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Abstract

This technical report describes the design and implementation of a front-end forphc, the open source
PHP compiler. This front-end provides an excellent basis for developing tools which process PHP source
code, and consists of a well-defined Abstract Syntax Tree (AST) specification for the PHP language, a
lexical analyser and parser which construct the AST for a given script, and a visitor and transformation
API for manipulating these ASTs.

1 Introduction

PHP [1] is a dynamically typed general purpose scripting language which can be embedded in HTML pages.
It was designed in 1995 for implementing dynamic web pages, its name initially standing forPersonal Home
Pages. PHP now stands for the recursive acronymPHP: Hypertext Preprocessor. While predominantly used
for server-side scripting PHP can be used for writing command line scripts and client-side GUI applications.
It may also be embedded into host applications to provide them with scripting functionality.

The main implementation of PHP is free open source software.This provides thede factodefinition of
the syntax and semantics for the language since there is no formal specification. While the end user interface
and extensions API for the PHP interpreter are well documented [2, 10], scant documentation exists for the
internals of the parser and the Zend engine (which interprets scripts). The lexical analyser is defined using
a Flex description of 2000 lines, and the parser a Bison specification of 900 lines. It is difficult to extract
any formal specification from either source file because of: unnecessary redundancy and poor structuring of
the grammars; convoluted rules which attempt to enforce static checks; embedded semantic actions trying to
ensure associativity is appropriately maintained at certain points during parsing; and the requirement for tight
coupling between the lexical analyser and parser due to in-string syntax which is not amenable to processing
using the traditional lexical analysis and parser interface.

With its widespread deployment PHP requires tools for refactoring, optimizing, obfuscating, checking
style and semantics, aspect weaving, and for translation toother languages such as ASP. Many users who
have attempted to write software for processing and transforming scripts have resorted to using elaborate reg-
ular expressions for pattern matching and other ad hoc approaches due to the difficulty of adapting the PHP
front-end to their requirements. Those that have braved theinternals of the PHP implementation have gener-
ally used the parse trees which represent the concrete syntax productions used in the Bison file to construct a
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tree representation of the input [5]. We argue later in this technical report that the parse tree representation of
a script which corresponds to that of the PHP language is an entirely inappropriate structure for developers
to work with. Without a usable representation of a PHP script’s source code the implementation of any of
the tools we mentioned above is a serious undertaking.

The open source PHP compilerphc [7] is an ongoing project which aims to compile PHP scripts to
x86 Intel assembly language. This technical report describes the design and implementation of the front-end
of phc which consists of a well defined Abstract Syntax Tree (AST) specification for the PHP language, a
lexical analyser and parser which construct the AST for a given script and a visitor/transformation API for
manipulating these ASTs. It provides an excellent basis fordeveloping compilers as well as any other tools
which process PHP source code.

The remainder of this technical report is structured as follows: first we introduce our Abstract Grammar,
which defines the structure of PHP scripts as seen byphc. Next an overview is given of the visitor and
transformation API we provide for manipulating Abstract Syntax Trees whose structure is defined by the
Abstract Grammar. We then outline a number of projects whichcould benefit from our existing front-end,
and which would be rather difficult to develop entirely from scratch. Finally we finish with a description of
plans for future work and our conclusions.

2 Abstract Grammar

In this section we discuss the abstract grammar used byphc to represent PHP scripts. We explain the
decisions faced while designing the grammar, highlight some the difficulties with parsing and conclude with
a few comments on unparsing abstract syntax back trees to PHPsyntax.

2.1 Motivation

Consider the following simple PHP program.

<?php
printf("Hi");

?>

This program gets represented byphc as the AST shown in Figure 1. The interpretation of this structure
should be self-explanatory and can be read directly from thefigure: we have a PHP script containing a single
statement which evaluates an expression; the expression isa method invocation; the name of the method is
printf; and we pass in one parameter, the string “Hi”.

While this may seem like an obvious representation, no such representation exists in the PHP imple-
mentation, nor does this representation correspond to any official definition of PHP. As mentioned in the
introduction, no official grammar for PHP exists. The only “grammar” that is available is the PHP parser,
written in Bison [9]. While the Bison grammar defines a representation of sorts, we claim that this repre-
sentation is not particularly useful as a language definition or as an internal representation. For comparison,
Figure 2 shows the parse tree that would result from the same program if constructed using the Bison gram-
mar from PHP. Not only is the tree much larger, but it also contains many nodes that do not correspond to
any conceptual notions (for example, what exactly is anuntickedstatementor anr variable?).

Moreover, the structure of the parse tree is rather convoluted. Consider the subtree forexpr. The root
node of this subtree (expr) corresponds to theASTeval expr node in the AST, but the node immediately
below theexpr is an r variable. Only further down the parse tree does it become apparent that the ex-
pression is not a variable at all, but a function call. In the AST the root node of the expression is of type
ASTmethodinvocation, which seems a more logical choice. The parse tree also does not always show the
correct associativity of operators—we consider such an example in Section 2.3.
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AST_php_script

List<AST_statement>

AST_eval_expr

AST_method_invocation

Token_method_name List<AST_actual_parameter>

printf AST_actual_parameter

Token_string

Hi

Figure 1: Abstract syntax tree for<?php printf("Hi"); ?>

Some may feel that the parse tree suffices as a representation[5]. However, since the choice of language
representation has a profound impact on a large part of the compiler, we feel that the parse tree is too
complicated and illogical a structure to work with. For thatreason, we spent a lot of time devising an
intuitive and clear definition of PHP in the form of an AST.

2.2 Design

Theabstract grammarwhich defines the structure of our ASTs is shown in full in Appendix A. In contrast
to the definition of the Bison grammar, which is driven by implementation concerns, the design goals for the
abstract syntax were conciseness and clarity. We tried to keep the number of concepts to a minimum, and felt
it was imperative to make every concept correspond to a conceptual notion familiar to a PHP programmer.

The design of the abstract grammar was also constrained by the underlying formalism. Briefly, every
rule must be either a sequence of terminal and non-terminal symbols (such as the rule formethod), or a
disjunction of terminal and non-terminal symbols (such as the rule formember). Combinations of sequencing
and disjunction of symbols are not allowed. This guaranteesa straightforward mapping from the abstract
grammar to a C++ data structure [6].

The top-level structure of the grammar (php script) is defined to be a list of statements. In other words,
a PHP script is considered to be a list of statements. While this corresponds to the top-level structure of the
PHP Bison definition, it was not our first choice. In our initial design, the top-level structure of the PHP script
was considered to be a list of class definitions. Function definitions that were not originally part of any class
were treated as static functions in a special class calledMAIN, and code that was not part of any function
definition was collected in a static function namedrun in MAIN. Since the language specification had to
include the notion of a class definition (including static definitions), this reduced the number of concepts in
the abstract grammar. However, while this potentially simplifies the design of the code generator, not all
scripts can be transformed into this format. For example, consider
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top_statement_list

epsilon

common_scalar

STRING

scalar

expr_without_variable

non_empty_function_call_parameter_list

function_call_parameter_list

function_call

IDENT ’(’ ’)’

base_variable_with_function_calls

variable

r_variable

expr

unticked_statement

’;’

statement

top_statement

top_statement_list

unticked_statement

’;’

statement

top_statement

top_statement_list

start

Figure 2: Parse tree for<?php printf("Hi"); ?>
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<?php
include "common.php";

class D extends C // class C defined in common.php
{

// ...
}

?>

If this script is changed so that theinclude statement becomes part of a functionrun in MAIN, classC will
no longer be defined (included) before classD is defined, and the program becomes invalid (the interpreter
will report an error“Cannot inherit from undefined class C”).

In a similar vein, our initial design did not include an explicit notion corresponding to theglobal state-
ment of PHP. The scoping rules of PHP are very simple. There are only two scopes: the global scope; and
the local scope within a function (compare to the programming language C, where every block of statements
enclosed in curly brackets introduces a new scope). By default, a variable used in a function is considered to
live in the local scope. For example,

<?php
function f()
{

$x = 2;
}

$x = 1;
f();
echo $x;

?>

will print 1 (not 2) , because the$x used insidef is local tof. Theglobal keyword can be used to
“import” a variable from the global scope into the local scope:

<?php
function f()
{

global $x;
$x = 2;

}

$x = 1;
f();
echo $x;

?>

will print 2. PHP provides an alternative way to access global variables from a local scope: the$GLOBALS
array. Every global variable is considered to be an element of $GLOBALS, and$GLOBALS itself is a so-
called “superglobal”: it is available in every scope. Therefore, we can rewrite the previous example as

<?php
function f()
{

$GLOBALS["x"] = 2;
}

$x = 1;
f();
echo $x;

?>

To reduce the number of concepts in the grammar, we thought wecould represent
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global $x;

as

$x =& $GLOBALS["x"];

which makes the local$x a reference to the global$x. While this corresponds very closely to the “official”
semantics ofglobal (insofar as there is one), we learnt that this translation isin fact incorrect: while
$GLOBALS is a superglobal and therefore available in every scope, it is possible to remove$GLOBALS
from a scope if desired. For example,

function f()
{

unset($GLOBALS);
$GLOBALS["x"] = 2;

}

first removes$GLOBALS from the local scope,making any subsequent uses of$GLOBALS refer to an
ordinary local array which happens to be called$GLOBALS; thus, callingf has no effect on the global
variable$x. However, the following functiong does:

function g()
{

unset($GLOBALS);
global $x;
$x = 2;

}

Even though the code generator still implementsglobal by making$x a reference to the global$x, this
example clearly shows that the translation using$GLOBALS is invalid: $GLOBALS may not be in scope.
The upshot of this and the previous example is that it dangerous to try to reduce the number of concepts in
the grammar by representing some PHP constructs in terms of others.

Nevertheless, the number of concepts in our abstract grammar is significantly smaller than the number
of concepts in the PHP Bison definition. There are various reasons for this. For example, the grammar
formalism used by Bison does not allow the direct definition of lists of anything (such as a list of statements),
which can only be encoded using recursion (this is clearly shown in Figure 2: start does not have two
children, corresponding to two statements, but contains atop statementlist which, in a left-recursive fashion,
encodes a list of statements).

A more important reason is that the Bison grammar is implementation driven as mentioned above. For
example, the Bison grammar distinguishes between anr variable and aw variable. The only difference
between the two (both correspond to variables or function calls) is their use: as an lvalue (to the left of an
assignment operator) or as an rvalue (to the right of an assignment) respectively. While this distinction is
useful for some applications, it complicates others. For example, a refactoring tool that renames variables
does not necessarily want to make a distinction between variables on the left or right of an assignment
operator, and thus would benefit if the grammar uses the same concept to represent both.

Finally, the Bison grammar imposes some semantic limitations. For example, function arguments can
have default values, but these values must be static. So,

function f($x = 1) { ... }

is a valid definition, but

function f($x = $a) { ... }

is not, because$a is not a static value. This restriction is enforced in the grammar definition—there are
separate grammar rules for expressions and static expressions. The definition for static expressions is not
completely trivial because a static expression could be an array:
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AST_variable

AST_variable Token_variable_name

AST_variable Token_variable_name

Token_variable_name

a

b

c

Figure 3: Abstract syntax tree for the expression$a->b->c

function f($x = array(1,2)) { ... }

which means that separate concepts are needed for “static arrays” (arrays containing only static elements,
which could in turn be static arrays) and regular arrays. In the design of our AST we do not enforce these
semantic checks: we have only one definition of expressions,including only one definition of arrays since
most semantic checks cannot be enforced by a context free grammar anyway (the grammar formalism simply
is not powerful enough). It seems arbitrary to encode some semantics checks but not others (inphc semantic
checking is a separate phase). Moreover, sincephc is a compiler rather than an interpreter, we can apply
optimization techniques such as constant folding and partial evaluation to identify complex expressions with
constant values: thus, we can potentially accept more programs.

2.3 Parsing

Once the AST had been defined we had two options: write a new parser to build the AST from scratch; or
reuse the existing PHP parser. The first option is a non-trivial undertaking. The abstract grammar by its very
nature is not suitable for use as a parser definition. It is highly ambiguous and leaves out all syntactic sugar
(semicolons, arrows, etc). Moreover, it would be next to impossible to verify that our new parser accepted
the same language as the original PHP parser.

Thus, the only realistic option was to reuse the existing PHPparser stripped of all its semantic actions
and modified to output a representation of its input corresponding to our abstract grammar. This task was
relatively simple if tedious, but there were a few gotchas along the way. The first of these was that the recur-
sive structure of the Bison definition does not always correspond to the required associativity of operators.
For example, consider the expression

$a->b->c

The correct reading of this expression is

($a->b)->c

as can be readily verified by writing a small test script. In words, this expression accesses fieldc of $a->b,
as opposed to fieldb->c of variable$a. The arrow operator is left associative, as reflected in the AST
corresponding to this expression (Figure 3). But the Bison grammar definition (and, correspondingly, the
parse tree) for this expression’s structure is right recursive. Indeed, the parse tree for the same expression
(Figure 4) suggests that the arrow operator is right associative rather than left associative.
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compound_variable

VARIABLE

reference_variable

base_variable

base_variable_with_function_calls

variable_name

IDENT

object_dim_list

object_property method_or_not

epsilon

variable_property

O_SINGLEARROW

variable_properties

variable_name

IDENT

object_dim_list

object_property method_or_not

epsilon

variable_property

O_SINGLEARROW

variable_properties

variable

r_variable

expr

Figure 4: Parse tree for the expression$a->b->c
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Another problem was mentioned in section 2.1: the grammar rule for r variable must synthesize
either anASTvariable or anASTmethodinvocationdepending on the AST subtrees already built by the
children ofr variable. We solved this problem by associating an optional list of function arguments
with every variable. When a variable’s node has a non-NULL list of function arguments, it is transformed
from anAST variable into anAST method invocation. Naturally, this action is hidden in the parser
and by the time the AST has been built, variables are represented byAST variable nodes and method
invocations byAST method invocation nodes.

However, the most difficult problem encountered when processing PHP is lexical analysis. Here compli-
cations arise due to PHP’s “in-string” syntax, where the contents of a string are interpreted. Consider

<?php
$a = 5;
echo "a is $a\n";

?>

Even though the reference to$a appears within the string it will be interpreted, hence thisscript will print “a
is 5”. PHP distinguishes between two kinds of in-string syntax:simple; and complex. Simple in-string
syntax consists of a small number of constructs that can be used directly inside strings. The script shown
above is an example of such simple in-string syntax. Other examples include$a[1] (array indexing) and
$a->b (object field access). Complex in-string syntax is denoted by {$. . .}, and essentially provides a way
of escaping temporarily to regular PHP syntax. As suggestedby their names, supporting simple syntax is
relatively straightforward (it suffices to add regular expressions for each of the provided constructs to the
lexical analyser), while complex syntax is more difficult.

The general approach we take is to treat in-string syntax as an implicit concatenation operation—the
echo statement in the previous example is implicitly treated as

echo "a is " . $a . "\n";

Thus, neither our abstract grammar nor the parser has a notion of in-string syntax. In this example, when a
user writes

echo "a is $a\n";

the string of tokens returned to the parser by the lexical analyser is

IDENT(echo), STRING("a is "), OP(.), VAR(a), OP(.), STRING("\n"), OP(;)

This is not completely trivial to implement. When the lexical analyser recognizes a simple in-string pattern,
it pushes a number of tokens onto a local stack; in this case, the initial segment of the string “a is ”,
a concatenation operator, the variablea, and another concatenation operator. It then moves into a state
RET MULTI. Subsequent calls to the lexical analyser while it is in thisstate will return the next token from
the local stack without matching any input. Once the stack isexhausted, the lexical analyser returns to its
previous state (in this example, the state recognizing strings).

This technique can be used for all simple patterns, but unfortunately does not scale to complex in-string
syntax. For example, consider

echo "{double index: {$a{$b{1}}}}\n";

While this example is perhaps slightly contrived, it clearly demonstrates the problem—the outer braces are
part of the string itself; the braces around the variable delimit the complex in-string pattern, and the remaining
braces delimit an array index. Ideally the lexical analysershould recognize that the string continues after the
final closing brace, but to know which brace is the last one we need to be able to match braces: the canonical
example of a non-regular problem [12].

There are two possible solutions to this problem: we could embed a small syntax analyser within the
lexical analyser; or we could couple the existing syntax analyser and the lexical analyser more closely.

9



Both of these solutions are slightly inelegant—they break the clean separation between lexical and syntax
analysis. A more “principled” solution would be to use a scannerless parser and do away with the separation
completely. This is the approach taken in PHP-front [4], which uses the advanced SGLR parser from the
ASF+SDF framework [8]. The downside with that solution is, of course, that the original PHP Bison file
cannot be used, making it hard to be sure the parser accepts the same language as the “official” parser.
Moreover, verifying the impact of minor changes in the “official” grammar which occur when new versions
of PHP are released means that maintaining a parser developed from scratch would be an ongoing, time
consuming, burden. In fact the PHP-front developers reportvarious difficulties trying to be completely
compatible with the official parser [Eric Bouwers, personalcommunication].

PHP itself chooses the first option, and embeds a small hand-written parser into the lexical analyser
which only accepts a small subset of PHP. Although this solution avoids coupling the syntax and lexical
analysers, it increases the complexity of the lexical analyser. We chose the second option instead. When the
lexical analyser recognizes the start of a complex construct ({$), it returns the initial segment of the string
to the parser followed by a “special” concatenation operator (O MAGIC CONCAT). It then pushes the dollar
sign ($) back into the input and reverts from the “parsing a string” state to the “parsing PHP” state. As far
as the lexical analyser is concerned, we have finished parsing the string—it is up to the syntax analyser to
instruct the lexical analyser to return to the “parsing a string” state.

In the parser we have two grammar rules for concatenation: one dealing with the standard concatenation
operator; and one dealing withO MAGIC CONCAT. The rule for standard concatenation simply builds part
of the AST:

| expr ’.’ expr
{

$$ = NEW(AST_bin_op, ($1, $2, $3));
}

while the rule forO MAGIC CONCAT builds the same syntax tree (semantically both operators are equiva-
lent), its implementation is slightly different:

| expr O_MAGIC_CONCAT expr ’}’
{

$$ = NEW(AST_bin_op, ($1, ".", $3));
context->return_to_complex_syntax();

}

Compared to the previous rule, there are two differences. The rule includes an additional closing brace,
which—though it may look out of place—is the closing brace that terminates a complex in-string construct.
By adding the closing brace here, the parser matches the braces for us, hence we know when to instruct the
lexical analyser to return to parsing a string—establishedby the call toreturn to complex syntax().

This solution keeps both the lexical analyser and the syntaxanalyser simple, and even though it couples
both analysers, the interaction is limited to a single call from the syntax analyser to the lexical analyser.

2.4 Unparsing

Unparsing is the problem of converting the AST back into PHP syntax. Writing an unparser that outputs
valid PHP syntax of some form (even pretty-printed) is straightforward, but writing an unparser suitable for
use in a refactoring tool is very difficult. Ideally, such an unparser should reproduce a program in its original
form with the layout and comments (including whitespace) positioned in exactly the same way as in the
programmer’s original code. We make an effort at positioning comments, but have not yet been able to come
up with a satisfactory solution to dealing with layout.

Thephc unparser essentially re-does the layout from scratch, mostly ignoring the user’s original layout.
It makes an attempt at producing readable output, and will position the user’s comments (approximately) in
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the right place. The parser records a few attributes with each node. For example, any part of an expression
can be marked asstarts line. This attribute is taken into account by the unparser: if a programmer
writes

$x =
"SELECT " . $a .
"FROM " . $b .
"GROUPBY " . $c;

it will be unparsed as

$x =
"SELECT " . $a .
"FROM " . $b .
"GROUPBY " . $c;

While layout is not preserved identically (the whitespace varies), at least the general structure is preserved.
Attributes are also used to unparse some PHP constructs not explicitly represented in the AST in their original
form. For example, the abstract grammar does not have a construct forelseif (which gets represented as
a nestedif), but the unparser will output a nestedif as anelseif, if it is has the attributeis elseif
set.

The lexical analyser uses a local variableattach to previous to indicate whether a comment
should be associated with the next or the previous token. Initially attach to previous is set to false,
and it is reset to false again after every line break in the input. It is set to true when the lexical analyser
encounters a semicolon. This means that in

<?php
// First comment
f(); // Second comment

// Third comment
g();

?>

the first and second comment will be associated with the call to f , while the third comment will be associated
with g. In fact, for this example, the unparser will be able to reproduce the exact layout, including the blank
line in between the call tof and the comment beforeg. How? Keeping track of whitespace in general and
associating whitespace with the relevant nodes in the AST isquite a difficult problem. However, blank lines
provide the programmer with a useful device to indicate logical units in a program’s text, and it is important
that the unparser is able to reproduce them. The mechanism for doing this has already been described: we
simply treat a blank line as a comment! Thus the call tog actually hastwocomments associated with it—the
blank line and the “third” comment1. Thus, the only edge case we have to deal with are comments at the end
of a block, for example:

if($cond)
{

echo "yes";
}
else
{

// do nothing
}

Here, there is no node with which to associate the last comment. To solve this problem we introduce a
NOP (do-nothing) statement at the end of every block (if there are left-over comments), and the comment

1This approach was suggested to us by Tim Van Holder on thebison-help mailing list.
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is associated with theNOP. This does not technically violate our design principle that the abstract grammar
contains only concepts familiar to the PHP programmer, because PHP has aNOP statement (represented by
a single semi-colon), and the concept of aNOP statement is useful in other situations.

3 Traversal API

Although representing the PHP script using our abstract grammar is an important step towards providing a
usable framework for processing PHP, it remains a long way from being easy to use. Without additional tool
support, traversing the AST would involve a large amount of boilerplate code, and this would make even the
simplest transformations long and cumbersome.

To solve this problemphc provides two APIs: a tree visitor API and a tree transformation API. Both
take the form of a C++ class which is to be inherited from for particular transformations. There are two
important differences between the visitor and transformation APIs.

1. The visitor API supports “generic” methods: methods thatget applied to every node in the tree or to
a subset of nodes, such as all statements. As an extreme example, phc provides an XML unparser
(which outputs the AST in XML format). The XML unparser is defined in terms of the tree visitor
API, but only defines a few methods. In essence, for every nodeof typeAST x in the AST, it outputs
<AST x> before the children of the node and</AST x> after the children have been unparsed.

2. The tree visitor API is limited in the way in which it can modify the AST: it can modify individual
nodes in the tree but it cannot modify the structure of the tree in any way. However, using the tree
transformation API it is possible to change the tree structure (for example, remove nodes from the tree
or replace a single statement by a list of statements). The transformation API is designed in such a
way that, barring the use of C++ type casts, it is impossible to write transformations that invalidate
the integrity of the tree with respect to the abstract grammar. For example, an expression can only be
replaced by another expression but not by a statement. However, the tree transformation API does not
provide generic methods, so for example it is not possible todefine a transform that replaces every
node in script (that is to say, it is possible, but you would have to explicitly replace every type of
node)2.

Due to the way we implement in-string syntax (Section 2.3), the AST may have many extraneous concate-
nation operations. For example, starting with

echo "$a";

we will get an AST which represents

echo "" . $a . "";

As an example of what can be done, Figure 5 shows a transform that cleans up these structures so that the
above code would be replaced by

echo $a;

after the transformation has been completed. The transformoverrides only one method from the parent class
(AST transform): post bin op, a method that is applied to all nodes of typeAST bin op (binary
operators) after each node’s children have been processed.In the body of the transform we also use some
other infrastructure provided byphc: pattern matching on (parts of) the AST. First we check if theleft

2In a select few cases it is possible to write generic transforms. For example, it is possible to write a transform that transforms
every statement without having to write explicit transforms for if-statements,while-statements, etc. This is however due to a
technical implementation detail of the API and only works for a few types.
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AST_expr* Remove_concat_null::post_bin_op(AST_bin_op* in)
{

Token_string* empty = new Token_string(new String(""), new String(""));
Wildcard<AST_expr>* wildcard = new Wildcard<AST_expr>;

// Replace with right operand if left operand is the empty string
if(in->match(new AST_bin_op(empty, wildcard, ".")))

return wildcard->value;

// Replace with left operand if right operand is the empty string
if(in->match(new AST_bin_op(wildcard, empty, ".")))

return wildcard->value;

return in;
}

Figure 5: Removing extraneous concatenations

operand of the concatenation operator is the empty string, and if it is we replace the binary operator by
its right operand. If not, we check if the right operand is theempty string and if so we replace the binary
operator by its left operand. If neither pattern matches we leave the binary operator unchanged.

One interesting but slightly subtle point of this transformis the use ofpost bin op as opposed to
pre bin op which gets applied to all binary operatorsbeforetheir children have been processed. What
would happen if we usedpre bin op instead ofpost bin op? Suppose we start with the same example
as depicted in figure 6. The root of the tree is the right-mostAST bin op node. Usingpre bin op
the transform gets invoked on that node before its children have been processed. This node matches the
second pattern (right operand is the empty string), so we replace the node by its left operand (the second
AST bin op). Finally, we transformeach of the childrenof the node. But the node has already been
replaced by the second (left) binop, so we are now transforming thechildrenof the second binary operator
rather than the binary operator itself. Hence the second concatenation operation will not be removed.

When we initially encountered this problem, we changed the API so that the pre-transformation was
invoked again if the first pre-transformation returned a new node (where “new” was defined in terms of
pointer equality). In the particular example of theRemove concat null transform this is (arguably) a
better solution because it means we can implement the transform using a pre-transform or a post-transform

AST_bin_op

AST_bin_op Token_op Token_string

Token_string Token_op AST_variable

"" . Token_variable_name

a

. ""

Figure 6: Tree for"$a"
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with the same result—which is perhaps what one would expect.After all, the problem described in the
previous paragraph is rather subtle. However, we found thatthis created more problems than it solved (for
example, it can easily result in non-terminating transforms), so the newer versions ofphc no longer have
this behaviour (although programmers can easily simulate it by manually invoking the pre-transform again
on a transformed node).

As a second example of a transform, consider the code listingshown in Figure 7. This transformation
replaces a statement of the form

include("a.php");

by the entire contents of the filea.php. We can do this since the top-level construct of a script is a statement
list, and it is always safe to replace a statement by an arbitrary number of statements. The basic structure of
the transform is the same as in the previous example. We set upa pattern to match calls toinclude. When
the pattern match succeeds, we extract the value of the wildcard, try to read and parse the file with that name,
and then replace the include by the contents of the file. Note the slightly different signature:pre bin op
returns a node of typeAST expr—that is, it is safe to transform a binary operator into any other expression.
Instead,pre eval expr gets passed a list of statements and returns void: once again, it is safe to transform
a statement into any number of statements. The list is pre-initialized byphc to the empty list, and leaving it
empty in the transform causes the statement to be deleted. The default implementation will simply addin
to the list, leaving the statement untouched. In theExpand includes transform, we add all statements in
the parsed file to the list, but leave outin, thus replacingin by the contents of the file to be included.

4 Future Work and Conclusions

In this technical report, we have described the design and implementation of a front-end forphc, the open
source PHP compiler.

The grammar formalism we have adopted for specifying the abstract syntax of PHP allows us to perform
a mechanical translation from the specification to a C++ class structure to implement and support the tree
visitor/transformation framework described above. Initially this was coded by hand, but when the structure
of the AST began to stabilize and an increasing amount of infrastructure had been built upon it, the task
of accommodating even minor refactorings of the abstract grammar grew unwieldy. To tackle the issue we
developed a tool calledmaketea, written in Haskell, that can take our abstract grammar specification and
automatically turn it into the appropriate class hierarchyand visitor/transformation APIs. Currently we are
in the process of improving the robustness of this tool and have spun it off as a separate project [6].

Although our unparser is currently usable for many applications, it is not powerful enough for use in
refactoring tools. We still need to find a solution whereby wecan reproduce the user’s original code using
their original layout if no refactorings have been applied,or using a layout which resembles the user’s as
much as possible when the program structure has been changed(for example, when statements have been
inserted or removed). This is a difficult problem, and one which cannot be fully solved; we will have to rely
on heuristics.

Rather than immediately design an intermediate representation (IR) appropriate for low level optimiza-
tions withinphc, we have opted instead to translate directly into C code. This code makes calls into the
Zend run-time so that we are fully compatible with all existing PHP libraries, which is where the true power
of the PHP scripting language lies. We intend to develop a three-address code IR which abstracts over the
C code we currently generate, giving us a suitable representation upon which to apply traditional compiler
optimizations. This will be an important first step in obtaining an efficient implementation of PHP, which
by its nature is highly dynamic. For example, a simple assignment statement$a = $b; generates a rather
large body of code—mostly to support the reference countingmemory model used in the Zend run-time. It
should be possible to remove a lot of of this overhead by applying standard compiler optimizations to the IR.
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class Expand_includes : public AST_transform
{
private:

Wildcard<Token_string>* filename;
AST_method_invocation* pattern;

public:
Expand_includes()
{

filename = new Wildcard<Token_string>;
pattern =

new AST_method_invocation(
NULL,
new Token_method_name(new String("include")),
new List<AST_actual_parameter*>(

new AST_actual_parameter(false, filename)
)

);
}

public:
void pre_eval_expr(AST_eval_expr* in, List<AST_statement*>* out)
{

// Check for calls to include
if(in->expr->match(pattern))
{

// Matched! Try to parse the file
AST_php_script* php_script = parse(filename->value->value, NULL, false);
if(php_script == NULL)
{

cerr
<< "Could not parse file " << *filename->value->value
<< " on line " << in->get_line_number() << endl;
exit(-1);

}

// Replace the include by the statements in the parsed file
out->push_back_all(php_script->statements);

}
else
{

// No match; leave untouched
out->push_back(in);

}
}

};

Figure 7: Expanding include directives
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After that we will need to think about more specific optimizations. One important goal will be to minimize
the number of calls to the Zend run-time. For example, an integer must normally be wrapped in a so-called
“zval”, the data structure used by the Zend run-time to storevariables. Incrementing the integer entails a call
into the Zend API which will check whether the zval is actually an integer, check if it happens to be part
of a “copy-on-write” set, etc. Of course, incrementing an integer should be as simple as a single machine
instruction to update the value of a register. By analysing the IR, it should be possible to remove a lot of the
overhead associated with the Zend run-time. This is not an easy task. Incrementing an integer value could
cause it to overflow, and PHP semantics dictate that the integer then becomes a float. So there is plenty of
scope for reducing the overhead that arises due to PHP’s dynamic properties, but it is these properties that
will present as challenges during optimization.

The front-end ofphc provides an excellent basis for developing tools which process PHP source code
and has already been adopted for this purpose. To date we are aware of two projects:Plumhead [11] com-
piles PHP to bytecode for the Parrot virtual machine [13], and PHT [3] extends PHP with special constructs
which can be used to guarantee that the output of a PHP script is valid HTML or XML. We envision that
other software such as refactoring tools, style checkers, aspect weavers, script obfuscators, script optimizers
and pretty printers would be much easier to develop based onphc than starting from scratch. Alreadyphc
has been used with coursework in an advanced compiler designcourse in the Department of Computer Sci-
ence, Trinity College Dublin. The project has also formed the basis for a postgraduate students PhD research
on compilation for dynamic languages.
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A Abstract Grammar for PHP

A.1 Top-level structure

php_script ::= statement* ;

A.2 Statements

statement ::=
class_def | interface_def | method

| if | while | do | for | foreach
| switch | break | continue | return
| static_declaration | global
| unset | declare | try | throw | eval_expr | nop
;

class_def ::=
class_mod CLASS_NAME extends:CLASS_NAME? implements:INTERFACE_NAME* member* ;

class_mod ::= "abstract"? "final"? ;

interface_def ::= INTERFACE_NAME extends:INTERFACE_NAME* member* ;

member ::= method | attribute ;
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method ::= signature statement*? ;
signature ::= method_mod is_ref:"&"? METHOD_NAME formal_parameter* ;
method_mod ::= "public"? "protected"? "private"? "static"? "abstract"? "final"? ;
formal_parameter ::= type is_ref:"&"? VARIABLE_NAME expr? ;
type ::= "array"? CLASS_NAME? ;

attribute ::= attr_mod VARIABLE_NAME expr? ;
attr_mod ::= "public"? "protected"? "private"? "static"? "const"? ;

if ::= expr iftrue:statement* iffalse:statement* ;
while ::= expr statement* ;
do ::= statement* expr ;
for ::= init:expr? cond:expr? incr:expr? statement* ;
foreach ::= expr key:variable? is_ref:"&"? val:variable statement* ;

switch ::= expr switch_case* ;
switch_case ::= expr? statement* ;
break ::= expr? ;
continue ::= expr? ;
return ::= expr? ;

static_declaration ::= VARIABLE_NAME expr? ;
global ::= variable_name ;
unset ::= variable ;

declare ::= directive+ statement* ;
directive ::= DIRECTIVE_NAME expr ;

try ::= statement* catches:catch* ;
catch ::= CLASS_NAME VARIABLE_NAME statement* ;
throw ::= expr ;

eval_expr ::= expr ;

nop ::= ;

A.3 Expressions

expr ::=
assignment | list_assignment | cast | unary_op | bin_op | conditional_expr

| ignore_errors | constant | instanceof
| variable | pre_op | post_op | array
| method_invocation | new | clone
| literal ;

literal ::= INT<long> | REAL<double> | STRING<String*> | BOOL<bool> | NULL<> ;

assignment ::= variable is_ref:"&"? expr ;

list_assignment ::= list_element?* expr ;
list_element ::= variable | nested_list_elements ;
nested_list_elements ::= list_element?* ;

cast ::= CAST expr ;
unary_op ::= OP expr ;
bin_op ::= left:expr OP right:expr ;

conditional_expr ::= cond:expr iftrue:expr iffalse:expr ;
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ignore_errors ::= expr ;

constant ::= CLASS_NAME? CONSTANT_NAME ;

instanceof ::= expr class_name ;

variable ::= target? variable_name array_indices:expr?* ;
variable_name ::= VARIABLE_NAME | reflection ;
reflection ::= expr ;

target ::= expr | CLASS_NAME ;

pre_op ::= OP variable ;
post_op ::= variable OP ;

array ::= array_elem* ;
array_elem ::= key:expr? is_ref:"&"? val:expr ;

method_invocation ::= target? method_name actual_parameter* ;
method_name ::= METHOD_NAME | reflection ;

actual_parameter ::= is_ref:"&"? expr ;

new ::= class_name actual_parameter* ;
class_name ::= CLASS_NAME | reflection ;

clone ::= expr ;

A.4 Additional Structure

node ::=
php_script | class_mod | signature

| method_mod | formal_parameter | type | attr_mod
| directive | list_element | variable_name | target
| array_elem | method_name | actual_parameter | class_name
| commented_node | expr | identifier
;

commented_node ::=
member | statement | interface_def | class_def | switch_case | catch

;

identifier ::=
INTERFACE_NAME | CLASS_NAME | METHOD_NAME | VARIABLE_NAME

| DIRECTIVE_NAME | CAST | OP | CONSTANT_NAME
| LABEL_NAME
;
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