is an important
reason for choosing Coq for our work (reasoning about polytypic
programs).

4. Definition of the Generic View
A generic view is a set ofcodesthat represent the datatypes that
can be used as a target for specialization of polytypic functions.
For example, if we want to specialize the polytypic map function
to the product type (prod in Coq), we must pass the code forprod
(tprod), as well as the definition ofmap itself, as arguments to term
specialization. However, the result of term specialization should
be a function on the product datatype proper (prod). This means
that we must define a mapping from codes in the generic view to
ordinary Coq datatypes. Such a mapping is known as adecoder.
The definitions for our generic view and the decoders are listed in
Figure 1.

4.1 Kinding derivations

In our definition of the generic view we do not define a datatypethat
encodes thegrammarof types, but rather encode kinding deriva-
tions to make sure that only well-kinded types can be represented.
An element

T : type nv ek k

is a type of kindk with at mostnv free variables, whose kinds are
defined in the kind environmentek. This corresponds to a kinding
derivation

ek ` T : k

The type of the environmentek is envk nv, which is annv-tuple
of kinds.



(∗ Codes for kinds ∗)
Inductive kind : Set :=

| star : kind
| karr : kind → kind → kind.

(∗ Grammar for type constants ∗)
Inductive type_constant : kind → Set :=

| tc_unit : type_constant star
| tc_int : type_constant star
| tc_prod : type_constant (karr star (karr star star))
| tc_sum : type_constant (karr star (karr star star)).

(∗ Codes for types ∗)
Inductive type : ∀ (nv:nat), envk nv → kind → Set :=

| tconst : ∀ (nv:nat) (ek:envk nv) (k:kind), type_constant k → type nv ek k
| tvar : ∀ (nv:nat) (ek:envk nv) (i:Fin nv), type nv ek (getS i ek)
| tapp : ∀ (nv:nat) (ek:envk nv) (k1 k2:kind), type nv ek (karr k1 k2)

→ type nv ek k1 → type nv ek k2
| tlam : ∀ (nv:nat) (ek:envk nv) (k1 k2:kind), type (S nv) (k1, ek) k2

→ type nv ek (karr k1 k2).

(∗ Syntactic sugar for types with no free variables ∗)
Definition closed_type (k:kind) : Set := type 0 tt k.

(∗ Syntactic sugar for type constants ∗)
Definition tunit := tconst 0 tt tc_unit.
Definition tint := tconst 0 tt tc_int.
Definition tprod := tconst 0 tt tc_prod.
Definition tsum := tconst 0 tt tc_sum

(∗ Decoder for kinds ∗)
Fixpoint decK (k:kind) : Type :=

match k with
| star ⇒ Set
| karr k1 k2 ⇒ decK k1 → decK k2
end.

(∗ Decoder for types ∗)
Fixpoint decT (nv:nat) (k:kind) (ek:envk nv) (t:type nv ek k) {struct t} : envt nv ek → decK k :=

match t in type nv ek k return envt nv ek → decK k with
| tconst nv ek k tc ⇒ fun et ⇒ match tc in type_constant k return decK k with

| tc_unit ⇒ unit
| tc_int ⇒ Z
| tc_prod ⇒ prod_set
| tc_sum ⇒ sum_set
end

| tvar nv ek i ⇒ fun et ⇒ ggetT i et
| tapp nv ek k1 k2 t1 t2 ⇒ fun et ⇒ (decT t1 et) (decT t2 et)
| tlam nv ek k1 k2 t’ ⇒ fun et arg ⇒ (decT t’ (arg, et))

end.

(∗ Example: Λ(α : ?) · α × α. ∗)
Definition tfork :=

(tlam (tapp (tapp (tconst 1 (star,tt) tc_prod)
(tvar 1 (star, tt) (fz 0)))

(tvar 1 (star, tt) (fz 0)))).

(∗ Example: Λ(α : ? → ?) · Λ(β : ?) · α β. ∗)
Definition tapply :=

tlam (tlam (tapp (tvar 2 (star, (karr star star, tt)) (fs (fz 0)))
(tvar 2 (star, (karr star star, tt)) (fz 1)))).

Figure 1. Generic View and Decoders



For example, the rule for lambda abstractions encodes the kind-
ing derivation

(k1, ek) ` T : k2

ek ` ΛT : k1 → k2

LAM

Note that we are using De Bruijn indices to represent variables (de
Bruijn 1972). The indices in a type ofnv free variables are of type
Fin nv, which guarantees that no indices can be out of bounds.

4.2 Decoding kinds

The decoder for kinds is straight-forward, but there is a subtlety
with the choice ofSet as the decoding of kind?. In the specializa-
tion of the arrow kind (Section 5), we will construct types ofthe
form

(∀ (α:decK star), . . .) : decK star

Since the bound variable (α) ranges over the very type that is de-
fined, the type ofα must be impredicative. As explained in Sec-
tion 3,Type in Coq is not impredicative (but stratified) and return-
ing Type for the decoding of kind? will result in a universe incon-
sistency when we subsequently attempt to define type specializa-
tion. Hence we must chooseSet instead, enabling the impredica-
tive Set option2. It does not seem possible to give a formalization
of Generic Haskell-style polytypic programming without using an
impredicative universe.

4.3 Decoding types

The decoder for types is more involved. To decode a typeT with
nv free variables, we must know the decoded types of the free
variables inT . Hence, we need an environmentet of type envt
that associates a decoded typeTi with every free variablei in T .
Since the type ofTi (its kind, if you prefer) depends on the kind
of i, each element inet has a different type. We therefore calculate
envt from the kind environmentek:

Definition envt nv (ek:envk nv) := gtupleT decK ek.

using the generalized product described in Section 3.
We have already introduced two different environments (ek :

envk nv and et : envt nv ek) and we will need two more in
the remainder of the paper. As it may be difficult to keep track
of so many different environments we provide an overview of the
definitions and their purpose in Figure 2.

Armed with this environment we can now define the decoder for
types as shown in Figure 1. Type constants map to their Coq coun-
terparts, variables map to the corresponding elements in the envi-
ronmentet, application maps to Coq type application and lambda
abstraction maps to Coq type-level functions. To decode thebody
of a lambda abstraction we must add the type of the formal param-
eter to the environment.

Figure 1 also shows the encoding for two of the example types
that we considered in the introduction:tfork and tapply. The
result of decoding these types is

decT tfork tt
= fun (arg:Set) ⇒ arg * arg
: decK (karr star star)

decT tapply tt
= fun (f:Set → Set) (a:Set) ⇒ f a
: decK (karr (karr star star) (karr star star))

2Set was impredicative in Coq by default before version 8; this was
changed mainly to support classical reasoning. We will not use classical
reasoning, however, and so makingSet impredicative does not compro-
mise the soundness of our proofs (see Coq Development Team 2008).

5. Type specialization
As we saw in Section 2, a polytypic functionmap has a polytypic
typeMap, and the specializationspecTerm T map of map to a type
T has the specialized typespecType T Map. In this section we
explain how to define

specType : ∀ (np:nat) (k:kind),
closed_type k → PolyType np → Set

The full definition is shown in Figure 3.
Type specialization is a two-phase process. We first define the

kind indexed typekit k Map. Hinze (2000a) denotes this by
Poly〈k〉 for some polytypic typePoly and defines it by induc-
tion onk:

Poly〈k :: �〉 :: k → · · · → k → ?
Poly〈?〉 T1 . . . Tnp = (user defined)
Poly〈k1 → k2〉 T1 . . . Tnp = ∀A1 . . . Anp.
Poly〈k1〉 A1 . . . Anp → Poly〈k2〉 (T1 A1) . . . (Tnp Anp)

The case for kind? is the user-defined type (PolyType, Section 2).
We can rewrite the case for arrow kinds as

Poly〈k1 → k2〉 = ΛT1 . . . ΛTnp . ∀A1 . . . Anp . (..)

to make it more obvious that we must return a type-level function
which, givennp arguments, returns a universally quantified type.
It is however difficult to give a recursive definition of this type; a
seemingly trivial but very helpful insight is that it is mucheasier
to work with an uncurried form (it is interesting to note thatAl-
tenkirch and McBride (2003) come to the same conclusion). This
gives us the following definition ofPoly〈k1 → k2〉:3

Λ(T1, . . . , Tnp) . ∀A1 . . . Anp .

Poly〈k1〉 (A1, . . . , Anp) → Poly〈k2〉 (T1 A1, . . . , Tnp Anp)

To construct this function we first construct the function where both
theT ’s andA’s are uncurried:

Λ(T1, . . . , Tnp) . Λ(A1, . . . , Anp) .

Poly〈k1〉 (A1, . . . , Anp) → Poly〈k2〉 (T1 A1, . . . , Tnp Anp)

This can be translated to the correct type using the function
quantify tuple, which takes a function of the form

Λ(A1, . . . , Anp) . T

to the universally quantified type

∀A1 . . .∀Anp . T

This function can be implemented as follows:

Fixpoint quantify_tuple (A:Type) (n:nat)
: (tupleT A n → Set) → Set :=

match n return (tupleT A n → Set) → Set with
| O ⇒ fun f ⇒ f tt
| S m ⇒ fun f ⇒ ∀ a : A,

quantify_tuple A m (fun As ⇒ f (a, As))
end

Paraphrasing,kit constructs a type that calculates the required
specialized type given a tuple(T1, . . . Tnp); the second step in type
specialization is therefore to construct this tuple. Hinzestates that
specialization of a polytypic functionpoly of typePoly to a type
T has type

poly〈T :: k〉 :: Poly〈k〉 (bT c1, . . . , bT cnp)

3 It is possible to uncurry the first part of the definition because the function
is never partially applied. We could also leave the second set of arguments
(theA’s) uncurried, but this generates unreadable types.



(∗ Every type has an associated kind environment which assignsa kind to each free variable in the type ∗)
Definition envk (n:nat) : Set := tupleS kind n.

(∗ Type environment used by the decoder for the translation of free variables . ∗)
Definition envt (nv:nat) (ek:envk nv) := gtupleT decK ek.

(∗ Environment of the form ((a1 .. anp), (b1 .. bnp), ..) to keep track of free variable replacements .∗)
Definition enva (np nv:nat) (ek:envk nv) := gtupleT (fun k ⇒ tupleT (decK k) np) ek.

(∗ Environment for functions associated with free variables ∗)
Definition envf (np nv:nat) (ek:envk nv) (Pt:PolyType np) (ea:enva np nv ek) :=

gtupleS (fun i ⇒ specType’ (tvar nv ek i) Pt ea) (elements_of_fin nv).

Figure 2. Overview of Environments

(∗ Specialize polytypic type Pt for kind k. ∗)
Fixpoint kit (k:kind) (np:nat) (Pt:PolyType np) {struct k} : tupleT (decK k) np → decK star :=

match k return tupleT (decK k) np → decK star with
| star ⇒ uncurry (typeKindStar Pt)
| karr k1 k2 ⇒ fun tup ⇒ quantify_tuple (fun As ⇒ kit k1 Pt As → kit k2 Pt (apply_tupleT tup As))
end.

(∗ Apply kit k P t to the tuple (btc1, . . . , btcnp). ∗)
Definition specType’ (np nv:nat) (k:kind) (ek:envk nv) (t:type nv ek k) (Pt:PolyType np)

(ea:enva np nv ek) : decK star :=
kit k Pt (replace_fvs t ea).

(∗ Specialization of specType for closed types.∗)
Definition specType (np:nat) (k:kind) (t:closed_type k) (Pt:PolyType np) : decK star := specType’ t Pt tt.

Figure 3. Type specialization

The definition of the floor operatorbci is slightly involved, so we
will consider an example first4. The type ofmap specialized to the
datatypeT = ΛA B C . A + B × C should be

(A1 → A2) → (B1 → B2) → (C1 → C2)

→ T A1 B1 C1 → T A2 B2 C2

Recall that the polytypic type ofmap, which describes the type
of the operationsmap performs at the elements of a structure, is
ΛA B . A → B. When we specializemap to a specific datatype,
we will need an instance of this operation for each of the arguments
of that datatype. Hence if the datatype hasnv parameters, we will
neednv copies of this operation, each of which will neednp type
arguments. To keep track of all of these types, we construct an
environmentea : enva of the form

((A1, . . . , Anp), (B1, . . . , Bnp), (C1, . . . , Cnp), . . .)
| {z }

nv

The floor operationbT ′ci replaces each free variable inT ′ (each
argument of the datatype) by thei’th variable associated with it by
creating the tuple(Ai, Bi, Ci, . . .) and then decodingT ′ using this
new tuple as type environment (Section 4.3).

Returning to our example, for everyΛA . · · · we encounter dur-
ing term specialization we will add the correct tuple(A1, . . . , Anp)
to ea (Section 6.4). The type of the specialization of thebodyof the
lambda abstractions inT will then be

Poly〈k〉 (bA + B × Cc1, . . . , bA + B × Ccnp)

4 Hinze uses naming conventions to define the floor operator, but unfortu-
nately naming conventions do not work in a formal setting.

When we specialize a function to a closed type (nv = 0), ea must
be empty and (bT c1, . . ., bT cnp) degenerates to(T, . . . , T ). From
a user’s perspective (who willalwaysspecialize polytypic functions
to closed types), this means that allnp arguments of a polytypic
function will be initialized to thesametype (see also Section 2).

The full definition of type specialization is shown in Figure3;
kit calculates kind-indexed types andspecType returns the ap-
plication of a kind-indexed type to a tuple (bT c1, . . ., bT cnp).
This tuple is created byreplace fvs, whose definition is straight-
forward and can be found in the Coq sources (Verbruggen 2008).

6. Term specialization
A polytypic function is fully specified by giving its polytypic type
and the cases for all constants. The cases for all other typescan be
inferred. Hinze (2000a) gives the definition for the specialization
of a polytypic functionpoly of typePoly to a typeT :: k as

poly〈T :: k〉 :: Poly〈k〉 bT c1 . . . bT cnp

poly〈C :: kC〉 = (user defined)
poly〈A :: kA〉 = fA

poly〈ΛA . T :: k1 → k2〉 = λA1 . . . Anp . λfA . poly〈T :: k2〉
poly〈T U :: k2〉 =

(poly〈T :: k1 → k2〉) bUc1 . . . bUcnp (poly〈U :: k1〉)

In this section, we will show how to define the equivalent definition
in Coq. The type of this function is

specTerm : ∀ (np:nat) (k:kind)
(t:closed_type k) (pf:PolyFn np),

specType t (ptype pf)



SincespecTerm returns a term of the type computed byspecType,
the definition ofspecTerm is a formal proof that term specializa-
tion returns terms of the required type. The definition of term spe-
cialization is shown in Figure 4; it relies on a number of auxiliary
lemmas which we do not show but will explain below. As always,
the full definitions can be found in the Coq sources. In the remain-
der of this section we will describe each of the clauses in thedefi-
nition of specTerm.

6.1 Constants

The case for type constants seems straight-forward. After all, we
should simply use the definition given by the user. But there is a
subtlety we must deal with. Consider the case for the productcon-
stant (tprod). As part of the definition of the polytypic function,
the user will have provided a functionpprod of type

pprod : specType tprod ptype

Recall from Figure 1 thattprod is syntactic sugar for

tconst 0 tt tc_prod

As described in Section 4, instances oftype encode kinding deriva-
tions;tprod encodes the derivation in the empty environment

∅ ` tconst tc prod : ? → ? → ?
CONST

Whentc prod is used inside another type, however, it may well be
used in an environment where thereare free variables. This arises,
for instance, in the use oftc prod in the definition oftfork in
Figure 1, where instead we have a derivation of the form

α : ? ` tconst tc prod : ? → ? → ?
CONST

Generally, we need a function of type

specType’ (tconst nv ek tc_prod) ptype ea

for some number of free variablesnv and associated kind environ-
mentek (ea is the environment we need for the type arguments in
the generated type, and will be discussed later). We could general-
ize the definition of the polytypic function to

Record PolyFn (np:nat) : Type := polyFn {
ptype : PolyType np ;
pprod : ∀ (nv:nat) (ek:envk nv) (ea:enva np nv ek),

specType’ (tconst nv ek tc_prod) ptype ea ;
. . .

}.

However, this complicates both the definition of a polytypicfunc-
tion and the instances the user must provide. Fortunately, it turns
out that the specialized type oftconst nv ek tc prod is the
same as the specialized type oftconst 0 tt tc prod, as proven
by the following weakening lemma:

LEMMA 1 (weakening tconst). For all nv, tc, ek, Pt, ea,

specType (tconst 0 tt tc) Pt

is the same type as

specType’ (tconst nv ek tc) Pt ea

Proof. Unfolding definitions (Figure 3), we find that we have to
prove

(btconst 0 tt tcc1, . . .) = (btconst nv ek tcc1, . . .)

The equalities between the elements are trivial, so we can complete
the proof by induction on the length of the tuples (np). �

6.2 Variables

Recall from the definition of term specialization as given byHinze
(2000a) that in the case for variables we return the functionfA

constructed in the clause for lambda abstraction. However,Hinze’s
definition relies on naming conventions which do not translate to
a formal setting. Instead we need an environmentef with an entry
for each of these functions.

The tricky part is to assign a typeenvf to ef , since each
element inef has a different type. We can computeenvf using
the generalized tuple from Section 3 as follows5

gtupleS (fun i ⇒ specType’ (tvar nv ek i) Pt ea)
(elements_of_fin nv).

The type of thei’th function is the specialized type of thei’th free
variable. Thus, we mapspecType over the tuple(0, 1, . . . , nv −
1) constructed byelements of fin. Given ef we can simply
return thei’th element inef as the specialized term for variablei.6

The constructionof ef will be considered in the case for lambda
abstraction (Section 6.4).

6.3 Application

To specialize a polytypic functionpf of typePt to a type applica-
tion (T U ) we first specialize toT :: k1 → k2, which will create a
term of the form

specTerm’ T pf ea ef : ∀ A1 . . . Anp,
kit k1 Pt (A1, . . ., Anp) →
kit k2 Pt (bTc1 A1, . . ., bTcnp Anp)

We instantiate the type variablesA1 . . . Anp in specTerm T pf ea
ef to the elements of the tuple(bUc1, . . . , bUcnp) using

instantiate_tuple (A:Type) (n:nat) :
∀ (args:tupleT A n) (X:tupleT A n → Set),

quantify_tuple X → X args

(see Coq source for a full definition). This leaves us with the
following term

(specTerm’ T pf ea ef) bUc1 . . . bUcnp :
kit k1 Pt (bUc1, . . . , bUcnp) →
kit k2 Pt (bTc1 bUc1, . . . , bTcnp bUcnp)

We can apply this to the specialized term ofU , which serendipi-
tously has exactly the right type, and get a term of type

kit k2 Pt (bTc1 bUc1, . . . , bTcnp bUcnp)

Since we are specializing an application, the return type weexpect
here would be

specType’ (tapp T U) Pt ea

We can use the following lemma to complete the definition for
application

LEMMA 2 (convert tapp). For all np k1 k2 ea P t and types
T : k1 → k2 andU : k1, the type

kit k2 Pt (bTc1 bUc1, . . . , bTcnp bUcnp)

is the same type as

specType’ (tapp T U) Pt ea

5gtupleS is a version ofgtupleT that returns aSet rather than aType.
6 Due to the way we calculateenvf, we do need one technical lemma
(ith fin) that thei’th element ofelements of fin is i.



(∗ Term specialization ∗)
Fixpoint specTerm’ (np nv:nat) (ek:envk nv) (k:kind) (t:type nv ek k) (pf:PolyFn np) {struct t} :

∀ (ea:enva np nv ek), envf nv ek (ptype pf) ea → specType’ t (ptype pf) ea :=
match t in type nv ek k
return ∀ (ea:enva np nv ek), envf nv ek (ptype pf) ea → specType’ t (ptype pf) ea with
| tconst nv ek k tc ⇒ fun ea ef ⇒

match tc return specType’ (tconst nv ek tc) (ptype pf) ea with
| tc_unit ⇒ weakening_tconst (punit pf)
| tc_int ⇒ weakening_tconst (pint pf)
| tc_prod ⇒ weakening_tconst (pprod pf)
| tc_sum ⇒ weakening_tconst (psum pf)
end

| tvar nv ek i ⇒ fun ea ef ⇒ ith_fin (ggetS i ef)
| tapp nv ek k1 k2 t1 t2 ⇒ fun ea ef ⇒ convert_tapp

((instantiate_tuple (replace_fvs t2 ea) (specTerm’ t1 pf ea ef)) (specTerm’ t2 pf ea ef))
| tlam nv ek k1 k2 t’ ⇒ fun ea ef ⇒ convert_tlam

(dep_curry
(fun tup ⇒ specType’ (tvar (S nv) (k1, ek) (fz nv)) (ptype pf) (tup, ea)

→ specType’ t’ (ptype pf) (tup, ea))
(fun As : tupleT (decK k1) np ⇒
(fun fa : specType’ (tvar (S nv) (k1, ek) (fz nv)) (ptype pf) (As, ea) ⇒
specTerm’ t’ pf (As, ea) (weakening_envf (fa, ef)))))

end.

(∗ Special case for closed types∗)
Definition specTerm (np:nat) (k:kind) (t:closed_type k) (pf:PolyFn np) : specType t (ptype pf) :=

specTerm’ t pf tt tt.

Figure 4. Term specialization

Proof. Unfolding definitions (Figure 3), we find that we have to
prove that

(bTc1 bUc1, . . . , bTcnp bUcnp) = (bT Uc1, . . . , bT Ucnp)

The equalities between the elements are trivial (replacingfree vari-
ables before or after application gives the same result), sowe can
complete the proof by induction on the length of the tuples.�

6.4 Lambda abstraction

To specialize a polytypic functionpf of type Pt to a lambda
abstraction (ΛA . T ) we first construct the term

fun (A1, . . ., Anp) fA ⇒
specTerm’ T pf ((A1, . . ., Anp), ea) (fA, ef)

which we then curry to get the required term

fun A1 . . . Anp fA ⇒
specTerm’ T pf ((A1, . . ., Anp), ea) (fA, ef)

Currying this function is, however, not entirely straight-forward.
The type of the body of this function

specType’ T Pt ((A1, . . ., Anp), ea)

depends on the actual tuple supplied. We therefore need adepen-
dentcurry function, which can be defined as

Fixpoint dep_curry A n
: ∀ (C : tupleT A n → Set)

(f : ∀ (x : tupleT A n), C x),
quantify_tuple C :=

match n return ∀ (C : tupleT A n → Set)
(f : ∀ (x : tupleT A n), C x),
quantify_tuple C

with
| O ⇒ fun c f ⇒ f tt
| S m ⇒ fun c f a ⇒

dep_curry A m (fun args ⇒ c (a, args))
(fun args ⇒ f (a, args))

end.

The result ofdep curry is something of the formquantify tuple,
which we described in Section 5. However, the return type we want
is

specType’ (tlam T) Pt ea

We can prove that from a term of the given type we can constructa
term of the required type:

LEMMA 3 (convert tlam). For all k1, k2, nv, np, Pt, ea and
typeT : k1 → k2, given a term of type

quantify_tuple (fun As : tupleT (decK k1) np ⇒
specType’ (tvar (S nv) (k1, ek) (fz nv)) Pt (As, ea)
→ specType’ T Pt (As, ea))

we can construct a term of type

specType’ (tlam T) Pt ea

Proof. Unfolding definitions (Figure 3) we find that we have to
prove that given a term of type

quantify_tuple (fun As : tupleT (decK k1) np ⇒
kit k1 Pt (replace_fvs
(tvar (S nv) (k1, ek) (fz nv)) (As, ea))

→ kit k2 Pt (replace_fvs T (As, ea)))

we can construct a term of type



quantify_tuple (fun As : tupleT (decK k1) np ⇒
kit k1 Pt As → kit k2 Pt
(apply_tupleT (replace_fvs (tlam T) ea) As))

Note that we cannot prove in Coq that these two types areequal.
Generally, we cannot prove that

(∀α . T α) = (∀α . T
′

α)

even if we can prove thatT α andT ′ α are equal for anyα. We
can, however, construct a term of type∀α . T ′ α given a term of
type∀α . T α (or vice versa): we can only prove that these two
types are isomorphic. To prove the isomorphism

quantify tuple C ∼= quantify tuple C
′

We need an auxiliary lemma thatquantify tuple preserves ex-
tensional equality:

LEMMA 4 (quantify tuple ext). For all A, n, given
two functionsf, g : tupleT A n → Set, if f and g
are extensionally equal, that is

∀ (tup : tupleT A n), f tup = g tup

thenquantify tuple f andquantify tuple g are iso-
morphic.

Proof. By induction onn. �

Applying this lemma leaves us to prove that the two argumentsto
quantify tuple return the same result given the same input, i.e.
for any tupleAs = (A1,. . ., Anp):

kit k1 Pt (replace_fvs
(tvar (S nv) (k1, ek) (fz nv)) (As, ea)) →

kit k2 Pt (replace_fvs T (As, ea))
=
kit k1 Pt As →
kit k2 Pt (apply_tupleT

(replace_fvs (tlam T) ea) As)

First we prove in lemmatvar tuple that, given the environment

((A1, . . . , Anp), ea)

we have

(btvar (S nv) (k1, ek) (fz nv)c1, . . .) = (A1, . . .)

The equality on the individual elements is trivial: we are replacing
free variablefz, for which we always use elements in the first tuple
in the given environment, i.e. elements in(A1, . . . , Anp); the proof
is therefore by induction onnp. This reduces the problem to

kit k1 Pt As → kit k2 Pt (replace_fvs T (As, ea))
= kit k1 Pt As →

kit k2 Pt (apply_tupleT
(replace_fvs (tlam T) ea) As)

In lemmareplace bound var we then show that

(btlam T c1 A1, . . . , btlam T cnp Anp)

in environmentea is equivalent to

(bT c1, . . . , bT cnp)

in environment((A1, . . . , Anp), ea). Recall that the bound vari-
able intlam T becomes free inT and will be replaced byAi in
bT ci. It is then easy to see that replacing all free variables intlam
T usingea and applying the result toAi is the same as replacing all
free variables inT with (A1, . . . , Anp) added to the environment.
Therefore this proof can again be done by induction onnp, which
completes the proof ofconvert tlam. �

Another difficulty in constructing the specialized term for
lambda abstraction is in adding the functionfA to the environ-
mentef . The existing environmentef has an entry for each free
variable intlam T , but variablei in the lambda abstraction will
become variablefs i in the bodyT of the lambda abstraction.

Therefore each function

fX : specType’ (tvar nv ek i) Pt ea

associated with variablei in the old environment, should have type

fX : specType’ (tvar (S nv) (k, ek) (fs i)) Pt
((A1, . . ., Anp), ea)

in the new environment. When every function inef has been shifted
in this way, we can then add the new functionfA to the start ofef .
The following lemma proves that the two types forfX above are
indeed equal:

LEMMA 5 (weakening tvar). For all nv k ek i P t As ea, the
type

specType’ (tvar nv ek i) Pt ea

is the same type as

specType’ (tvar (S nv) (k, ek) (fs i)) Pt (As, ea)

Proof. Unfolding definitions (Figure 3), we find that we have to
prove

(btvar nv ek ic1, . . .) =

(btvar (S nv) (k, ek) (fs i)c1, . . .)

The equalities between the elements are trivial, so we can complete
the proof by induction on the length of the tuple.�

The lemmaweakening envf makes use of this result to ensure
that each of the elements inef can be converted to the correct type:

LEMMA 6 (weakening envf). For all nv k ek P t As ea, the type

(specType’ (tvar (S nv) (k, ek) (fz nv)) Pt (As, ea))
* (envf nv ek Pt ea)

is the same type as

envf (S nv) (k, ek) Pt (As, ea)

Proof. Unfolding the definition ofenvf, we find that we have to
prove that the type

gtupleS nv
(fun (i:Fin nv) ⇒ specType’ (tvar nv ek i) Pt ea)
(elements_of_fin nv)

is the same type as

gtupleS nv
(fun (i:Fin (S nv)) ⇒

specType’ (tvar (S nv) (k, ek) i) Pt (As, ea))
(mapS fs (elements_of_fin nv))

As it stands, however, this lemma is impossible to prove. We need
to do induction on the length of the tuple

mapS fs (elements of fin nv)

but the length of that tuple isnv—and we need to keepnv invariant
throughout the proof. Instead we prove a stronger property that
abstracts away fromelements of fin and prove the lemma over
any tuple tup of lengthm; this decouples the two occurrences of
nv. Hence we need to prove that



gtupleS m
(fun (i:Fin nv) ⇒ specType’ (tvar nv ek i) Pt ea)
tup

is the same type as

gtupleS m
(fun (i:Fin (S nv)) ⇒
specType’ (tvar (S nv) (k, ek) i) Pt (As, ea))

(mapS fs tup)

This is proven byweakening envf aux by induction onm. �

7. Related work
There are many different approaches to polytypic programming.
In the functional programming community alone these include
PolyP (Jansson and Jeuring 1997), Generics for the Masses (Hinze
2006), Derivable Type Classes (Hinze and Jones 2000), Generic
Programming, Now! (Hinze and Löh 2006a), Scrap your Boiler-
plate (Lämmel and Jones 2003, 2005; Hinze and Löh 2006b; Hinze
et al. 2006b) and others. A detailed comparison of these approaches
is beyond the scope of this paper and we refer to Hinze et al.
(2006a) for a thorough survey; none of these approaches, however,
support kind-indexed polytypic programming.

In the dependent programming community and the more the-
oretically oriented type theory community, there are also various
proposals for generic programming (Pfeifer and Rueß 1998; Pfeifer
and Rueß 1999; Benke et al. 2003; Sheard 2007; Morris et al. 2006,
2007). Most of these proposals use a generic view (universe)con-
struction like we did in this paper; the nature of the genericview
dictates to a large extent which generic programs can be written
and how they are expressed. None of these approaches uses kind-
indexed types, however, and we are specifically interested in prov-
ing properties about Generic Haskell programs.

Our work is most closely related to that of Altenkirch and
McBride (2003), which gives an implementation of Generic Haskell-
style polytypic programming in Oleg (the dependent language de-
veloped by Conor McBride in his doctoral thesis, McBride 1999)
and Norell (2002), which follows (a preprint of) the first paper
closely and presents a similar design in Alfa. The most important
difference between our work and theirs is the choice of logic, which
must however not be underestimated. Every dependent program-
ming language comes with its own peculiarities, and a solution
in one logic will typically not easily transfer to another logic. As
mentioned in Section 3.3, an important reason for choosing Coq is
the support for proof automation, which is not available in Oleg or
Alfa (nor in their successors, Epigram and Agda). This will be ex-
tremely beneficial once support for proofs over polytypic programs
is in place (see future work). As a second difference, we feelthat
the transition from Generic Haskell to our library will be easier than
the transition to theirs; this is particularly true for (Altenkirch and
McBride 2003). Modulo some minor syntactic differences, poly-
typic functions and their types are defined in our library exactly
as they are defined in Generic Haskell, and the specialization of a
polytypic function to a datatype is a simple call tospecTerm. This
is important since we want our work to be accessible to Generic
Haskell or Generic Clean programmers.

Most of the work on proofs about generic programs comes
from the type theory community, rather than from the functional
programming community. Consequently, there is very littlework
about proofs over Generic Haskell-style polytypic programs, other
than Hinze’s original thesis. One notable exception is (Abel 2007),
which is, however, concerned with termination only. Indeed, this is
exactly the hole that our work attempts to fill.

8. Conclusions and future work
The goal of our work is to provide an infrastructure in the proof
assistant Coq to do proofs over Generic Haskell-style polytypic
programs. This paper is an important step towards this goal and
provides a formal definition of polytypic programming in Coq.

We have given definitions for records that describe polytypic
functions and their types. Programmers who are familiar with
Generic Haskell should easily recognize these structures,as they
are almost identical to the description of polytypic functions in
those systems. Moreover, we have presented the generic viewwith
associated decoders and defined type specialization and term spe-
cialization. Since the result of term specialization is a term of the
type computed by type specialization, our implementation is a for-
mal proof that term specialization returns terms of the desired type.

Like our view, the view in Generic Haskell does not support
recursion on the type level. Instead, recursive types are supported
through value recursion. For example, consider the typelist. Its
“structural” representation as a type in the generic view is

list
◦ = Λα · 1 + α × list α

where 1 denotes the unit type. Note thatlist◦ is defined in
terms of the ordinary list type: the recursive occurrences of the
list datatype are not replaced. We can then define two functions

fromList : ∀α, list α → list
◦

α

and

toList : ∀α, list
◦

α → list α

which translate from a list to its structural representation and back.
We can now definemapList over lists using the polytypicmap
function as follows:

Fixpoint mapList (A B:Set) (f:A → B) (xs:list A)
: list B :=

toList (specTerm’ tlisto map
((list, (list, tt)), tt)
(mapList, tt) A B f (fromList xs)).

Since “list” is a free variable in the definition oflist◦, we need
a variantspecTerm’ on specTerm which allows for open types
and accepts two environments of typeenva andenvf (Section 6).
In particular,envf must contain a function of type

∀ (A B : Set) (f : A → B), list A → list B

which it will apply to the recursive occurrences oflist. Obviously,
this is the very function we are defining, so we passmapList
itself. Unfortunately, this definition is not accepted by Coq because
the recursive call tomapList is not made to arguments that are
obviously structurally smaller—even though they will be. We need
to convince Coq that this function terminates. The work by (Abel
2007) might help to solve this problem, but this is future work7.

Since we have a formal definition of term specialization, it is
theoretically possible to prove properties about polytypic functions
using only the infrastructure we describe in this paper. However,
the definition of term specialization is sufficiently involved that
additional support is essential. Hinze describes one way toprove
such properties in (Hinze 2000a,b); it is our intention to formalize
his work in Coq. Once that is completed, we can start to investigate
which tactics we can add to Coq that will help write these proofs, so
that we can provide a truly usable framework for Generic Haskell
programmers for developing proofs over polytypic functions.

7 Both (Altenkirch and McBride 2003) and (Norell 2002) define ageneric
view that supports arbitrary recursion with associated decoder. This is
impossible in Coq, which does not support general type-level recursion so
that it can guarantee termination.
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