Design and Implementation of a PHP Compiler Front-end

Edsko de Vries and John Gilbert
{devriese, gilbefj@cs.tcd.ie

Department of Computer Science
School of Computer Science and Statistics
Trinity College Dublin, Ireland

September 21, 2007

Abstract

This technical report describes the design and implemientat a front-end fophc, the open source
PHP compiler. This front-end provides an excellent bagisiéweloping tools which process PHP source
code, and consists of a well-defined Abstract Syntax Tredl|APBecification for the PHP language, a
lexical analyser and parser which construct the AST for amgicript, and a visitor and transformation
API for manipulating these ASTSs.

1 Introduction

PHP [1] is a dynamically typed general purpose scriptinglege which can be embedded in HTML pages.
It was designed in 1995 for implementing dynamic web pagesiame initially standing fdPersonal Home
Pages PHP now stands for the recursive acrongiP: Hypertext PreprocessoWWhile predominantly used
for server-side scripting PHP can be used for writing comuiane scripts and client-side GUI applications.
It may also be embedded into host applications to providentwéh scripting functionality.

The main implementation of PHP is free open source softwhinis provides thale factodefinition of
the syntax and semantics for the language since there igmafspecification. While the end user interface
and extensions API for the PHP interpreter are well docuetkff, 10], scant documentation exists for the
internals of the parser and the Zend engine (which intesmetipts). The lexical analyser is defined using
a Flex description of 2000 lines, and the parser a Bison fipaiibn of 900 lines. It is difficult to extract
any formal specification from either source file because ofiegessary redundancy and poor structuring of
the grammars; convoluted rules which attempt to enfordecsthecks; embedded semantic actions trying to
ensure associativity is appropriately maintained at gepaints during parsing; and the requirement for tight
coupling between the lexical analyser and parser due tirimgssyntax which is not amenable to processing
using the traditional lexical analysis and parser intexfac

With its widespread deployment PHP requires tools for tefétng, optimizing, obfuscating, checking
style and semantics, aspect weaving, and for translatiahir languages such as ASP. Many users who
have attempted to write software for processing and tramsfg scripts have resorted to using elaborate reg-
ular expressions for pattern matching and other ad hoc appes due to the difficulty of adapting the PHP
front-end to their requirements. Those that have braveihtkenals of the PHP implementation have gener-
ally used the parse trees which represent the concretexgyraductions used in the Bison file to construct a

*Supported by the Irish Research Council for Science, Erging and Technology.

tree representation of the input [5]. We argue later in #thihical report that the parse tree representation of
a script which corresponds to that of the PHP language is tirelgrinappropriate structure for developers
to work with. Without a usable representation of a PHP sSergaurce code the implementation of any of
the tools we mentioned above is a serious undertaking.

The open source PHP compilphc [7] is an ongoing project which aims to compile PHP scripts to
x86 Intel assembly language. This technical report dessribe design and implementation of the front-end
of phc which consists of a well defined Abstract Syntax Tree (ASBcfiration for the PHP language, a
lexical analyser and parser which construct the AST for amgiscript and a visitor/transformation API for
manipulating these ASTSs. It provides an excellent basisiéeeloping compilers as well as any other tools
which process PHP source code.

The remainder of this technical report is structured agfadt first we introduce our Abstract Grammar,
which defines the structure of PHP scripts as seepty. Next an overview is given of the visitor and
transformation API we provide for manipulating Abstractn®&x Trees whose structure is defined by the
Abstract Grammar. We then outline a number of projects whaild benefit from our existing front-end,
and which would be rather difficult to develop entirely frooratch. Finally we finish with a description of
plans for future work and our conclusions.

2 Abstract Grammar

In this section we discuss the abstract grammar usedhay to represent PHP scripts. We explain the
decisions faced while designing the grammatr, highlightestime difficulties with parsing and conclude with
a few comments on unparsing abstract syntax back trees tesiphiX.

2.1 Motivation

Consider the following simple PHP program.

<?php
printf("H ");
?>

This program gets represented jplgc as the AST shown in Figure 1. The interpretation of this $tnec
should be self-explanatory and can be read directly fronfigluee: we have a PHP script containing a single
statement which evaluates an expression; the expresseométhod invocation; the name of the method is
pri ntf;and we pass in one parameter, the stridg™.

While this may seem like an obvious representation, no sepresentation exists in the PHP imple-
mentation, nor does this representation correspond to fiicjabdefinition of PHP. As mentioned in the
introduction, no official grammar for PHP exists. The onlydigymar” that is available is the PHP parser,
written in Bison [9]. While the Bison grammar defines a repraation of sorts, we claim that this repre-
sentation is not particularly useful as a language defimitioas an internal representation. For comparison,
Figure 2 shows the parse tree that would result from the saoggam if constructed using the Bison gram-
mar from PHP. Not only is the tree much larger, but it also aimst many nodes that do not correspond to
any conceptual notions (for example, what exactly isiatickedstatemenbr anr_variable?).

Moreover, the structure of the parse tree is rather conedluConsider the subtree fexpr. The root
node of this subtreeekpr) corresponds to thAST.evalexpr node in the AST, but the node immediately
below theexpris anr_variable Only further down the parse tree does it become apparenthbaex-
pression is not a variable at all, but a function call. In t8TAthe root node of the expression is of type
ASTmethodinvocation which seems a more logical choice. The parse tree also adedways show the
correct associativity of operators—we consider such amelain Section 2.3.

AST_php_script

List<AST_statement>
AST_eval_expr

Figure 1: Abstract syntax tree fef?php printf("H "); ?>

Some may feel that the parse tree suffices as a represertdtibifowever, since the choice of language
representation has a profound impact on a large part of thepiber, we feel that the parse tree is too
complicated and illogical a structure to work with. For tmaason, we spent a lot of time devising an
intuitive and clear definition of PHP in the form of an AST.

2.2 Design

Theabstract grammamvhich defines the structure of our ASTs is shown in full in Apgix A. In contrast
to the definition of the Bison grammar, which is driven by ierplentation concerns, the design goals for the
abstract syntax were conciseness and clarity. We triedep #ee number of concepts to a minimum, and felt
it was imperative to make every concept correspond to a gdnaenotion familiar to a PHP programmer.

The design of the abstract grammar was also constrainedebyrttierlying formalism. Briefly, every
rule must be either a sequence of terminal and non-termjymabsls (such as the rule fanethod, or a
disjunction of terminal and non-terminal symbols (suchhestile formembey. Combinations of sequencing
and disjunction of symbols are not allowed. This guarantessaightforward mapping from the abstract
grammar to a C++ data structure [6].

The top-level structure of the grammahg_script) is defined to be a list of statements. In other words,
a PHP script is considered to be a list of statements. Whisectirresponds to the top-level structure of the
PHP Bison definition, it was not our first choice. In our irlitl@sign, the top-level structure of the PHP script
was considered to be a list of class definitions. Functiomiiefins that were not originally part of any class
were treated as static functions in a special class cMid\, and code that was not part of any function
definition was collected in a static function nanmredn in MAI N. Since the language specification had to
include the notion of a class definition (including statidinions), this reduced the number of concepts in
the abstract grammar. However, while this potentially difigs the design of the code generator, not all
scripts can be transformed into this format. For examplesicker

(o)
top_statement, @
Copston) Csmemen)
CD
COXED
Cireton.cal
@ ° function_call_parameter_lisp °

expr_without_variable

common_scalar,

Figure 2: Parse tree fer?php printf("H "); ?>

<?php
i ncl ude "common. php";

class D extends C// class C defined in common. php

{
}

?>

...

If this script is changed so that thecl ude statement becomes part of a functramn in MAI N, classC will
no longer be defined (included) before cld3s$s defined, and the program becomes invalid (the interpreter
will report an error‘Cannot inherit from undefined class ¢

In a similar vein, our initial design did not include an exjtlihotion corresponding to thid obal state-
ment of PHP. The scoping rules of PHP are very simple. There@ly two scopes: the global scope; and
the local scope within a function (compare to the prograngntanguage C, where every block of statements
enclosed in curly brackets introduces a new scope). By tefavariable used in a function is considered to
live in the local scope. For example,

<?php

function f()

{

$x = 1;
()

echo $x;
?>

will print 1 (not 2) , because th&x used insidef is local tof . The gl obal keyword can be used to
“import” a variable from the global scope into the local seop
<?php
function f()

{
gl obal $x;
$x = 2;

}

$x = 1;
f();

echo $x;
?>

will print 2. PHP provides an alternative way to access dlehaables from a local scope: ti#3. OBALS
array. Every global variable is considered to be an eleme®SGhOBALS, and$G.OBALS itself is a so-
called “superglobal”: it is available in every scope. THere, we can rewrite the previous example as
<?php
function f()

{
}

$x = 1;

f();

echo $x;
?>

$GLOBALS["Xx"] = 2;

To reduce the number of concepts in the grammar, we thouglbuld represent

5

gl obal $x;

as
$x =& $GOBALS["x"];

which makes the loca#x a reference to the glob&x. While this corresponds very closely to the “official”
semantics ofgl obal (insofar as there is one), we learnt that this translatioim i&act incorrect:. while
$GLOBALS is a superglobal and therefore available in every scops, fpossible to remov8GLOBALS
from a scope if desired. For example,

function f()

{
unset ($GLOBALS) ;

$ALOBALS["Xx"] = 2;
}

first removes$GLOBALS from the local scopemaking any subsequent uses$fHOBALS refer to an
ordinary local array which happens to be call&f=3LOBALS; thus, callingf has no effect on the global
variable$x. However, the following functiory does

function g()

{
unset ($GLOBALS) ;

gl obal $x;
$x = 2;
}

Even though the code generator still implemagit®bal by making$x a reference to the glob&ix, this
example clearly shows that the translation ushtd OBALS is invalid: $GLOBALS may not be in scope.
The upshot of this and the previous example is that it dangeto try to reduce the number of concepts in
the grammar by representing some PHP constructs in termbefso

Nevertheless, the number of concepts in our abstract gransnsggnificantly smaller than the number
of concepts in the PHP Bison definition. There are variousaes for this. For example, the grammar
formalism used by Bison does not allow the direct definitiblists of anything (such as a list of statements),
which can only be encoded using recursion (this is cleartyvshin Figure 2: start does not have two
children, corresponding to two statements, but contatop.atatementist which, in a left-recursive fashion,
encodes a list of statements).

A more important reason is that the Bison grammar is impldgatim driven as mentioned above. For
example, the Bison grammar distinguishes between_aariable and aw_variable The only difference
between the two (both correspond to variables or functidis)ca their use: as an Ivalue (to the left of an
assignment operator) or as an rvalue (to the right of an mseigt) respectively. While this distinction is
useful for some applications, it complicates others. Farmgxe, a refactoring tool that renames variables
does not necessarily want to make a distinction betweerhlas on the left or right of an assignment
operator, and thus would benefit if the grammar uses the saneept to represent both.

Finally, the Bison grammar imposes some semantic limiatiocor example, function arguments can
have default values, but these values must be static. So,

function f($x = 1) { ... }
is a valid definition, but
function f($x = %a) { ... }

is not, becaus&a is not a static value. This restriction is enforced in thengrear definition—there are
separate grammar rules for expressions and static expmessi he definition for static expressions is not
completely trivial because a static expression could ber@ya

6

AST_variable

AST_variable Token_variable_name

AST_variable Token_variable_name

Token_variable_name

Figure 3: Abstract syntax tree for the expresstan >b- >c

function f($x = array(1,2)) { ... }

which means that separate concepts are needed for “stedigsalarrays containing only static elements,
which could in turn be static arrays) and regular arrays hindesign of our AST we do not enforce these
semantic checks: we have only one definition of expressionkjding only one definition of arrays since
most semantic checks cannot be enforced by a context freengmaanyway (the grammar formalism simply
is not powerful enough). It seems arbitrary to encode sommartcs checks but not others flhc semantic
checking is a separate phase). Moreover, spite is a compiler rather than an interpreter, we can apply
optimization techniques such as constant folding andglatialuation to identify complex expressions with
constant values: thus, we can potentially accept more anogjr

2.3 Parsing

Once the AST had been defined we had two options: write a neseipar build the AST from scratch; or
reuse the existing PHP parser. The first option is a noratrividertaking. The abstract grammar by its very
nature is not suitable for use as a parser definition. It iBlizigmbiguous and leaves out all syntactic sugar
(semicolons, arrows, etc). Moreover, it would be next toasgible to verify that our new parser accepted
the same language as the original PHP parser.

Thus, the only realistic option was to reuse the existing PHIRer stripped of all its semantic actions
and modified to output a representation of its input corredpa to our abstract grammar. This task was
relatively simple if tedious, but there were a few gotchamglthe way. The first of these was that the recur-
sive structure of the Bison definition does not always cqaad to the required associativity of operators.
For example, consider the expression

$a- >b- >c

The correct reading of this expression is
($a->b)->c

as can be readily verified by writing a small test script. Irdeg this expression accesses fieldf $a- >b,

as opposed to field- >c of variable$a. The arrow operator is left associative, as reflected in tB8d A
corresponding to this expression (Figure 3). But the Bis@mgnar definition (and, correspondingly, the
parse tree) for this expression’s structure is right réeersindeed, the parse tree for the same expression
(Figure 4) suggests that the arrow operator is right asteeigather than left associative.

r_variable

variable

base_variable_with_function_call® variable_propertieg

variable_properties variable_property,

variable_property, O_SINGLEARROW object_property
compound_variable O_SINGLEARROW object_property object_dim_list @

VARIABLE object_dim_list @ variable_name

variable_name

Figure 4: Parse tree for the expressiar >b- >c

(0]

Another problem was mentioned in section 2.1: the grammiarfar r var i abl e must synthesize
either anASTvariable or an ASTmethodinvocationdepending on the AST subtrees already built by the
children ofr _vari abl e. We solved this problem by associating an optional list ofcfion arguments
with every variable. When a variable’s node has a nhon-NUELdf function arguments, it is transformed
from anAST var i abl e into anAST_met hod_i nvocat i on. Naturally, this action is hidden in the parser
and by the time the AST has been built, variables are repiedday AST var i abl e nodes and method
invocations byAST_nmet hod_ nvocat i on nodes.

However, the most difficult problem encountered when prsiogsPHP is lexical analysis. Here compli-
cations arise due to PHP’s “in-string” syntax, where theteots of a string are interpreted. Consider

<?php

$a = 5;

echo "a is $a\n";
?>

Even though the reference$a appears within the string it will be interpreted, hence saispt will print “a
i s 5”. PHP distinguishes between two kinds of in-string syntaxnple; and complex. Simple in-string
syntax consists of a small number of constructs that can ée disectly inside strings. The script shown
above is an example of such simple in-string syntax. Othamgtes includebal 1] (array indexing) and
$a- >b (object field access). Complex in-string syntax is denotedi$h . .}, and essentially provides a way
of escaping temporarily to regular PHP syntax. As suggesyetteir names, supporting simple syntax is
relatively straightforward (it suffices to add regular esgsions for each of the provided constructs to the
lexical analyser), while complex syntax is more difficult.

The general approach we take is to treat in-string syntaxnamaplicit concatenation operation—the
echo statement in the previous example is implicitly treated as

echo "ais " . $a . "\n";

Thus, neither our abstract grammar nor the parser has anrmitio-string syntax. In this example, when a
user writes

echo "a is $a\n";

the string of tokens returned to the parser by the lexicdlyapais
| DENT(echo), STRING"a is "), OP(.), VAR(a), OP(.), STRINE"\n"), OP(;)

This is not completely trivial to implement. When the lexiaaalyser recognizes a simple in-string pattern,
it pushes a number of tokens onto a local stack; in this caseinitial segment of the stringa“ i s 7,
a concatenation operator, the variableand another concatenation operator. It then moves intata st
RET_MULTI . Subsequent calls to the lexical analyser while it is in tée will return the next token from
the local stack without matching any input. Once the staaxigusted, the lexical analyser returns to its
previous state (in this example, the state recognizingggji

This technique can be used for all simple patterns, but turfately does not scale to complex in-string
syntax. For example, consider

echo "{doubl e i ndex: {$a{$b{1}}}}\n";

While this example is perhaps slightly contrived, it clgademonstrates the problem—the outer braces are
part of the string itself; the braces around the variablaxdethe complex in-string pattern, and the remaining
braces delimit an array index. Ideally the lexical analygeyuld recognize that the string continues after the
final closing brace, but to know which brace is the last one @adrto be able to match braces: the canonical
example of a non-regular problem [12].

There are two possible solutions to this problem: we coulthesira small syntax analyser within the
lexical analyser; or we could couple the existing syntaxlym®s and the lexical analyser more closely.

Both of these solutions are slightly inelegant—they brdekdlean separation between lexical and syntax
analysis. A more “principled” solution would be to use a swtess parser and do away with the separation
completely. This is the approach taken in PHP-front [4], chhiises the advanced SGLR parser from the
ASF+SDF framework [8]. The downside with that solution i§course, that the original PHP Bison file
cannot be used, making it hard to be sure the parser acceptathe language as the “official” parser.
Moreover, verifying the impact of minor changes in the “a#flc grammar which occur when new versions
of PHP are released means that maintaining a parser dedefapa scratch would be an ongoing, time
consuming, burden. In fact the PHP-front developers reparibus difficulties trying to be completely
compatible with the official parser [Eric Bouwers, persor@inmunication].

PHP itself chooses the first option, and embeds a small haitigtvparser into the lexical analyser
which only accepts a small subset of PHP. Although this smiuavoids coupling the syntax and lexical
analysers, it increases the complexity of the lexical as@lyWe chose the second option instead. When the
lexical analyser recognizes the start of a complex cons{{®), it returns the initial segment of the string
to the parser followed by a “special” concatenation operg@oVAG C CONCAT). It then pushes the dollar
sign ($) back into the input and reverts from the “parsingrimgt state to the “parsing PHP” state. As far
as the lexical analyser is concerned, we have finished patisenstring—it is up to the syntax analyser to
instruct the lexical analyser to return to the “parsing agtrstate.

In the parser we have two grammar rules for concatenatiom:dealing with the standard concatenation
operator; and one dealing witbBMAG C_CONCAT. The rule for standard concatenation simply builds part
of the AST:

| expr .’ expr

{ $$ = NEWAST bin_op, ($1, $2, $3));
}

while the rule forO.MAG C_CONCAT builds the same syntax tree (semantically both operatergquiva-
lent), its implementation is slightly different:
| expr O _MAG C_CONCAT expr '}’
{
$$ = NEWAST _bin_op, ($1, ".", $3));
context->return_to_conpl ex_syntax();

}

Compared to the previous rule, there are two differencese riite includes an additional closing brace,
which—though it may look out of place—is the closing bracat tierminates a complex in-string construct.
By adding the closing brace here, the parser matches thedbfacus, hence we know when to instruct the
lexical analyser to return to parsing a string—establighethe call tor et ur n_t o_conpl ex_synt ax().
This solution keeps both the lexical analyser and the syatatyser simple, and even though it couples
both analysers, the interaction is limited to a single galfrf the syntax analyser to the lexical analyser.

24 Unparsing

Unparsing is the problem of converting the AST back into PWitax. Writing an unparser that outputs
valid PHP syntax of some form (even pretty-printed) is gtitforward, but writing an unparser suitable for
use in a refactoring tool is very difficult. Ideally, such amparser should reproduce a program in its original
form with the layout and comments (including whitespacesifmned in exactly the same way as in the
programmer’s original code. We make an effort at positigriomments, but have not yet been able to come
up with a satisfactory solution to dealing with layout.
Thephc unparser essentially re-does the layout from scratch,lynigsioring the user’s original layout.
It makes an attempt at producing readable output, and wéltipa the user's comments (approximately) in

10

the right place. The parser records a few attributes with eacle. For example, any part of an expression
can be marked ast art s_l i ne. This attribute is taken into account by the unparser: if @gmmmer
writes

$x =
"SELECT " . $a .
"FROM " . $b .
"GROUPBY " . $c;

it will be unparsed as

$x =
"SELECT " . $a .
"FROM " . $b .
"GROUPBY " . $c;

While layout is not preserved identically (the whitespaages), at least the general structure is preserved.
Attributes are also used to unparse some PHP constructgpimity represented in the AST in their original
form. For example, the abstract grammar does not have araonfiirel sei f (which gets represented as
a nested f), but the unparser will output a nesteél as anel sei f, if it is has the attributé s_el sei f
set.

The lexical analyser uses a local varialslet ach_t o_pr evi ous to indicate whether a comment
should be associated with the next or the previous tokemiallgiat t ach_t o_pr evi ous is set to false,
and it is reset to false again after every line break in thatinft is set to true when the lexical analyser
encounters a semicolon. This means that in

<?php

/1 First coment
f(); // Second comment

// Third coment

a();

?>
the first and second comment will be associated with the@dll while the third comment will be associated
with g. In fact, for this example, the unparser will be able to rejoice the exact layout, including the blank
line in between the call t¢ and the comment before How? Keeping track of whitespace in general and
associating whitespace with the relevant nodes in the Agiite a difficult problem. However, blank lines
provide the programmer with a useful device to indicatedabunits in a program’s text, and it is important
that the unparser is able to reproduce them. The mechanisdoifog this has already been described: we
simply treat a blank line as a comment! Thus the caf stually hagwo comments associated with it—the
blank line and the “third” commeht Thus, the only edge case we have to deal with are commeitis antl
of a block, for example:

i f($cond)

{

echo "yes";

}

el se

{
/1 do nothing

}

Here, there is no node with which to associate the last corhmBm solve this problem we introduce a
NOP (do-nothing) statement at the end of every block (if therelaft-over comments), and the comment

1This approach was suggested to us by Tim Van Holder obits®n- hel p mailing list.

11

is associated with thRIOP. This does not technically violate our design principlet tive abstract grammar
contains only concepts familiar to the PHP programmer, iee&HP has BOP statement (represented by
a single semi-colon), and the concept di@P statement is useful in other situations.

3 Traversal API

Although representing the PHP script using our abstrachgrar is an important step towards providing a
usable framework for processing PHP, it remains a long way foeing easy to use. Without additional tool
support, traversing the AST would involve a large amountaildbplate code, and this would make even the
simplest transformations long and cumbersome.

To solve this problenphc provides two APIs: a tree visitor APl and a tree transfororathPI. Both
take the form of a C++ class which is to be inherited from fortipalar transformations. There are two
important differences between the visitor and transfoionadPls.

1. The visitor API supports “generic” methods: methods tiettapplied to every node in the tree or to
a subset of nodes, such as all statements. As an extreme lexainp provides an XML unparser
(which outputs the AST in XML format). The XML unparser is defd in terms of the tree visitor
API, but only defines a few methods. In essence, for every nbtge AST x in the AST, it outputs
<AST _x> before the children of the node ard AST x> after the children have been unparsed.

2. The tree visitor API is limited in the way in which it can nifydthe AST: it can modify individual
nodes in the tree but it cannot modify the structure of the ineany way. However, using the tree
transformation APl it is possible to change the tree stmactfor example, remove nodes from the tree
or replace a single statement by a list of statements). Emsfiormation API is designed in such a
way that, barring the use of C++ type casts, it is impossiblevite transformations that invalidate
the integrity of the tree with respect to the abstract gramifar example, an expression can only be
replaced by another expression but not by a statement. Howtbe tree transformation API does not
provide generic methods, so for example it is not possibléefine a transform that replaces every
node in script (that is to say, it is possible, but you woulgehto explicitly replace every type of
nodey.

Due to the way we implement in-string syntax (Section 2133, AST may have many extraneous concate-
nation operations. For example, starting with

echo "$a";
we will get an AST which represents

echo "" . %$a .

As an example of what can be done, Figure 5 shows a transfantldans up these structures so that the
above code would be replaced by

echo $a;

after the transformation has been completed. The transfearrides only one method from the parent class
(AST_transf orm: post _bi n_op, a method that is applied to all nodes of typ8T_bi n_op (binary
operators) after each node’s children have been processdlde body of the transform we also use some
other infrastructure provided byhc: pattern matching on (parts of) the AST. First we check if I

2|n a select few cases it is possible to write generic transsorFor example, it is possible to write a transform thatsfamns
every statement without having to write explicit transferfor i f -statementspwhi | e-statements, etc. This is however due to a
technical implementation detail of the APl and only worksddew types.

12

AST_expr* Renpve_concat _nul | :: post _bi n_op(AST_bi n_op* in)

{
Token_stringx enpty = new Token_string(new String(""), new String(""));
W | dcar d<AST_expr>+ wi |l dcard = new W dcar d<AST_expr >;
/1 Replace with right operand if left operand is the enpty string
i f(in->match(new AST_bi n_op(enpty, w ldcard, ".")))
return wil dcard->val ue;
/'l Replace with left operand if right operand is the enpty string
i f(in->match(new AST_bi n_op(wi |l dcard, enpty, ".")))
return w | dcard->val ue;
return in;
}

Figure 5: Removing extraneous concatenations

operand of the concatenation operator is the empty strind,ifait is we replace the binary operator by
its right operand. If not, we check if the right operand is ¢#mepty string and if so we replace the binary
operator by its left operand. If neither pattern matcheseagé the binary operator unchanged.

One interesting but slightly subtle point of this transfoisrthe use ofpost _bi n_op as opposed to
pr e _bi n_op which gets applied to all binary operatdssforetheir children have been processed. What
would happen if we usepr e_bi n_op instead ofpost _bi n_op? Suppose we start with the same example
as depicted in figure 6. The root of the tree is the right-nAST_bi n_op node. Usingpr e_bi n_op
the transform gets invoked on that node before its child@retbeen processed. This node matches the
second pattern (right operand is the empty string), so wiaceghe node by its left operand (the second
AST_bi n_op). Finally, we transformeach of the childrerof the node. But the node has already been
replaced by the second (left) binop, so we are now transfagrthiechildren of the second binary operator
rather than the binary operator itself. Hence the secondatenation operation will not be removed.

When we initially encountered this problem, we changed tR o that the pre-transformation was
invoked again if the first pre-transformation returned a new node (whemw'hwas defined in terms of
pointer equality). In the particular example of tRenove_concat _nul | transform this is (arguably) a
better solution because it means we can implement the tnansfsing a pre-transform or a post-transform

AST_bin_op

AST_variable

Token_variable_namg

Token_string

Figure 6: Tree fol' $a"

13

with the same result—which is perhaps what one would expatter all, the problem described in the
previous paragraph is rather subtle. However, we foundthigicreated more problems than it solved (for
example, it can easily result in non-terminating trans®ynso the newer versions phc no longer have
this behaviour (although programmers can easily simutdig imanually invoking the pre-transform again
on a transformed node).

As a second example of a transform, consider the code listiogvn in Figure 7. This transformation
replaces a statement of the form

i ncl ude("a. php");

by the entire contents of the file php. We can do this since the top-level construct of a script iatesent
list, and it is always safe to replace a statement by an arpitrumber of statements. The basic structure of
the transform is the same as in the previous example. We sepattern to match calls toncl ude. When
the pattern match succeeds, we extract the value of theavddtry to read and parse the file with that name,
and then replace the include by the contents of the file. Nmeslightly different signaturepr e _bi n_op
returns a node of typAST_expr —that s, it is safe to transform a binary operator into afeoexpression.
Insteadpr e_eval _expr gets passed a list of statements and returns void: once, @gaisafe to transform

a statement into any number of statements. The list is tiatined byphc to the empty list, and leaving it
empty in the transform causes the statement to be deletedddfault implementation will simply addn

to the list, leaving the statement untouched. InEr@and_ ncl udes transform, we add all statements in
the parsed file to the list, but leave dut, thus replacing n by the contents of the file to be included.

4 Future Work and Conclusions

In this technical report, we have described the design apteimentation of a front-end fgrhc, the open
source PHP compiler.

The grammar formalism we have adopted for specifying theattssyntax of PHP allows us to perform
a mechanical translation from the specification to a C++sctgicture to implement and support the tree
visitor/transformation framework described above. #iligi this was coded by hand, but when the structure
of the AST began to stabilize and an increasing amount ofstfucture had been built upon it, the task
of accommodating even minor refactorings of the abstraatngnar grew unwieldy. To tackle the issue we
developed a tool calledaket ea, written in Haskell, that can take our abstract grammarifipaton and
automatically turn it into the appropriate class hieraraehy visitor/transformation APIs. Currently we are
in the process of improving the robustness of this tool ane Ispun it off as a separate project [6].

Although our unparser is currently usable for many appbees, it is not powerful enough for use in
refactoring tools. We still need to find a solution wherebyaae reproduce the user’s original code using
their original layout if no refactorings have been appliedusing a layout which resembles the user’s as
much as possible when the program structure has been chffogexample, when statements have been
inserted or removed). This is a difficult problem, and onechildannot be fully solved; we will have to rely
on heuristics.

Rather than immediately design an intermediate repretsemtdR) appropriate for low level optimiza-
tions withinphc, we have opted instead to translate directly into C codes Thide makes calls into the
Zend run-time so that we are fully compatible with all exigtiPHP libraries, which is where the true power
of the PHP scripting language lies. We intend to develop eettaddress code IR which abstracts over the
C code we currently generate, giving us a suitable repraentupon which to apply traditional compiler
optimizations. This will be an important first step in obtaman efficient implementation of PHP, which
by its nature is highly dynamic. For example, a simple asaigmnt statemerfa = $b; generates a rather
large body of code—mostly to support the reference countieghory model used in the Zend run-time. It
should be possible to remove a lot of of this overhead by dpglstandard compiler optimizations to the IR.

14

cl ass Expand_i ncl udes : public AST_transform

{ .
private:
W | dcard<Token_string>+ fil enaneg;
AST_net hod_i nvocati on* pattern;
public:
Expand_i ncl udes()
{
filename = new W dcard<Token_string>
pattern =
new AST_net hod_i nvocat i on(
NULL,
new Token_met hod_name(new String("include")),
new Li st <AST_act ual _par anet er*>(
new AST_actual _paraneter(fal se, filenane)
)
)
}
public:
voi d pre_eval _expr(AST_eval _expr* in, List<AST_statement*>x out)
{
/| Check for calls to include
i f(in->expr->match(pattern))
{
/1 Matched! Try to parse the file
AST_php_script* php_script = parse(fil enanme->val ue->val ue, NULL,
i f(php_script == NULL)
{
cerr
<< "Coul d not parse file " << *fil enane->val ue->val ue
<< " on line " << in->get_|ine_nunber() << endl
exit(-1);
}
/'l Replace the include by the statenents in the parsed file
out - >push_back_al | (php_scri pt->statenents);
}
el se
{
/1 No match; |eave untouched
out - >push_back(in);
}
}
}s

Figure 7: Expanding include directives

15

fal se);

After that we will need to think about more specific optimiaas. One important goal will be to minimize
the number of calls to the Zend run-time. For example, amgartenust normally be wrapped in a so-called
“zval”, the data structure used by the Zend run-time to star@bles. Incrementing the integer entails a call
into the Zend API which will check whether the zval is actuah integer, check if it happens to be part
of a “copy-on-write” set, etc. Of course, incrementing areger should be as simple as a single machine
instruction to update the value of a register. By analysigIR, it should be possible to remove a lot of the
overhead associated with the Zend run-time. This is not ay &&k. Incrementing an integer value could
cause it to overflow, and PHP semantics dictate that theentign becomes a float. So there is plenty of
scope for reducing the overhead that arises due to PHP'srdgnaoperties, but it is these properties that
will present as challenges during optimization.

The front-end ofphc provides an excellent basis for developing tools which ssdPHP source code
and has already been adopted for this purpose. To date wevare af two projectsPl umhead [11] com-
piles PHP to bytecode for the Parrot virtual machine [13§ BHT [3] extends PHP with special constructs
which can be used to guarantee that the output of a PHP seryalid HTML or XML. We envision that
other software such as refactoring tools, style checkspec weavers, script obfuscators, script optimizers
and pretty printers would be much easier to develop basgxhorthan starting from scratch. Alreaghhc
has been used with coursework in an advanced compiler desigse in the Department of Computer Sci-
ence, Trinity College Dublin. The project has also formesltihsis for a postgraduate students PhD research
on compilation for dynamic languages.

Acknowledgements

We thank David Abrahamson for his careful proofreading & teport, and the early adopterspdic who
submitted bug reports, patches, ideas and encouragemertt plarticular order they are David Abrahamson,
Sven Klemm, Andras Biczo, Daniel Barreiro, Andreas Korthationor McDermottroe, Daniel Fabian, Dan
Libby, Bernhard Schmalhofer, Matthias Kleine and Paul Bigd he work of John Gilbert was supported by
a Trinity College Dublin Postgraduate Award.

A Abstract Grammar for PHP
A.1 Top-level structure

php_script ::= statement* ;

A.2 Statements

statement ::=
class_def | interface_def | nethod
| if | while | do | for | foreach
| switch | break | continue | return
| static_declaration | global
| unset | declare | try | throw | eval _expr | nop

class_def ::=
cl ass_npd CLASS NAME ext ends: CLASS_NAME? i npl ement s: | NTERFACE_NAMVE+ nenber *
class_nod ::= "abstract"? "final"? ;
interface _def ::= | NTERFACE NAME ext ends: | NTERFACE NAVEx nenber* ;
nmenber ::= nethod | attribute ;

16

nmet hod ::= signature statenentx*? ;

signature ::= method_nod is_ref:"&" ? METHOD_NAME fornal _paraneterx ;
method_nod ::= "public"? "protected"? "private"? "static"? "abstract"? "final"? ;
formal _paraneter ::= type is_ref:"&" ? VAR ABLE_NAME expr? ;

type ::= "array"? CLASS_NAME? ;

attribute ::= attr_nod VAR ABLE_NAME expr? ;

attr_nod ::= "public"? "protected"'? "private"? "static"? "const"? ;
if ::= expr iftrue:statement* iffal se:statement=

while ::= expr statenentx ;

do ::= statenent* expr

for ::=init:expr? cond:expr? incr:expr? statenentx ;

foreach ::= expr key:variable? is_ref:"&"? val:variable statement* ;
switch ::= expr switch_caser ;

switch_case ::= expr? statenentx

break ::= expr?

continue ::= expr? ;

return ::= expr?

static_declaration ::= VAR ABLE NAME expr?

gl obal ::= variabl e_nane

unset ::= variable ;

declare ::= directive+ statenmentx ;

directive ::= D RECTI VE_NAME expr ;

try ::= statenent* catches: catchx

catch ::= CLASS_NAME VARI ABLE_NAME st at emrent *

throw ::= expr ;

eval _expr ::= expr ;

nop ::=;

A.3 EXxpressions

expr ::=

assignnent | list_assignnent | cast | unary_op | bin_op | conditional _expr
ignore_errors | constant | instanceof

variable | pre_op | post_op | array

met hod_i nvocation | new | clone

literal ;

literal ::= INT<long> | REAL<double> | STRINGString+*> | BOOL<bool > | NULL<>

1

assignnent ::= variable is_ref:"&"? expr ;
list_assignment ::= list_elenment?x expr ;
list_element ::= variable | nested_list_elenents
nested_|list_elenents ::= list_el enent?«

cast ::= CAST expr ;
unary_op ::= OP expr ;
bin_op ::=left:expr OP right:expr

)

condi tional _expr ::= cond:expr iftrue:expr iffalse:expr

17

ignore_errors ::= expr ;

constant ::= CLASS NAME? CONSTANT_NAME ;

i nstanceof ::= expr class_nane

variable ::= target? variabl e_name array_i ndi ces: expr ?*
vari abl e_nane ::= VAR ABLE NAME | reflection ;
reflection ::= expr

target ::= expr | CLASS NAME ;

pre_op ::= OP variable ;

post_op ::= variable OP

array ::= array_elenm ;

array_elem::= key:expr? is_ref:"&" ? val:expr ;

nmet hod_i nvocation ::= target? nethod_nane actual _paraneter=*
nmet hod_nane ::= METHOD_NAME | reflection ;

actual _paraneter ::=is_ref:"&? expr

new ::= cl ass_nane actual _paraneter=*

class_nanme ::= CLASS NAME | reflection ;

clone ::= expr ;

A.4 Additional Structure

node ::=
php_script | class_nod | signature
nmet hod_nod | formal _paraneter | type | attr_nod

I

| directive | list_elenent | variable_name | target

| array_elem| nethod_nane | actual _paraneter | class_nane
| commented_node | expr | identifier

comment ed_node :: =
menber | statenent | interface_def | class_def | switch_case | catch

1

identifier ::=
| NTERFACE_NAME | CLASS NAME | METHOD_NAME | VARI ABLE_NAME
| DI RECTIVE_NAME | CAST | OP | CONSTANT_NAME
| LABEL_NAME

1

18

References

[1] PHP: Hypertext preprocessor. http://www.php.net.
[2] PHP manual. http://www.php.net/manual/en/.
[3] BARREIRO, D. PHT — PHp with embedded HTml. http://www.satyam.corplatr.

[4] BOUWERS E.,AND BRAVENBOER, M. PHP-Front.
http://www.program-transformation.org/PHP/PhpFront.

[5] CANDILLON, W. PHP aspect. http://phpaspect.org/.
[6] DE VRIES, E.,AND GILBERT, J. maketea. http://www.maketea.org.
[7] DE VRIES, E.,AND GILBERT, J. phc —the open source PHP compiler. http://www.phpclempig/.

[8] DEURSEN A. V., HEERING, J.,AND KLINT, P., Eds.Language Prototyping: An Algebraic
Specification Approach: Vol..\World Scientific Publishing Co., Inc., River Edge, NJ, USA96.

[9] FREE SOFTWARE FOUNDATION. Bison. http://www.gnu.org/software/bison/manuall.

[10] GOLEMON, S. Extending and Embedding PHBams, 2006.

[11] SCHMALHOFER, B. Plumhead. http://rakudo.org/parrot/index.cqi? pheand.

[12] SiPSER M. Introduction to the Theory of Computatiomternational Thomson Publishing, 1996.

[13] THE PERL FOUNDATION. The parrot virtual machine. http://www.parrotcode.org/

19

