
Modelling Unique and Affine Typing using
Polymorphism

Edsko de Vries

Abstract. Uniqueness typing and affine (or linear) typing are dual type
systems. Uniqueness gives a guarantee that an term has not been shared,
while affinity imposes a restriction that a term may not be shared. We
show that we can unify both concepts through polymorphism.

1 Introduction

Side effects in modern pure functional languages such as Clean or Haskell are
modelled as functions that transform the world. For instance, a function that
reads a character from the keyboard might have type

getChar :: World→ (World, Char)

The return type of getChar makes it clear that c1 and c2 can have different
values in

λworld · let (c1,world ′) = getChar world
(c2,world ′′) = getChar world ′

in (c1, c2,world ′′)

They are read in different worlds, after all. Of course, this is a symbolic repre-
sentation of the world only, which means we somehow need to outlaw programs
such as

λworld · let (c1,world ′) = getChar world
(c2,world ′′) = getChar world

in (c1, c2,world ′′)

(1)

One way to do this is to define an opaque wrapper type

IO a =̂ World→ (World, a)

together with two operations

return :: a→ IO a
bind :: IO a→ (a→ IO b)→ IO b

That is, define IO to be a monad. Since the plumbing of the World happens
inside bind “reusing” the same world cannot happen. This is the approach taken
in Haskell.



2 Edsko de Vries

An alternative approach is to use a type system to outlaw programs such as
(1). For instance, we can use Clean’s uniqueness typing to give getChar the type

getChar :: World• → (World•, Char)

The annotation on World• means that getChar requires a unique—or non-
shared—reference to the world and in turn promises to return a unique reference.

An advantage of this approach over the use of monads is that it is more
compositional. For example, we can easily define a function that modifies two
arrays in place

modifyArrays :: (Array•, Array•)→ (Array•, Array•)

modifyArrays = . . .

without specifying in which order these two updates should happen (indeed,
they could happen in parallel).

Uniqueness typing is a substructural logic. We will explain this in more detail
in Sect. 2. Probably the most well-known substructural logic is affine (or linear)
logic. Affine logic can be regarded as dual to uniqueness typing; we discuss it in
more detail in Sect. 3. In Sect. 4 we observe that we can simplify and unify both
type systems through a familiar typing construct: polymorphism. We show that
there is a sound translation from unique and affine typing into the unified system,
and argue that although the translation is not complete, the loss is outweighed
by the benefits of unifying the two systems. Finally, we wrap in Sect. 6.

2 Uniqueness Typing

The type syntax that we will use throughout this paper is given by

α ::= • | × (type attribute)
τ ::= c | σ −→

α
σ′ (base type)

σ ::= τα (attributed type)
c ∈ Unit, Bool, Array, . . . (constants)

where we will write (σ1 −→
α′

σ2)α as σ1
α−→
α′

σ2, and we will occasionally follow

Clean convention and use the absence of a type annotation to mean non-unique
(i.e., we might write τ× as τ). The reason for the additional attribute on the
function arrow will become clear in Sect. 2.3.

In the context of uniqueness typing the attribute “•” is read as “unique”
(guaranteed not shared), and the attribute “×” is pronounced “non-unique”
(possibly shared). The typing rules for uniqueness typing are shown in Figure 1.

2.1 Contraction

Typing environments (here and elsewhere in this paper) are bags of pairs of
identifiers and types, not sets. That is, the typing environment {x : σ, x : σ} with



Modelling Unique and Affine Typing using Polymorphism 3

Logical Rules

x : σ ` x : σ
Var

Γ, x : σ1 ` e : σ2

Γ ` λx · e : σ1
α−−−→

supΓ
σ2

Abs
Γ1 ` e1 : σ1

α−→
α′

σ2 Γ2 ` e2 : σ1 α ⊆ α′

Γ1, Γ2 ` e1 e2 : σ2
App

with α ⊆ α, × ⊆ •, and (sup) the corresponding supremum (least upper bound)
Subtyping

Γ ` e : τ•

Γ ` e : τ×
Unique

for simplicity we treat the function space as invariant
Structural Rules

Γ, x : τ×, x : τ× ` e : σ

Γ, x : τ× ` e : σ
Contr

Γ ` e : σ

Γ, x : σ′ ` e : σ
Weak

Fig. 1: Uniqueness Typing

Logical Rules

x : σ ` x : σ
Var

Γ, x : σ1 ` e : σ2 α ⊆ supΓ

Γ ` λx · e : σ1
α−−−→

supΓ
σ2

Abs
Γ1 ` e1 : σ1

α−→
α′

σ2 Γ2 ` e2 : σ1

Γ1, Γ2 ` e1 e2 : σ2
App

Subtyping

Γ ` e : τ×

Γ ` e : τ•
Affine

Structural rules as above.

Fig. 2: Affine Typing

Logical Rules

x : σ ` x : σ
Var

Γ, x : σ1 ` e : σ2 α ⊆ supΓ

Γ ` λx · e : σ1
α−−−→

supΓ
σ2

Abs
Γ1 ` e1 : σ1

α−→
α′

σ2 Γ2 ` e2 : σ1 α ⊆ α′

Γ1, Γ2 ` e1 e2 : σ2
App

Generalization and Instantiation

Γ ` e : σ{•/a} Γ ` e : σ{×/a}
Γ ` e : (∀a · σ)supΓ

Gen
Γ ` e : (∀a · σ)α

Γ ` e : σ{α′/a}
Inst

Structural rules as above.

Fig. 3: Unified using Polymorphism



4 Edsko de Vries

two (identical) assumptions for x is a different typing environment to {x : σ}
containing a single assumption. Moreover, in rule App we union the typing
environment used to type the function with the typing environment used to
type the argument, rather than using the same environment for both.

This means that we must be explicit about structural operations on the
typing environment. Rule Contr allows us to contract two typing assumptions,
while rule Weak allows us to weaken a typing derivation by introducing an
additional (unused) assumption. Importantly, Contr applies only to non-unique
terms, so that we can derive

...

f : τ× → τ× → σ, x : τ× ` f x : τ× → σ x : τ× ` x : τ×

f : τ× → τ× → σ, x : τ×, x : τ× ` f x x : σ
App

f : τ× → τ× → σ, x : τ× ` f x x : σ
Contr

f : τ× → τ× → σ ` λx · f x x : τ× → σ
Abs

∅ ` λf · λx · f x x : (τ× → τ× → σ)→ τ× → σ
Abs

but, crucially, we cannot find any derivation for

∅ ` λf · λx · f x x : (τ• → τ• → σ)→ τ• → σ

The restriction on the structural rule Contr is what makes uniqueness typ-
ing a substructural logic.

2.2 Subtyping

Uniqueness is a guarantee that a term is not shared; however, it is safe to ignore
that guarantee. For instance, we can find a term with type

(τ× → τ× → σ)→ τ• → σ

(exercise: what is it?). For an example use case, consider a type Array of
integer arrays with corresponding in-place updates

update :: Int→ Int→ Array• → Array•

sort :: Ascending→ Array• → Array•

. . .

Once we are done with updating the array we can apply subtyping to get an
Array× which we can freely share but no longer update.

The combination of the restriction on Contr with subtyping (Unique) jus-
tifies reading “•” as “non-shared”.



Modelling Unique and Affine Typing using Polymorphism 5

2.3 Closure Typing

Consider a term such as

λarr · λasc · sort asc arr :: Array• → Ascending
α−→
•

Array•

When we partially apply this function to a unique array, we get a function
of type

Ascending
α−→
•

Array•

the annotation underneath the function arrow here means that this function
has a unique term in its closure. It is important that this term is still unique
when we (fully) apply the function, which is why rule App requires that when
we apply a function with unique terms in its closure it must itself be unique.
This is called uniqueness propagation, and is important whenever terms contain
other terms (function closures, tuples, algebraic data types, etc.).

3 Affine Typing

Affine typing is a close cousin of uniqueness typing; the typing rules are shown
in Fig. 2. Where “unique” can be interpreted as a guarantee that a term has not
not shared, “affine” can be interpreted as a restriction that a term may not be
shared, or, equivalently but more conventionally, can only be used once.

Aside. Affine typing is closely related to linear typing, in which the weak-
ening rule (Weak) is also limited to non-affine types. It is often claimed
that such a type system guarantees that a term of linear type will be
used “exactly” once; however, since linear type systems rarely guarantee
the absence of divergence, this is a dubious claim. We will use “affine”
throughout this paper as the more general term.

This duality between uniqueness typing and affine typing is evident in the
typing rules too, in two ways. First, the subtyping relation is inverse (rule
Affine). Where a guarantee of uniqueness can be forgotten but not invented,
an affine restriction may be self-imposed but not ignored.

Second, like in uniqueness typing, when a closure contains a restricted term
then that closure itself must be restricted; but unlike in uniqueness typing, that
restriction must be enforced at the definition site (Abs) rather than the us-
age site (App). (Exercise: why is it unsafe to combine Unique subtyping with
definition-site propagation, or Affine subtyping with usage-site propagation?)

For an example use case, consider a concurrent, impure (not referentially
transparent) functional language with a type Channel of communication chan-
nels with corresponding functions

send :: Int→ Channel• → Unit

newChannel :: Unit→ Channel×



6 Edsko de Vries

We can pass a channel of type Channel• to a thread, meaning that it can
only send a single signal on the channel; a “master” thread can create a new
channel using newChannel, spawn a number of slave threads, use subtyping to
pass in an affine reference to this channel, and is then guaranteed that each slave
thread will write at most once to the channel.

4 Polymorphism

Consider again the type of array update:

update :: Int→ Int→ Array• → Array•

The input array must certainly be unique, but update does not itself care
that the result is unique; that is, we could also provide

update′ :: Int→ Int→ Array• → Array×

Similarly, in the channel example, send took a restricted channel, but we
could also provide

send′ :: Int→ Channel× → Unit

Using uniqueness subtyping we can define update′ in terms of update; using
affine subtyping we can define send′ in terms of send. However, since the sub-
typing relation in both cases is so shallow, there is a more obvious generalization
of both functions:

update :: ∀a · Int→ Int→ Array• → Arraya

send :: ∀a · Int→ Channela → Unit

We only need a single construct to capture both subtyping relations, and
thus we arrive at the central thesis of this paper: we can use polymorphism to
combine uniqueness typing and affine typing within a single system. The only
difference whether we use polymorphism in the codomain (update) or the domain
of the function (send), once more establishing the duality between uniqueness
and affine typing.

4.1 The polymorphic type system

We extend the systems of types with

τ ::= c | σ −→
α
σ′ | ∀a · σ

σ ::= τα (as before)

A function of type τ•1
•−→ τ×2 is a unique function from a unique τ1 to a non-

unique τ2; the attribute on the function is distinct from the attributes on its
domain and codomain. Similarly, a value of type, say, (∀a.Arraya)• is a unique



Modelling Unique and Affine Typing using Polymorphism 7

polymorphic value that can be instantiated to a unique or non-unique array.
The uniqueness on the polymorphic value itself means that it can only be in-
stantiated once. The analogy with functions is appropriate: a polymorphic value
can be interpreted as a function that takes a type argument; and like functions,
polymorphic values must be unique themselves if they have any unique elements
in their “closure”.

The rules for the polymorphic type system are shown in Fig. 3. The structural
rules are as they were in uniqueness typing and affine typing. We no longer have
subtyping, however; this means that the “•” annotation means “has and may
never be shared”, thus no longer distinguishing between “unique” and “affine”;
we can choose either interpretation based on the application we have in mind.
Rule Gen embodies the propagation we described in the previous section. Rule
Inst is the familiar instantiation rule, where we ignore the attribute on the
polymorphic value itself.

Propagation for functions is now enforced in both definition and usage sites
(Abs and App). This is overkill; it would suffice to enforce propagation in Abs
(and do away with closure typing completely): after all, in the absence of sub-
typing if a function is unique when it is created it must still be unique when
it applied. Formally proving that this simpler type system is equivalent to the
one we have presented, however, is slightly non-trivial and non-essential to the
central message of this paper. We chose the representation in Fig. 3 to aid the
comparison to the uniqueness and affine typing systems; we do not necessarily
suggest to use the type system in this particular form.

When introducing a new type system, two questions arise:

– Is the new type system sound? That is, are there any programs accepted by
the type system that should not be?

– Is the new type system complete? That is, are there any programs not ac-
cepted by the type system that should be?

We will show in Sect. 4.2 that the polymorphic system is relatively sound : it
does not accept any more programs than the intersection of uniqueness typing
and affine typing does. Few type systems can claim to be complete, and ours
is no exception. In fact, even relative completeness fails, but we will argue in
Sect. 4.3 that the loss is outweighed by the benefits.

4.2 Soundness

We show that if a program e is accepted by the polymorphic type system (i.e.,
there exists Γ, σ such that Γ ` e : σ) then it is also accepted by both the
unique and affine systems. We show this by providing a translation bσc from the
polymorphic type system to the unique or affine type system. We consider the
case for the unique type system first. We translate polymorphism to uniqueness:



8 Edsko de Vries

Definition 1 (Translation from polymorphic to unique types).

bcαc = cα

bσ1
α−→
α′

σ2c = bσ1c
α−→
α′
bσ2c

b(∀a · σ)αc = bσ{•/a}c

This translation extends in the obvious manner to typing environments.

Proposition 1 (Soundness wrt to uniqueness typing).
If Γ ` e : σ then bΓ c ` e : bσc.

Proof. By induction on Γ ` e : σ. The logical and structural rules are straight-
forward. For Gen the conclusion follows from the induction hypothesis at the
first premise. For Inst it follows from Unique (or immediately). �

As expected, the case for the affine type system is similar, but dual: we
translate polymorphism to unrestricted (non-affine).

Definition 2 (Translation from polymorphic to affine types).

bcαc = cα

bσ1
α−→
α′

σ2c = bσ1c
α−→
α′
bσ2c

b(∀a · σ)αc = bσ{×/a}c

Proposition 2 (Soundness wrt to affine typing).
If Γ ` e : σ then bΓ c ` e : bσc.

Proof. Like the proof of Prop. 1, but using the second premise of Gen and using
Affine instead of Unique. �

4.3 Completeness

In uniqueness typing we can create non-unique functions with unique elements
in their closure, even though we can no longer apply those functions. Likewise,
in affine typing we can apply non-unique functions with unique elements in their
closure, even though we can never create such functions. Neither is possible in the
polymorphic system, which means that the polymorphic system is not relatively
complete with respect to either the uniqueness or affine type systems.

We can give a partial completeness result, however. Define the following
lifting from the monomorphic types into the polymorphic type system:

Definition 3 (Lifting types).

dcαe = cα

dσ1
α′

−−→
α′′

σ2e = dσ1e
α−→
α
dσ2e where α = sup{a′, a′′}

Proposition 3 (Partial completeness). If Γ `unique e : σ or Γ `affine e : σ
and the typing derivation does not rely on subtyping then Γ `poly e : σ.



Modelling Unique and Affine Typing using Polymorphism 9

Proof. Two separate straightforward induction proofs. �

In other words, programs that do not rely on subtyping will be accepted
by the polymorphic type system, too. Most applications of subtyping can be
replaced by use of polymorphism, as we saw at the start of Section 4. That is,
for uniqueness typing we can translate

Jσ → τ•Kunique = ∀a · JσK→ JτaK

Similarly, for affine typing we can translate

Jτ× → σKaffine = ∀a · JτaK→ JσK

(note again the duality: • vs ×, codomain vs domain). In both cases subtyping
can then be replaced by instantiation.

This translation is not entirely uniform, however. As we mentioned at the
start of this section, the following types are not inhabited, even though their
corresponding unique or affine types are:

Jτ•1 → τ×2
•−→
•
τ•1 Kunique = ∀a · τ•1 → τ×2

a−→
•
τ•1

J(σ1
×−→
•
σ2)→ σ1 → σ2Kaffine = ∀a · (σ1

a−→
•
σ2)→ σ1 → σ2

Note that the use of subtyping is not essential for dealing with “observing”
terms at non-unique types; instead, we need a special typing rule for strict-
let, and preferably some way of making sure that these non-unique terms don’t
escape the strict-let. See [10, Section 2.8.9] for more details.

4.4 Example Application

In Sect. 3 we used affine types to restrict how often a thread could write to a
channel. We mentioned that this was in the context of an “impure” language,
because affine types cannot be used to model side effects1 (we need uniqueness
typing, instead). However, now that we have both, we could define2

withNewChannel :: World• → (World• → (∀a · Channela)× → σ)
•−→
•
σ

send :: ∀a · Int→ World• → Channela
•−→
•

World•

If we applied the translation from Sect. 4.3 indiscriminately we would have used a
unique world in negative position (“input”) and a polymorphic world in positive

1 Wadler, one of the big proponents of linear logic, states [14]: “Does this mean that
linearity is useless for practical purposes? Not completely. Dereliction [subtyping]
means that we cannot guarantee a priori that a variable of linear type has exactly
one pointer to it. But if we know this by other means, then linearity guarantees that
the pointer will not be duplicated or discarded”.

2 We could return a pair instead of using continuation passing style, but we have not
covered products in this paper.



10 Edsko de Vries

position (“output”). However, realistically we never want to share the world so
we can simplify the types and not use polymorphism.

The situation for channels is a little different. We have used a polymorphic
value in negative position, since we can send on channels we are allowed use
once just as well as we can send on unrestricted channels. In withChannel we
use a value of type (∀a · Channela)× in positive position; the continuation (the
“master thread”) can use this polymorphic value as often as it wants to create
“affine” (use-once) channels for the slave threads and then instantiate it at an
unrestricted value itself to read the values written by all the slave threads.

We thus switch back and forth between the two interpretations at will, and
use instantiation in the place of subtyping: we use polymorphism to model unique
and affine typing.

5 Related Work

Uniqueness typing was introduced in [2] and implemented in the pure functional
programming language Clean [7]; variations have been implemented in SAC [8]
and Mercury [5, 6].

The version we presented in Fig. 1 differs significantly from the Clean type
system, however. Clean does not use closure typing, which was introduced in the
context of uniqueness typing in [12]. Instead, Clean regards some unique types
(in particular, function types) as necessarily unique: subtyping does not apply
to them. This makes it possible to enforce propagation at definition site, rather
like in our polymorphic system. However, this non-uniformity of the subtyping
relation results in a loss of principal types. For instance, we have

λx · (x, x) :: Array• → (Array×, Array×)

and

λx · (x, x) :: (σ1
×−→ σ2)→ (σ1

×−→ σ2, σ1
×−→ σ2)

but no more general type that can be instantiated to both. Note that the poly-
morphic system in Fig. 3 does not satisfy principal types either. For instance,
given a function f :: ∀a, a′ · τa → τa

′ a−→ σ, we have

λx · λy · λz · f x y :: τ×
×−→ τ×

×−→ σ′
×−→ σ

λx · λy · λz · f x y :: τ×
×−→ τ•

×−→ σ′
•−→ σ

λx · λy · λz · f x y :: τ•
×−→ τ×

•−→ σ′
•−→ σ

and

λx · λy · λz · f x y :: τ•
×−→ τ•

•−→ σ′
•−→ σ

but no more general type that captures all four; in particular, although we have

λx · λy · λz · f x y :: ∀a, a′ · τa ×−→ τa
′ a−→ σ′

•−→ σ

the annotation on the final arrow must be “•” because we cannot express within
the type system that it must be unique if either a or a′ is and thus we must



Modelling Unique and Affine Typing using Polymorphism 11

be conservative. One way to solve this problem is introduce boolean expressions
as annotations [13]; this is a nice approach because boolean unification is well-
understood and hence can we use standard type inference algorithms for such a
type system (it might also be possible to lift the “sup” operation we used to the
type level).

Linear logic was introduced by Girard [3]; its use as a type system was pio-
neered by Wadler [14, 9]. Several authors have proposed type systems that explic-
itly combine uniqueness typing and linear typing [4, 1, 11]. All of these systems
however have explicit notions of uniqueness and affinity, rather than using one
concept to model both.

The author’s PhD thesis contains a detailed review of these and other papers
[10].

6 Conclusions

Uniqueness typing and affine or linear typing are dual type systems. Uniqueness
gives a guarantee that an term has not been shared, thus enabling destructive
update and modelling of side effects in a pure functional language. Affinity im-
poses a restriction that a term may not be shared, thus enabling more precise
APIs (a continuation that can be invoked at most once, a channel that can be
sent on at most once, etc.). Both type systems have different purposes and indeed
it is useful to combine them.

In this paper we have shown that when we introduce polymorphism—a use-
ful construct in its own right—we do not need to distinguish explicitly between
uniqueness and affinity anymore, but enable the programmer to choose between
either interpretation by introducing polymorphism in negative or positive posi-
tions. For instance, we saw that we might type destructive array updates as

update :: ∀a · Int→ Int→ Array• → Arraya

Other API choices are possible too, of course. For instance, if non-updatable
arrays have a more efficient representation in memory then we might want to
change the API to

update :: Int→ Int→ Array• → Array•

freeze :: Array• → Array×

By replacing subtyping with polymorphism we place this choice in the hands of
the API designer.

The particular type system that we presented was designed to aid the compar-
ison with “traditional” uniqueness and affine type systems. It can be simplified
and extended in various ways. At the very least one might want universal quan-
tification over base types (τ) as well as type attributes (α); it is possible to use a
kind system to use a single construct for both [13]. As mentioned in Sect. 5, we
can introduce boolean expressions as type attributes in order to obtain principal
types. Chapter 8 of [10] contains many more avenues for future work.



12 Edsko de Vries

Acknowledgements This paper is a follow-up from the author’s PhD thesis
on uniqueness typing, which Rinus Plasmeijer mentored. Rinus, your support
and enthusiasm was greatly appreciated.

References

1. Ahmed, A., Fluet, M., Morrisett, G.: A step-indexed model of substructural state.
In: Proceedings of the 10th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP). pp. 78–91. ACM (2005)

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6, 579–612
(1996)

3. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
4. Hage, J., Holdermans, S., Middelkoop, A.: A generic usage analysis with subeffect

qualifiers. In: Proceedings of the 12th ACM SIGPLAN International Conference
on Functional Programming (ICFP). pp. 235–246. ACM (2007)

5. Henderson, F.: Strong modes can change the world! (Nov 1992), honours Report,
Department of Computer Science, University of Melbourne

6. Overton, D.: Precise and expressive mode systems for typed logic programming
languages. Ph.D. thesis, The University of Melbourne (Dec 2003)

7. Plasmeijer, R., van Eekelen, M.: Clean Language Report (version 2.1) (Nov 2002)
8. Scholz, S.B.: Single assignment C: efficient support for high-level array operations

in a functional setting. Journal of Functional Programming 13(6), 1005–1059 (2003)
9. Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: Proceedings of the

7th international conference on Functional Programming languages and Computer
Architecture (FPCA). pp. 1–11. ACM (1995)

10. de Vries, E.: Making Uniqueness Typing Less Unique. Ph.D. thesis, Trinity College
Dublin (2008)

11. de Vries, E., Francalanza, A., Hennessy, M.: Uniqueness typing for resource man-
agement in message-passing concurrency. Journal of Logic and Computation (2012)

12. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing redefined. In:
Horváth, Z., Zsók, V., Butterfield, A. (eds.) Proceedings of the 18th international
symposium on Implementation and Application of Functional Languages (IFL).
Lecture Notes in Computer Science, vol. 4449, pp. 181–198. Springer-Verlag (2007)

13. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing simplified.
In: Chitil, O., Horváth, Z., Zsók, V. (eds.) Proceedings of the 19th international
symposium on Implementation and Application of Functional Languages (IFL).
Lecture Notes in Computer Science, vol. 5083, pp. 181–198. Springer-Verlag (2008)

14. Wadler, P.: Is there a use for linear logic? In: Proceedings of the 2nd ACM SIG-
PLAN symposium on Partial Evaluation and semantics-based program manipula-
tion (PEPM). pp. 255–273. ACM (1991)


