Processing ASTs in C++: maketea

Edsko de Vries*, John Gilbert, and David M Abrahamson

Trinity College Dublin

Abstract. We present maketea, a tool which generates a C++ infras-
tructure for processing ASTs based on an object oriented context free
grammar. The generated code includes a class hierarchy for storing ASTs
with support for cloning, equality checking, pattern matching, a general
visitor API and a transformation API. The tool is available under an
open source license and can be downloaded from www.maketea.org.

1 Introduction

Given the definition of an abstract syntax tree in the form of a context free
grammar, maketea creates a C++ class hierarchy for storing AST instances and
an API for processing them. This is extremely useful when developing compiler
front ends, and indeed maketea was developed with exactly such an application
in mind [1]. Manually maintaining the data structures and corresponding oper-
ations on them in the face of an evolving grammar is both time consuming and
error prone. In this paper we highlight the most important features of maketea
and discuss some of the challenges encountered during its design.

The grammar formalism used by maketea is an extension of what is some-
times referred to as an “object oriented context free grammar” [2]. The key
principle with such grammars is that there be a one-to-one mapping from the
productions to the class definitions. Only two types of rules are permitted:

—au=b|c|..., with b,c,... single (terminal or non-terminal) symbols
—a=z=b"c". .., with b,c, ... single symbols, and m,n, ... multiplicities

A rule of the first form (a disjunction) models the is-a relation and gets mapped
to an abstract class. The classes that correspond to the symbols in the body of
the disjunction will all inherit from this class (multiple inheritance is allowed
and frequently useful). On the other hand a rule of the second form (a sequence)
gets mapped to a concrete class, with class data members for each of the terms in
the body of the rule. We distinguish between five different multiplicities: single,
optional (7), list (*), optional list (x?) and list of optional elements (?7x), where
lists are implemented using C++ STL lists.

All classes generated by maketea support deep equality checking and deep
cloning. Moreover, the grammar specification can include C++ code fragments
which can override any generated functionality. Finally, to support interoper-
ability amongst tools, maketea generates an XML schema that can be used to
validate serializations of the AST in XML format and a factory method which
can be used to construct DOM based XML parsers.

* Supported by the Irish Research Council for Science, Engineering and Technology

Visitor Visitor Visitor

visit_b(c) pre_b_chain prea
k *
S || ? ?
preb
- >
e [L
children_c 2 %
e || -
post.b_chain postb
G R E R R PP PP [| Single
post.-a
e et
L L i L

Fig. 2. Partial ordering
Fig. 1. Sequence Diagram for the Visitor API on multiplicities

2 Visitor API

The visitor API is a generalization of the well-known visitor pattern. We create
an identity visitor that can traverse arbitrary ASTs and calls different methods
for the various types of nodes it encounters. Specific traversals are defined by
inheriting from the identity visitor and overriding these methods. The visitor API
generated by maketea differs from the basic pattern in the following aspects:

— The API simultaneously supports pre-order and post-order traversals: before
the children of a node are visited, a “pre-visit” method is invoked; and after
the children have been visited, a “post-visit” method is invoked.

— The pre-visit and post-visit methods for a node invoke a chain of methods,
one for each of its superclasses. Thus generic visitors can be defined that
for instance visit all “statements” in an AST, where “statement” is the
disjunction of “if”, “while”, etc. Fig. 1 shows an example sequence diagram
for a call to visit_b on a node of a type B that inherits from A.

— All of the visitor’s functionality is embedded in the visitor class rather than
in the AST classes. This makes it possible to change the behaviour of the
visitor on a per wvisitor basis. For example, it is possible to override the order
in which the children of a particular node type are visited, or the order in
which the visitor methods of the superclasses of a node type will be invoked.

Finally, the visitor API has explicit support for unparsers. For example, rather
than omitting a call to a visitor method for NULL nodes, we invoke a special
visitnull method. One application where this is useful is XML serialization,
where the absence of an optional element must be explicitly indicated.

3 Pattern Matching

Pattern matching is a variation on deep equality checking where parts of the
tree that we are comparing against are left unspecified using wildcards. Pattern
matching provides a mechanism for recognizing larger parts of the tree of a
specified form. For example, in an AST denoting expressions we can easily define
a pattern to match the action of adding two constants. To support pattern
matching, maketea introduces a new class Wildcard which is defined as

#template<class C>

class Wildcard : public virtual C, public __WILDCARD__ {
C*x value;
/! ...

}

Since Wildcard<X> inherits from X, a node of type Wildcard<X> can be used in
place of a node of type X. Pattern matching proceeds like a deep equality check,
but whenever a node of type __WILDCARD__ is encountered the value field of
the wildcard is made point to the subtree it matched. After pattern matching
completes, the values of the wildcards are easily accessed and since the pattern

itself has not been modified it can be reused in a later match.

4 Transform API

The visitor API has one important disadvantage: visitors cannot easily modify
the structure of the tree. Suppose we wanted to apply constant folding. A visitor
can visit all binary operator nodes in a tree, but cannot replace an operator
by a different node. Instead, it would have to visit all nodes containing binary
operators (the parent nodes), and do the constant folding there. This means that
an optimization that should only have had to be defined for a single type of node
(binary operators) must now be defined for a large numbers of nodes: all nodes
that contain binary operators.

To overcome these difficulties, maketea introduces a transformation API
alongside the visitor API. The basic setup is very similar: we generate an iden-
tity transformation, which traverses the tree and invokes transformation methods
for each node. Specific transformations are implemented by inheriting from the
identity transformation and overriding the appropriate transformation methods.

The API constrains the type of node B a node of type A can be replaced with.
Using a process called context resolution, maketea will find the most general type
B such that it is always correct to replace a node of type A by one of type B
while keeping the tree consistent with the grammar. This proceeds in two steps

1. In the first step an initial set of contexts is extracted from the grammar.

(a) When a concrete symbol ¢ is used with multiplicity m (in the body of a
sequence rule) it yields a context (¢, ¢,m). That is, we can only replace
a ¢ by a ¢, but the multiplicity determines how many cs we can replace
a single ¢ with.

(b) When an abstract symbol ¢ is used with multiplicity m, it yields contexts
(', ¢,m) for all symbols ¢’ that inherit from c.

2. In the second step we reduce the initial set of contexts so that there is a
single context for every symbol in the grammar. For contexts (¢, d, m) and
(¢,d’,m') in the initial set we construct a new context (¢,d”, m”) where d”
is the unique' common subclass of both d and d’ that is also a superclass of
¢, and m” is the greatest lower bound of m and m’ using the partial order
shown in Fig. 2.

1 Such a class must always exist since, in the worst case, it is ¢ itself.

For example, if this is part of a grammar:

start ::= A b? b ;
b ::=C | D ;

then the derived context for A will be (A,A,single) because there is an explicit
reference to A in the grammar (step la), while two contexts will be inferred for
C (step 1b): (C,b,?) and (C,b,single), which get reduced to (C,b,single).

5 Conclusions

We presented maketea, a tool which generates a C++ infrastructure for repre-
senting and processing AST's based on an object oriented context free grammar.
Although many other tools such as classgen, ANTLR, JastAdd, jjtree, GENTLE,
MEMPHIS and Zephyr provide similar functionality, they are less versatile than
maketea in several respects. The grammar formalism may be more restrictive;
for example, it may not support multiple inheritance or accept multiplicities.
While most tools provide a visitor API, they usually cover only the basic pat-
tern without support for the more advanced features described in Section 2. Few
support pattern matching, and we are not aware of any tools that support a
transformation API comparable to the one we provide.

Because maketea is written in Haskell, the tool is relatively small (just over
3000 lines of code) despite the comprehensive APT it provides. The small code
base makes it feasible to quickly adapt maketea for individual projects when the
functionality provided out of the box is insufficient.

We designed maketea with a specific project in mind (phc [1]), and believe
we saved a significant amount of time in the development of that project even
allowing for the time spent developing maketea itself: phc currently includes
two maketea specifications which together account for some 900 lines of code.
When run through maketea these expand to approximately 32,000 lines of C++
code. Maintaining that C++ code by hand during the development of phc while
the grammars were not yet completely fixed, would have been nearly impossible.
Various versions of maketea have been used during the development of phc since
early 2006, and it has now reached a point where it is suitably robust for use in
other projects.

References

1. de Vries, E., Gilbert, J.: Design and implementation of a PHP compiler front-end.
Dept. of Computer Science Technical Report TR-2007-47, Trinity College Dublin

2. Koskimies, K.: Object-orientation in attribute grammars. In: Proceedings on At-
tribute Grammars, Applications and Systems, London, UK, Springer-Verlag (1991)
297-329

Appendix: Demonstration

The maketea demonstration will proceed as outlined below?.

High level introduction to maketea Briefly describe—with aid of slides—the
problem maketea solves, and introduce the functionality it generates: the
Visitor, Transformation and Pattern matching APIs. This will provide pre-
liminary background for the rest of the demonstration.

Grammar formalism Show by way of demonstration the format of a maketea
specification. The running example introduced is a small programming lan-
guage called Chai, defined by the maketea grammar shown below:

program ::= statementx*x

statement ::= assignment | while | print ;
assignment ::= literal | add ;

while ::= VAR statementx* ;

literal ::= lhs:VAR INTEGER<long> ;

add ::= lhs:VAR left:VAR right:VAR ;
print ::= VAR ;

The following Chai program is then introduced, which will be used as an
example input to all subsequent visitors and transformations in the tutorial:

y = -1;
x := 3;
while x {
print x;
X = X + y;

}

Visitor API: Pretty Printer A unified pre-order/post-order traversal of the
AST will be demonstrated. This is useful for unparsing while statements
(curly braces can be problematic without this unified approach). This is
implemented in Fig. 5, and simply reproduces the input program. This shows
our first deviation from the standard Visitor design pattern which tends to
support either pre-order or post-order traversal, but not both simultaneously.

Visitor API: XML Unparser The second difference between the canonical
Visitor pattern and our implementation is the ability to use a chain of
methods while processing each concrete node in the AST. This is useful
for writing generic traversals as will be demonstrated in our XML unparser
(Fig. 3), which is easily implemented. The result of running this Visitor on
our sample Chai program is shown in Fig. 6.

Visitor API: Evaluator Our visitor implementation does not embed the traver-
sal logic within the concrete AST nodes, but rather within the Visitor it-
self. This gives great flexibility, as demonstrated in our Evaluator example
(Fig. 7), where the body of a while node can be repeatedly visited until
its condition fails. The output of evaluating our sample Chai program is as
follows:

2 Note that the figures are not shown in order to optimize the available space in this
overview.

x: 3
X:
x: 1

Transformation API: Debugger Our transformation API is demonstrated

by instrumenting the simple Chai program with print statements after each
add statement (Fig. 8). Although simple, this transformation demonstrates
the issue of resolving contexts for the Transform API, and shows in practical
terms the reduction in code required to implement the transformation when
compared with implementing the same task using a Visitor. If a Visitor were
used to implement the transformation, both program and while nodes would
need to be dealt with separately, while a Transform requires the implemen-
tation for add nodes only. The result of the transform is as follows:

y = -1;

x = 3;

while x {
print x;
X = x + y;
print x;

}

class XML_unparser : public AST_visitor {
void pre_node (AST_node* node) {

};

}

cout << "<" << demangle(node) << ">" << endl;

void post_node (AST_node* node) {

}

cout << "</" << demangle(node) << ">" << endl;

void pre_var (Token_var* var) {

}

cout << xvar->value << endl;

void pre_integer (Token_integer* integer) {

}

cout << integer->value << endl;

Fig. 3. XML unparser

// statement ::= assignment | while [print;

class AST_statement : virtual public AST_node
{
public:
AST_statement ();
public:
void visit (AST_visitor* visitor) = 0;
void transform_children (AST_transform* transform) = 0;
public:
int classid() = 0;
public:
bool match(AST_nodex* in) = 0;
public:
bool equals (AST_node* in) = O;
public:
AST_statement* clone() = O0;
public:
void assert_valid () = 0;
};
// while ::= VAR statementx* ;
class AST_while : public AST_statement
{
public:

AST_while (Token_var* var,
List<AST_statement *>* statements);

protected:

AST_while ();
public:

Token_var* var;

List<AST_statement *>* statements;
public:

void visit (AST_visitor* visitor);

void transform_children (AST_transform* transform);

public:

static const int ID = 2;

int classid();
public:

bool match(AST_node* in);
public:

bool equals (AST_nodex* in);
public:

AST_while* clone();
public:

void assert_valid ();

};

Fig. 4. Generated C++ classes for statement and while

class Unparser : public AST_visitor
{
protected:

string indent;

public:
void post_literal (AST_literal* literal)
{
cout << indent
<< *xliteral->lhs->value << " := "
<< literal->integer ->value << ";" << endl;

void post_add (AST_addx* add)
{
cout << indent
<< *xadd->lhs->value << "
<< *add->left->value << " + "
<< *xadd->right->value << ";" << endl;

void post_print (AST_print* print)
{
cout << indent
<< "print " << *xprint->var->value << ";" << endl;

void pre_while (AST_while* wh)
{
cout << indent
<< "while " << *wyh->var->value << " {" << endl;
indent .push_back (’\t’);
}

void post_while (AST_while* wh)
{

indent = indent.substr (1);
cout << indent << "}" << endl;

Fig. 5. Unparser (pretty printer)

<AST_program>
<AST_literal>
<Token_var>

y

</Token_var>
<Token_integer >
-1
</Token_integer>
</AST_literal>
<AST_literal>
<Token_var>

X

</Token_var>
<Token_integer >
3
</Token_integer >
</AST_literal>
<AST_while>
<Token_var>

b4

</Token_var>
<AST_print>
<Token_var>

X

</Token_var>
</AST_print>
<AST_add>
<Token_var>

bd

</Token_var>
<Token_var>

bd

</Token_var>
<Token_var>

y

</Token_var>
</AST_add>
</AST_while>
</AST_program>

Fig. 6. XML output from the visitor in Fig. 3

class Eval : public AST_visitor {
map<string, long> env;

void pre_literal (AST_literal* literal) {
env[*literal->lhs->value] = literal->integer->value;

}

void pre_print (AST_print* print) {
cout << x*xprint->var->value << ": "
<< env [*print->var->value] << endl;

void pre_add (AST_add* add) {
env [*add->1hs->value] =
env [*add->left->value] + env[*add->right->valuel;

void children_while (AST_whilex* wh) {
while (env [*wh->var->value])
AST_visitor ::children_while (wh);

Fig. 7. Evaluator

class Add_prints : public AST_transform {
void pre_add (AST_add* in, List<AST_statement *>* out) {
out->push_back (in);
out->push_back (new AST_print (in->lhs->clone()));
}
};

Fig. 8. Insert instrumentation for debugging

10

