
Uniqueness Typing Simplified—Technical Appendix

Edsko de Vries∗

Department of Computer Science
Trinity College Dublin, Ireland

devriese@cs.tcd.ie

August 13, 2008

Abstract

This technical report is an appendix toUniqueness Typing Simplified[7], in which we show how unique-
ness typing can be simplified by treating uniqueness attributes as types of a special kind, allowing arbitrary
boolean expressions as attributes, and avoiding subtyping. In the paper, we define a small core uniqueness
type system (a derivative of the simply typed lambda calculus) that incorporates these ideas. We also outline
how soundness with respect to the call-by-need semantics [11] can be proven, but we do not give any details.
This report describes the entire proof, which is written using the proof assistantCoq [3]. The proof itself (as
Coqsources) is also available and can be downloaded from the author’s homepage1.

Contents

1 Introduction 2

2 Equivalence 3
2.1 Lambda terms 4
2.2 Environments 6
2.3 Boolean expressions 7

3 Inversion 8
3.1 Domain subtraction 8
3.2 Type equivalence 9
3.3 Evaluation contexts 10

4 Definitions 11
4.1 Types 11
4.2 Kinding relation 11
4.3 Environment 12
4.4 Operations on the typing context 13
4.5 Typing relation 14
4.6 Semantics 14

∗Supported by the Irish Research Council for Science, Engineering and Technology.
1http://www.cs.tcd.ie/˜devriese

1

5 Preliminaries 15
5.1 Some additional lemmas aboutok andbinds . 16
5.2 Renaming Lemmas 17
5.3 Term opening 17
5.4 Domain subtraction 18
5.5 Kinding properties 19
5.6 Well-formedness of environments 20
5.7 Regularity 21
5.8 Well-founded induction on subterms 21
5.9 Iterated domain subtraction 22
5.10 Context split 23
5.11 Type equivalence 27
5.12 Non-unique types 28
5.13 Equivalence of environments. 29
5.14 Range 31

6 Properties of the typing relation 31
6.1 Kinding properties 32
6.2 Free variables 32
6.3 Consistency ofE andfvars . 32
6.4 Weakening 32
6.5 Exchange 33
6.6 Inversion lemmas 34

7 Subject reduction 35
7.1 Progress 35
7.2 Preservation 35

A Boolean algebra 40
A.1 Abstraction over the structure of terms 40
A.2 Huntington’s postulates 40
A.3 Setup for Coq setoids 40
A.4 Derived Properties 41
A.5 “Non-standard” properties (not proven in Goodstein) . .. 42
A.6 Conditional 42

1 Introduction

This technical report is an appendix toUniqueness Typing Simplified[7], in which we show how uniqueness
typing can be simplified by treating uniqueness attributes as types of a special kind, allowing arbitrary boolean
expressions as attributes, and avoiding subtyping. In the paper, we define a small core uniqueness type system
(a derivative of the simply typed lambda calculus) that incorporates these ideas. We also outline how soundness
with respect to the call-by-need semantics [11] can be proven, but we do not give any details. This report
describes the entire proof, which is written using the proofassistantCoq [3]. The proof itself (asCoqsources)
is also available and can be downloaded from the author’s homepage2.

This report is structured as follows. In sections 2 and 3 we highlight some of the difficulties we faced
when developing the proof, and discuss some of its more subtle aspects. In Section 4 we define the notion
of an environment, various operations on environments, thekinding and typing relations, and the operational
semantics for our language. Sections 5 and 6 prove numerous auxiliary lemmas that will be necessary in the

2http://www.cs.tcd.ie/˜devriese

2

main proof, which is described in Section 7. Appendix A finally describes a formalization of boolean algebra,
following Huntington’s Postulates [10].

Every lemma in this report is preceded by a brief descriptionof the lemma in informal language (English),
followed by a precise statement of the lemma (in the syntax ofCoq) and a brief description (again in English) of
how the lemma can be proven. For most lemmas, this description will begin with “By induction on. . .” or “ By
inversion on. . .”; many descriptions will also include the most important other lemmas that the proof relies on.
Coqverifies a proof strictly from top to bottom, so if a lemmaB relies on lemmaA, A must have been proven
before lemmaB; this therefore applies equally to the structure of this report. When the description of the proof
does not mention induction or inversion, then these techniques are not necessary and the lemma can be proven
by direct application of other lemmas.

What we do not show is the actual proofs themselves: there would be little point. The proofs have been
verified byCoq, a widely respected proof assistant. If the reader nevertheless prefers to verify the proofs by
hand, he will want to redo them himself; the short description of the proof should provide enough information
to get started.

Besides, the proofs are written in the syntax ofCoq. Coq is based on the calculus of constructions, a
powerful version of the dependently typed lambda calculus.As such, a proof inCoq is a program (a term of
the lambda calculus) that, given the premises, constructs aproof of the conclusion. However, in all but the most
simple cases, these programs are too difficult to write by hand, and instead the proof consists of a list of calls to
tacticswhich build up the program step-by-step.

Consider a simple example. Suppose we want to prove thatn + 0 is equal ton for all natural numbersn.
Here is a fullCoqproof of this property (this proof comes from theCoqstandard library):

Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.

induction n; simpl in |- * ; auto.
Qed.

Although it should be clear whatinduction n does, the purpose of the other tactics (such assimpl or
auto) is less obvious,even to an experienced Coq user. Tactics interact with the current state of the proof
assistant, which includes information such as which lemmasare available, the types of all variables, etc. Trying
to interpret aCoq proof withoutCoq is akin to hearing one part of a telephone conversation: halfthe text is
missing.

The actual proof constructed by these tactics is

λ(n : nat) · nat ind (λ(m : nat) ·m = m + 0)

(refl equal 0)

(λ(m : nat)(IHm : m = m+ 0) · f equal S IHm)

n

which makes use of various other lemmas, such as induction onnatural numbers (nat ind —essentially a fold
operation), the fact that equality is reflexive (refl equal) and a lemma that states that ifx = y, then for
all f , f x = f y (f equal). The details do not matter; the point is that this is hardly more readable than the
original proof. In this report, we would simply describe this proof as “By induction onn”.

2 Equivalence

Suppose we have a setC of objects together with an equivalence relation≈ onC, and some characterizationP
of objects ofC. We wantP to have the property that ifP x andx ≈ y, thenP y. There are three different ways
in which we can guarantee thatP has this property.

• We can prove thatP has the required property.

• We can defineP over the quotient setC/≈ instead. This will give us the desired property by definition.

3

• It may be possible to choose an alternative representationC′ of the objects inC, such that every equiva-
lence set inC′/≈ is a singleton set. In other words, so that the equivalence relation is the identity relation.
The desired property ofP then holds trivially.

For example, take the set of lambda terms together with alpha-equivalence, and the property of being well-typed.
Then,

• We can prove that well-typedness is equivariant: ifλx · x is well-typed, so isλy · y.

• We can define the well-typedness over the set of alpha-equivalent terms.

• We can represent lambda terms using De Bruijn notation, in which caseλx · x andλy · y are both repre-
sented asλ · 0.

Not all options are always practical, and each option has itsadvantages and disadvantages. For the specific
example of alpha-equivalent terms, the first option may be possible, but cumbersome as we may have many
properties over lambda-terms; we will have to prove equivariance for each one. The second approach is incon-
venient when we need to refer to the name of the bound variablein an abstraction, for example in the typing rule
for abstraction. The final approach does not have these shortcomings, but introduces new ones: many operations
on lambda terms in De Bruijn notation must juggle with the indices, leading to additional complexity in proofs.

In informal proofs, we tend to gloss over this issue:

In this situation the common practice of human (as opposed tocomputer) provers is to say one thing
and do another. We say that we will quotient the collection ofparse trees by a suitable equivalence
relation of alpha-conversion, identifying trees up to renaming of bound variables; but then we try to
make the use of alpha-equivalence classes as implicit as possible by dealing with them via suitably
chosen representatives. How to make good choices of representatives is well understood, so much
so that it has a name—the “Barendregt Variable Convention”:choose a representative parse tree
whose bound variables are fresh, i.e., mutually distinct and distinct from any (free) variables in
the current context. This informal practice of confusing analpha-equivalence class with a member
of the class that has sufficiently fresh bound variables has to be accompanied by a certain amount
of hygiene on the part of human provers: our constructions and proofs have to be independent of
which particular fresh names we choose for bound variables.Nearly always, the verification of
such independence properties is omitted, because it is tedious and detracts from more interesting
business at hand. Of course this introduces a certain amountof informality into “pencil-and-paper”
proofs that cannot be ignored if one is in the business of producing fully formalized, machine-
checked proofs.

—Andrew Pitts,Nominal logic, a first order theory of names and binding[12]

In the remainder of this section, we detail how we tackle thisissue for the specific examples of terms under
alpha-equivalence, typing environments under substructural rules and boolean expressions under Huntington’s
Postulates.

2.1 Lambda terms

We already described the problem of dealing with terms underalpha-equivalence in the introduction to this
section, so all that remains is to discuss the solution. There are various proposals in the literature; we will adopt
thelocally namelessapproach suggested by Aydemiret al. in Engineering Formal Metatheory[1] (we refer the
reader to the same paper for an overview of alternatives).

In the locally nameless approach, bound variables are represented by De Bruijn indices, but free variables are
represented by ordinary names. This means that alpha-equivalent terms are represented by the same term (and
so we do not have to reason explicitly about alpha-equivalence), but we do not have to perform any arithmetic

4

operations on terms. We do however have to solve one problem.Consider the typing rule for application. In the
locally nameless style, the rule is

Γ, x : τ ⊢ ex : σ freshx
Γ ⊢ λ · e : τ → σ

ABS

When we typecheck the bodye, we “open it up” using a fresh variablex, and then record the type of the variable
as normal. That is, we replace bound variable 0 (the variablethat was bound by the lambda) by a fresh variable
(for some definition of “fresh”). This is a consequence of thelocally nameless approach: every time a previously
bound variable becomes free, we have to invent a fresh name for it.

Without the freshness condition, we would be able to derive

...
x : τ, x : σ ⊢ (x, x) : (σ, σ)

x : τ ⊢ λ · (0, x) : σ → (σ, σ)

where the (original) free variablex has suddenly changed type (the typing environment acts as a binder, and the
variablex has been “captured”). The minimal freshness condition is therefore that the variable that is used to
open up a term, does not already occur free in the term:

Γ, x : τ ⊢ ex : σ x /∈ fv e

Γ ⊢ λ · e : τ → σ
M-A BS

A weak premise (x /∈ fv e) is good when using rule ABS to prove the type of a term since we only have to
show thatΓ, x : τ ⊢ ex holds for one particularx. It is however not so good when doing induction on a typing
relation. In that case, we know that theex has typeσ for one particularx. But thatx may not be fresh enough
for our purposes, at which point we need to rename the term to avoid name clashes. To circumvent this problem,
Aydemiret al. [1, Section 4] propose to use cofinite quantification3:

∀x /∈ L · Γ, x : τ ⊢ ex : σ

Γ ⊢ λ · e : τ → σ
C-ABS

To use C-ABS, we have to show that theex has typeσ for all x not in some setL, but using this rule is no more
difficult than using M-ABS: we simply pick an arbitrary variable not inL. The induction principle however is
now much stronger: we now know thatex has typeσ for anyx not in some setL′. Then when we have to prove
thatλ · e has typeτ → σ, knowing thatex has typeσ for all x not inL′, and we needx to be distinct from some
other variabley, we can simply apply rule ABS choosingL′ ∪ {y} for L. We still occasionally need renaming
lemmas, but they too become much more straightforward to prove when using cofinite quantification (we prove
a number of renaming lemmas in Section 5.2).

Arthur Charguéraud, one of the authors of theEngineering Formal Metatheorypaper, has developed aCoq
library [6] which facilitates the use of the locally nameless representation of terms and the use of cofinite
quantification. The proofs in this report will make essential use of this library, which we will dub theFormal
Metatheorylibrary. As an example, here is a trivial lemma that we can always pick a variable that is distinct
from all other variables in a typing environment:

Lemma fresh_from_env : forall E e T fvars,
E |= e ~: T | fvars -> exists x, x \notin dom E.

intros.
pick_fresh x.
exists x ; auto.

Qed.

The proof is essentially just a call to thepick fresh from theFormal Metatheorylibrary. This tactic collects
all variables in the environment, and then chooses a variable that is distinct from all these variables. The proof
thatx satisfies the necessary freshness condition is also handledautomatically. The use of the locally nameless
approach, and in particular the use of theFormal Metatheorylibrary, meant that little of our subject reduction
proof needs to be concerned with alpha-equivalence or freshness.

3A cofinite subset of a setX is a subsetY whose complement inX is a finite set.

5

2.2 Environments

Consider this definition of a simple linear lambda calculus:

x : τ ⊢ x : τ
VAR

Γ, x : τ ⊢ e : σ

Γ ⊢ λx · e : τ → σ
ABS

Γ ⊢ f : τ → σ ∆ ⊢ e : τ

Γ,∆ ⊢ f e : σ
APP

Suppose we want to prove an exchange lemma:

Lemma (Exchange). IfΓ,∆ ⊢ e : τ, then∆, Γ ⊢ e : τ.

In informal practice, we might not even consider proving this lemma, because we might represent environments
as (multi-)sets so thatΓ,∆ and∆, Γ are the same environment. In a formal (constructive) proof,however, we
must choose a concrete representation. If we represent environments by lists, we must proveExchange, since
Γ,∆ and∆, Γ are certainly not the same list. Unfortunately,the definition of the typing relation above does not
permit Exchange: Exchangedoes not hold.

One solution is to choose a different concrete representation. For example, if we choose to represent en-
vironments by sorted lists of pairs of variables and types (for some arbitrary ordering relation) thenΓ,∆ and
∆, Γ again denote the same environment. Although this approach may work well, we have chosen not to use
it for two reasons. It is probably sufficient to define the ordering relation entirely syntactically (ignoring any
equivalence relation between types), but this ordering relation will not be intuitive (is∀a.∀b.a → b equal to, less
than or greater than∀a.∀b.b → a?). SinceCoqverifies our proofs, but naturally cannot verify our definitions,
we prefer not to have these doubts about the foundations of the proof.

The second reason we have chosen not to use this solution is that our definition of an environment is actually
taken from theFormal Metatheorylibrary (discussed in Section 2.1). Our subject reduction proof is large enough
as it is, and the more infrastructure we can re-use, the better. Replacing the definition of an environment would
involve considerable refactoring of theFormal Metatheorylibrary. One complicating factor is that theFormal
Metatheorylibrary abstracts over the “type of types” (the Coq datatypethat is used to model types in the object
language). This is useful, but if we want to keep the environment sorted, we cannot abstract over an arbitrary
type, but require that the type comes with an ordering relation. Thus, not only would the implementation of the
library have to be modified, its interface would also have to change.

We must therefore explicitly allow for exchange in the type system. The traditional way is to include the
exchange lemma as an axiom4:

Γ,∆,Θ ⊢ e : τ

Γ,Θ,∆ ⊢ e : τ
EXCH

The downside of this approach is that the inversion lemmas for the typing relation become more difficult to
state. For example, in the original type system we could prove the following inversion lemma:

Lemma (Inversion lemma for application). IfΓ ⊢ f e : τ, then there exists∆,Θ such that
Γ = ∆,Θ, and there existsσ such that∆ ⊢ f : σ → τ andΘ ⊢ e : σ.

In the modified type system, however, this lemma no longer holds. Instead, we would have to allow for an
application of the exchange rule, which makes the inversionlemma harder to state. This problem is amplified
by the presence of other substructural rules:

Γ ⊢ e : τ

Γ, x : σ ⊢ e : τ
WEAK

Γ, y : σ, z : σ ⊢ e : τ

Γ, x : σ ⊢ e[x/z, x/y] : τ
CONTR

With these two rules, the inversion lemma for application becomes very difficult to state indeed. Fortunately,
for an affine (as opposed to linear) substructural type system such as ours, weakening is unrestricted so that rule

4It is often presented as
Γ,∆ ⊢ e : τ

∆, Γ ⊢ e : τ
EXCH′

but that rule is not strong enough. In particular, we cannot show EXCH from EXCH′.

6

WEAK can easily be integrated into the typing rule for variables.We do however need to control contraction
(only unique variables can be used more than once), and it is not so obvious how to integrate CONTR into the
other rules.

The solution we adopt is the one described in [13], where it isattributed to [5]. We define a generic context
splitting operation, denotedE = E1 ◦ E2, as follows:

∅ = ∅ ◦ ∅
SPLIT-EMPTY

E = E1 ◦ E2

E, x : t = E1, x : t ◦ E2

SPLIT-LEFT

E = E1 ◦ E2 non-uniquet
E, x : t = E1, x : t ◦ E2, x : t

SPLIT-BOTH
E = E1 ◦ E2

E, x : t = E1 ◦ E2, x : t
SPLIT-RIGHT

We can use the context splitting operation in the rule for application as follows:

Γ ⊢ f : τ → σ ∆ ⊢ e : τ

Γ ◦ ∆ ⊢ f e : σ
APP′

With this rule, lemmaExchangebecomes admissible because we can prove an auxiliary resultthat if E = E1 ◦
E2 thenE = E2 ◦ E1. This approach is attractive for two reasons. First, the inversion lemma is straightforward
to state and prove. Second, we can reason about context splitting as a separate notion, and we will do so
extensively (Section 5.10). This means that in those proofswhere we need to reason about reordering of the
environment (in particular lemmaspreservationcommuteandpreservationassoc, Section 7), this reasoning is
explicit and usually done in separate lemmas.

2.3 Boolean expressions

In our type system, we allow for arbitrary boolean expressions as uniqueness attributes:t•, t×, tu, tu∨v, tu∧v

andt¬u are all valid types. Moreover, we we want to identify “equivalent” boolean expressions:tu∨v andtv∨u

are the same type. In other words, we want to identify uniqueness attributes (boolean expressions) that are
equivalent under the usual set of axioms (Huntington’s Postulates; see Appendix A).

Perhaps the most obvious solution is to quotient boolean expressions by Huntington’s Postulates, and for-
mally regard uniqueness attributes as equivalence classesof boolean expressions rather than boolean expres-
sions. Since the equivalence class[u∨ v] and[v∨ u] are the same class (since both expressions are equivalent),
the typest[u∨v] andt[v∨u] are then also identified.

Unfortunately, this solution is difficult to adopt for two reasons. First, since the equivalence class of a
boolean expression is infinite, we would need to use coinduction to define the classes—not difficult conceptually,
but technically awkward nevertheless. The other complication is that in our type system, and hence in the
formalization, we do not distinguish between types and attributes (this is a key contribution of the paper).
An attributed typetu is syntactic sugar for the application of a special type constantAttr to two arguments
(Attr t u); a kind system weeds out ill-formed types. This approach does not combine well with treating
uniqueness attributes as equivalence classes.

Instead, we explicitly allow to replace a type by an equivalent type as a non-syntax directed rule:

Γ ⊢ e : τ|fv τ ≈ σ

Γ ⊢: e : σ|fv
EQUIV

As it turns out, adding this lemma does not make the inversionlemmas more difficult to state (we prove the
inversion lemmas in Section 6.6; see also Section 2.2). Moreover, adding this rule is sufficient to be able to
replace a type anywhere in a typing derivation5; in particular, it is sufficient to be able to replace a type in
an environment (lemmatyp equiv env, Section 6.5). We will discuss the type equivalence relation proper in
Section 3.2.

5This is notquite true; in the typing rule for variables, we must be careful to allow for a different (but equivalent) attribute inE andfv.

7

3 Inversion

As we saw in the previous section, adding additional typing rules makes forward reasoning easier, but backward
reasoning more difficult. For example, if we add a contraction rule to the type system, it becomes trivial to
proveΓ, x : σ, y : σ ⊢ e : τ from Γ, z : σ ⊢ [z/x, z/y]e : τ (forward reasoning), but the inversion lemma for
application becomes more difficult to state (backward reasoning). Generally, we want to make the definition
of the type system permissive enough to facilitate forward reasoning, but not too permissive to complicate
backward reasoning. We already saw one example of this: rather than adding a separate contraction rule, it
is better to integrate contraction into the other rules (by introduction a generic context splitting operation; see
Section 2.2). In this section, we will see a number of other examples of this tension between forward and
backward reasoning.

3.1 Domain subtraction

In the definition of the type system we make use of a domain subtraction operation, denotedx fv, which
removesx from the domain offv. In this section we discuss how we should define this operation. In particular:
if x occurs more than once in the domain offv, should domain subtraction remove all of them, or only the
first? Using an example, we will see that we will need to choosethe latter option to be able to use backwards
reasoning.

We will need a few definitions first. An environment is well-formed if it is ok and well-kinded: that is, if
every variable occurs at most once in its domain and all the types in the codomain of the environment have the
same kind. Two environments are equivalent, denotedΓ ∼=k Γ′, if they are both well-formed and map the same
variables to the same types (the subscriptk denotes the kind of the types in the codomain of the environments;
these definitions are given formally in Section 4).

An important lemma is that ifΓ ⊢ e : τ|fv, Γ ∼=∗ Γ′ and fv ∼=U fv′, then Γ′ ⊢ e : τ|fv′ (Lemma
env equiv typing, Section 6.5). This lemma is important because it allows to change the order of the assump-
tions in the environment (Lemmaexchange) or replace a type by an equivalent type in an environment (Lemma
typ equiv env). The proof of the lemma is by induction on the typing relation.

Consider the case for the rule for abstraction. We know thatΓ ∼=∗ Γ′ and fv′ ∼=U fv′0. The induction
hypothesis gives us6

(Γ, x : a ∼=∗ Γ
′, x : a) → (fv′, x : v ∼=U fv) → (Γ

′, x : a ⊢ ex : b|fv)

and we have to show that

Γ
′ ⊢ λ · e : a

∨
fv′

−−→ b|fv′0

Replacing the attribute on the arrow by an equivalent one givesΓ′ ⊢ λ · e : a
∨
fv′0−−→ b|fv′0

, at which point we can
apply the typing rule for abstraction. Remains to show that

Γ
′, x : a ⊢ ex : b|fv

where we know thatfv′0 = x fv andx /∈ Γ ∪ fv′0. We can use the induction hypothesis to complete the proof,
but only if we can prove its two premises. The first one is straightforward, but the second is more tricky:

fv′, x : v ∼=U fv

To be able to show this equivalence, we need to be able to show thatfv is well-formed; in particular, we need to
be able to show that it isok (every variable occurs at most once in its domain). Sincex fv = fv′0, we know that

x fv is ok becausefv′0
∼=U fv′, and we know thatx /∈ x fv becausex /∈ fv′0. However, it now depends on the

definition of domain subtraction () whether we can show thatfv is ok.

6This is a minor simplification of the proof; in the actual proof, we need to distinguish between the case where the bound variable of the
abstraction is used in the body (the case which is shown here), and the case where it is not used. We do not discuss the second(easier) case.

8

If x fv removesall occurrences ofx from fv, then we will be unable to complete the proof: even ifx fv
is ok, that does not allow us to conclude anything about the well-formedness offv. On the other hand, ifx fv
only removes thefirst occurrence ofx, thenfv can contain at most one more assumption aboutx than x fv; if
additionally we know thatx /∈ x fv, then we can conclude thatfv must be ok.

Hence, we conclude that domain subtraction must remove the first occurrence of a variable only. This makes
forward reasoning slightly more difficult, since where before we could prove a lemma thatx /∈ x fv, now that
only holds if fv is ok. Fortunately, we always require environments to be well-formed, so this is no problem in
practice. On the other hand, backwards reasoning (proving that fv is ok given that x fv is ok andx /∈ x fv) is
impossible if domain subtraction removes all variables from the domain of an environment.

3.2 Type equivalence

Huntington’s Postulates give us an equivalence relation≈B on types. For example, we have thatu∨ v ≈B v∨ u
(commutativity of disjunction) oru ∧ • ≈B u (identity element for conjunction). We want to extend this
equivalence relation to a more general equivalence relation (≈T), which is effectively (≈B) extended with a
closure rule for type application:

t ≈B t′

t ≈T t′
t ≈T t′ s ≈T s′

t s ≈T t′ s′

This allows us to derive thattu∨v ≈T tv∨u, for example, or that ifa ≈T a′, thena
u
−→ b ≈T a′

u
−→ b (recall that

a
u
−→ b is syntactic sugar forAttr (Arr a b) u). However, we also occasionally need to reason backwards on

the typing equivalence relation: if we know thattu ≈T tv, we would like to be able prove thatu ≈T v.
It would seem that the easiest way to prove that would be to prove the following inversion lemma: if

t s ≈T t′ s′, then t ≈T t′ and s ≈T s′. Unfortunately, that lemma does not hold. Recall that we do not
distinguish between types and attributes in our type system. That is, the “attribute”u ∨ v is a type (which
happens to have kindU). Moreover,u ∨ v is really syntactic sugar for the application of a special type constant
Or of kindU → U → U to two arguments (Or u v). By Huntington’s Postulates we have thatu∨ v ≈T v∨ u,
or desugared:Or u v ≈T Or v u. If the inversion lemma were true, we would thus be able to conclude that
u ≈T v, for anyu andv.

So, to make backwards reasoning possible, we need to redefine≈T slightly:

t ≈B t′ t : U , t′ : U

t ≈T t′
t ≈T t′ s ≈T s′ ¬(t s : U)

t s ≈T t′ s′

(In addition, we need to introduce reflexivity, commutativity and transitivity rules; they were previously implied
by (≈B)). We can now prove the following inversion lemma: ift s ≈T t′ s′, andt s does not have kindU ,
thent ≈T t′ ands ≈T s′. Restricting the closure rule to types of kind other thanU is not strictly necessary to
prove this inversion lemma, but makes proving other lemmas easier (for example, Lemmatyp equiv BA equiv,
Section 5.11) without reducing the equivalence relation: closure for types of kindU is already implied by
Huntington’s Postulates.

This modification to the type equivalence relation has an additional benefit. Recall the following rule for
context splitting:

E = E1 ◦ E2 non-uniquet
E, x : t = E1, x : t ◦ E2, x : t

SPLIT-BOTH

Since the context splitting operation is applied both to typing environments (Γ) and the lists of free variables
(fv), we give the following two axioms to prove “non-unique”:

u ≈T ×

non-unique(tu)
NU∗

u ≈T ×

non-unique(u)
NUU

Now consider proving the following lemma: ifa
u
−→ b is non-unique, thenu ≈T ×. The proof proceeds by

inversion on non-unique(a
u
−→ b). The case for rule NU∗ is trivial, but how can we dismiss the case for rule

9

NUU? Without the kind requirements added to the type equivalence relation, we would have to show that it is
impossible thata

u
−→ b is equivalent to× by Huntington’s Postulates; not an easy proof!7

3.3 Evaluation contexts

The operational semantics we use is the call-by-need semantics by Maraistet al. [11]. In this semantics, the
definition of evaluation depends on the notion of anevaluation context, which is essentially a term with a hole
in it (the difference between an evaluation context and the more general notion of a “context” [2] is that in an
evaluation context, we restrict where the hole can appear inthe term). There are various ways in which we can
formalize an evaluation context in Coq. In simple cases, we can follow informal practice and define a context
E inductively, followed by a definition of plugging a termM into the hole in the contextE[M]. This is the
approach taken in [4], for instance, but it does not apply here because we need the definition ofE[M] when
definingE[].

Another approach [8] is to define a context as an ordinary function on terms, and then (inductively) define
which functions on terms can be regarded as evaluation contexts. This is an attractive and elegant approach, but
does not work so well in the locally-nameless approach: since some evaluation contexts place a term within the
scope of a binder but others do not, we must distinguish betweenbindingcontexts which have the property that
if tx is a term for some freshx, thenE[x] is also a term, andregularcontexts (which do not have this property).

For example, consider the proof that reduction is regular: if e 7→ e′, then bothe ande′ are locally closed8.
The proof is by induction one 7→ e′. In the case for the closure rule, we know thatE[e] andE[e′] are locally
closed, and we have to show thate ande′ are locally closed. However, we may or may not be able to show this
(depending on whetherE is a regular or a binding context). Thus, we need to distinguish the “closing” evaluation
contexts from the others, at which point the elegance of the approach starts disappearing. We now need two
closure rules (one for closing and one for regular contexts)and we have introduced a new characterization of
evaluation contexts that we will need to reason about.

To avoid having to reason about closing contexts and regularcontexts, we instead inline the definition of the
evaluation contexts into the definition of the reduction relation. This gives only one more rule than when giving
a closure rule for regular contexts and a closure rule for closing contexts, and moreover, the resulting closure
rules correspond to intuitive notions about the semantics.

We still need to define the notion of an evaluation context, because the reduction relation depends on it in the
other rules too. As mentioned before, we cannot define the notion of a context separately from plugging a term
into the hole. The solution we adopt is to defineE as a binary relation between a term and a free variable, where
E t x should be read ast evaluatesx (there is an evaluation contextE such thatt = E[x]). This gives good
inversion principles (suitable for backwards reasoning) and combines well with the locally nameless approach.

Acknowledgements

Arthur Charguéraud has been extremely helpful in getting started with this proof and the use of hisFormal
Metatheorylibrary. Many thanks! In addition, I would not have been ableto complete this proof without the
generous assistance of the people on the Coq mailing list, inparticular (in alphabetical order): Adam Chlipala,
Adam Megacz, Arnaud Spiwack, Benjamin Werner, Brian Aydemir, Carlos Simpson, Damien Pous, Eduardo
Gimenez, Frédéric Besson, Frédéric Blanqui, Gyesik Lee, James McKinna, Jean Duprat, Jean-François Monin,
Jevgenijs Sallinenes, Julien Forest, Julien Narboux, Lionel Elie Mamane, Matthieu Sozeau, Pierre Castéran,
Pierre Courtieu, Pierre Letouzey, Pietro Di Gianantonio, Randy Pollack, Santiago Zanella, Stéphane Glondu,
Vincent Aravantinos, Yevgeniy Makarov and Yves Bertot.

7If the proof seems trivial, perhaps the reader would like to attempt an even easier proof: prove that it is impossible to construct a proof
using Huntington’s postulates that “true” is equivalent to“false”—without using an interpretation function! (It is not clear how to define an
interpretation function for the broader class of types, as opposed to just the types of kindU .)

8We mentioned before that in the locally nameless approach toformal metatheory we distinguish between bound variables,represented
by De Bruijn indices, and free variables, represented by ordinary names. A term is locally closed if it does not contain any “unbound bound
variables”; that is, if it does not contain any De Bruijn indices without a corresponding binder.

10

4 Definitions

4.1 Types

A type is either a type constant or the application of one typeto another.

Inductive typ : Set :=
(** Type application*)
| typ app: typ→ typ→ typ
(** Type constants*)
| ARR: typ
| ATTR: typ
| UN : typ
| NU : typ
| OR: typ
| AND : typ
| NOT : typ.

For convenience, we define a number of functions to denote commonly used types, and some custom notation
for attributed types.

Definition bi app(f a b : typ) : typ := typ app(typ app f a) b.

Definition arr (a b : typ) : typ := bi app ARR a b.
Definition attr (t u : typ) : typ := bi app ATTR t u.
Definition or (u v : typ) : typ := bi app OR u v.
Definition and(u v : typ) : typ := bi app AND u v.
Definition not (u : typ) : typ := typ app NOT u.

Notation "t ’ u" := (attr t u) (at level60).
Notation "a 〈 u 〉 b" := ((arr a b) ’ u) (at level68).

(A subset of the) language of types forms a boolean algebra.

Module TypeAsBooleanAlgebra<: BooleanAlgebraTerm.

Definition trm := typ.
Definition true := UN.
Definition false:= NU.
Definition or := or.
Definition and := and.
Definition not := not.

End TypeAsBooleanAlgebra.

Module BA := BooleanAlgebra TypeAsBooleanAlgebra.

4.2 Kinding relation

The definition of kinds.

Inductive kind : Set :=
| kind T : kind
| kind U : kind
| kind star : kind
| kind arr : kind→ kind→ kind.

11

Kinding relation.

Inductive kinding: typ→ kind→ Prop :=
| kinding app: ∀ t1 t2 k1 k2,

kinding t1(kind arr k1 k2) →
kinding t2 k1→
kinding(typ app t1 t2) k2

| kinding ARR: kinding ARR(kind arr kind star (kind arr kind star kind T))
| kinding ATTR: kinding ATTR(kind arr kind T (kind arr kind U kind star))
| kinding UN : kinding UN kind U
| kinding NU : kinding NU kind U
| kinding OR: kinding OR(kind arr kind U (kind arr kind U kind U))
| kinding AND : kinding AND(kind arr kind U (kind arr kind U kind U))
| kinding NOT : kinding NOT(kind arr kind U kind U).

Hint Constructors kinding.

Equivalence between types

Inductive typ equiv: typ→ typ→ Prop :=
(** The type equivalence includes the boolean equivalence relation *)
| typ equiv attr : ∀ u v,

kinding u kind U →
kinding v kind U →
BA.equiv u v→
typ equiv u v

(** Closure(does not apply to types of kind U) *)
| typ equiv app: ∀ s t s’ t’,

¬ kinding(typ app s t) kind U →
typ equiv s s’→
typ equiv t t’→
typ equiv(typ app s t) (typ app s’ t’)

(** Structural rules*)
| typ equiv refl : ∀ t,

typ equiv t t
| typ equiv sym: ∀ t s,

typ equiv t s→ typ equiv s t
| typ equiv trans: ∀ t s r,

typ equiv t s→ typ equiv s r→ typ equiv t r.

Hint Constructors typequiv.

4.3 Environment

The definition of an environment comes from the Formal Metatheory library; we just need to instantiate it with
our definition of a type.

Definition env: Set := Env.env typ.

An environment is well-formed if it isok and well-kinded.

Definition env kind (k : kind) : env→ Prop :=
env prop (fun t ⇒ kinding t k).

Definition env wf (E : env) (k : kind) : Prop :=
ok E∧ env kind k E.

12

Two environments are considered equivalent if they both bind the same variables to equivalent types, and both
are wellformed. For clarity, we introduce a special syntax to denote equivalence.

Definition env equiv(E1 E2: env) (k : kind) : Prop :=
env wf E1 k∧ env wf E2 k∧
(∀ x t, binds x t E1→ ∃ t’ , binds x t’ E2∧ typ equiv t t’) ∧
(∀ x t, binds x t E2→ ∃ t’ , binds x t’ E1∧ typ equiv t t’).

Notation "E1∼= E2" := (env equiv E1 E2) (at level70).

The definition of the context split operation, as explained in the introduction. The context split is used both to
split E, the typing environment andfvars, the list of free variables and their uniqueness attributesin the typing
rules. For this reason, we introduce a separate “nonunique” property of types, which applies to types of kind∗
when they have a non-unique attribute, and to attributes (types of kindU) when they are non-unique themselves.

Reserved Notation"’ split context’ E’as’ (E1 ; E2)".

Inductive non unique: typ→ Prop :=
| NU star : ∀ t u,

typ equiv u NU→ non unique(t ’ u)
| NU U : ∀ u,

typ equiv u NU→ non unique u.

Inductive context split : env→ env→ env→ Prop :=
| split empty:

split context emptyas (empty; empty)
| split both: ∀ E E1 E2 x t, split context Eas (E1 ; E2) → non unique t→

split context(E & x ¬ t) as (E1& x ¬ t; E2& x ¬ t)
| split left : ∀ E E1 E2 x t, split context Eas (E1 ; E2) →

split context(E & x ¬ t) as (E1& x ¬ t ; E2)
| split right : ∀ E E1 E2 x t, split context Eas (E1 ; E2) →

split context(E & x ¬ t) as (E1 ; E2& x¬ t)
where

"’ split context’ E’as’ (E1 ; E2)" := (context split E E1 E2).

Hint Constructors nonunique contextsplit.

4.4 Operations on the typing context

Disjunction of all types on the range of the environment
Fixpoint rng (E : env) : typ :=

match E with
| nil ⇒ NU
| (x, u) :: tail ⇒ or u (rng tail)
end.

Remove the first occurrence ofx in E
Fixpoint dsub(x : var) (E : env) { struct E} : env:=

match E with
| nil ⇒ nil
| (y, t) :: tail ⇒ if x == y then tail else (y, t) :: dsub x tail
end.

Call dsubfor everyx in xs.
Fixpoint dsub list (xs: list var) (E : env) : env:=

match xswith

13

| nil ⇒ E
| x :: xs’ ⇒ dsub list xs’ (dsub x E)
end.

Variation ondsub list working on setsxsrather than lists.
Definition dsub vars(xs: vars) (E : env) : env:= dsub list (S.elements xs) E.

4.5 Typing relation

The rule for variablestyping var is subtle in two ways: since it only requires thatbinds x(t ’ u) E, and therefore
allows for other assumptions inE, it implicitly allows weakening onE. However, it is much more strict onfvars
(the only assumption infvarsmust be the assumptionx : u; hence, no weakening is allowed onfvars). This is
important, because while additional assumptions inE cannot affect the type of a term, additional assumptions in
fvarscan (by unnecessarily forcing an abstraction to be unique).The typing rule for abstraction uses the cofinite
quantification discussed in the introduction.

Reserved Notation"E ⊢ t : T | fvars" (at level69).

Inductive typing: env→ trm → typ→ env→ Prop :=
| typing var : ∀ E x t u v,

env wf E kind star→
binds x(t ’ u) E →
typ equiv u v→
E ⊢ (trm fvar x) : t ’ u | x ¬ v

| typing abs: ∀ L E a b e fvars’,
(∀ x fvars, x \notin L→ fvars’ = dsub x fvars→

(E & x ¬ a) ⊢ e ˆ x : b | fvars) →
E ⊢ (trm abs e) : a 〈 rng fvars’ 〉 b | fvars’

| typing app: ∀ E E1 E2 fvars fvars1 fvars2 e1 e2 a b u,
E1⊢ e1 : a 〈 u 〉 b | fvars1→
E2⊢ e2 : a | fvars2→
split context Eas (E1 ; E2) → env wf E kind star→
split context fvarsas (fvars1; fvars2) → env wf fvars kind U →
E ⊢ (trm app e1 e2) : b | fvars

| typing equiv: ∀ E e a b fvars,
E ⊢ e : a | fvars→
typ equiv a b→
E ⊢ e : b | fvars

where"E ⊢ t : T | fvars" := (typing E t T fvars).

Hint Constructors typing.

4.6 Semantics

We treat “letx = y in z” as syntactic sugar for(λx · z) y.
Notation "’ lt’ x ’ in’ y" := (trm app(trm abs y) x) (at level70).

Definition ofanswer, evalandred as in [11]; again, we’re using cofinite quantification.

Inductive answer: trm → Prop :=
| answer abs: ∀ M, term(trm abs M) →

answer(trm abs M)
| answer let : ∀ L M A, term(lt M in A) →

(∀ x, x \notin L→ answer(A ˆ x)) →

14

answer(lt M in A).

Definition of an evaluation context

Inductive evals: trm → var → Prop :=
| evals hole: ∀ x,

evals(trm fvar x) x
| evals app: ∀ x E M, evals E x→

evals(trm app E M) x
| evals let : ∀ L x E M,

(∀ y, y \notin L→ evals(E ˆ y) x) →
evals(lt M in E) x

| evals dem: ∀ L x E M, evals E x→
(∀ y, y \notin L→ evals(M ˆ y) y) →
evals(lt E in M) x.

Hint Constructors evals.

As mentioned before, the reduction relation we use is the standard reduction from [11], except thatred value
is defined as in [11, Section “On types and logic”, p. 38] (adapted for standard reduction). None of these rules
adjust any of the bound variables (which are after all De Bruijn variables); this is justified by lemmared regular,
given in Section 5.7, which states that the reduction relation is defined forlocally closedterms only (that is,
they may contain free variables, but no unbound De Bruijn indices).

Inductive red : trm → trm → Prop :=
(** Standard reduction rules*)
| red value: ∀ L M N, term(lt (trm abs M) in N) →

(∀ x, x \notin L→ evals(N ˆ x) x) →
red (lt (trm abs M) in N) (N ˆˆ trm abs M)

| red commute: ∀ L M A N, term(trm app(lt M in A) N) →
(∀ x, x \notin L→ answer(A ˆ x)) →
red (trm app(lt M in A) N) (lt M in trm app A N)

| red assoc: ∀ L M A N, term(lt (lt M in A) in N) →
(∀ x, x \notin L→ answer(A ˆ x)) →
(∀ x, x \notin L→ evals(N ˆ x) x) →
red (lt (lt M in A) in N) (lt M in lt A in N)

(** Compatible closure*)
| red closure app: ∀ E E’ M, term(trm app E M) →

red E E’→
red (trm app E M) (trm app E’ M)

| red closure let : ∀ L E E’ M, term(lt M in E) →
(∀ x, x \notin L→ red (E ˆ x) (E’ ˆ x)) →
red (lt M in E) (lt M in E’)

| red closure dem: ∀ L E0 E0’ E1, term(lt E0 in E1) →
red E0 E0’→
(∀ x, x \notin L→ evals(E1 ˆ x) x) →
red (lt E0 in E1) (lt E0’ in E1).

Hint Constructors answer red.

5 Preliminaries

15

5.1 Some additional lemmas aboutok and binds

Every variable occurs at most once.
Lemma ok mid : ∀ (E2 E1: env) x t,

ok (E1& x ¬ t & E2) → x # E1∧ x # E2.
By induction onE2.

If two environments are bothok and their domains are disjoint, then their concatenation isalsook.
Lemma ok concat: ∀ (E2 E1: env),

ok E1→ ok E2→
(∀ x, x \in dom E1→ x \notin dom E2) →
(∀ x, x \in dom E2→ x \notin dom E1) →
ok (E1& E2).

By induction onE2.

If the concatenation of two environments isok, then their domains must be disjoint.
Lemma ok concat inv 2 : ∀ (E2 E1: env),

ok (E1& E2) →
(∀ x, x \in dom E1→ x \notin dom E2) ∧
(∀ x, x \in dom E2→ x \notin dom E1).

By induction onE2.

We can change the order of the assumptions in an environment without affectingok.
Lemma ok exch: ∀ (E1 E2: env),

ok (E1& E2) → ok (E2& E1).
By induction onE1.

Generalization ofok exch.
Lemma ok exch 3 : ∀ (E1 E2 E3: env),

ok (E1& E2& E3) → ok (E1& E3& E2).
Follows fromok concat inv 2 andok exch.

If an environment binds a variablex, thenx must be in the domain of the environment.
Lemma binds in dom: ∀ (A : Set) x (T : A) E,

binds x T E→ x \in dom E.
By induction onE.

Inverse ofbinds in dom: if a variablex is in the domain of an environment, then the environment mustbindx.
Lemma in dom binds: ∀ (E : env) x,

x \in dom E→ ∃ t, binds x t E.
By induction onE.

Binds is unaffected by the order of the assumptions in an environment.
Lemma binds exch: ∀ (E1 E2: env) x t, ok (E1& E2) →

binds x t(E1& E2) →
binds x t(E2& E1).

Follows fromok concat inv 2.

Generalization ofbinds exch.
Lemma binds exch 3 : ∀ (E1 E2 E3: env) x t, ok (E1& E2& E3) →

binds x t(E1& E2& E3) →
binds x t(E1& E3& E2).

Trivial.

A variable can only be bound to one type.
Lemma binds head inv : ∀ (E : env) x a b,

binds x a(E & x ¬ b) → a = b.
Trivial.

16

5.2 Renaming Lemmas

All these renaming lemmas are proven in the same way. We first prove a substitution lemma which states that
the names of the free variables do not matter, and then we prove the renaming lemma using the substitution
lemma and the fact thatt ˆˆ u = [x u] t ˆ x, as long asx \notin fv t.

If e is an answer, then it will still be an answer when we rename anyof its free variables.
Lemma subst answer: ∀ e x y,

answer e→ answer([x trm fvar y] e).
By induction onanswer e.

If t ˆ x is an answer, thent ˆ y will also be an answer for anyy.
Lemma answer rename: ∀ x y t,

x \notin fv t→
answer(t ˆ x) → answer(t ˆ y).

Follows fromsubst answer.

If M evaluatesx (by the evaluation context relation defined previously) then if we renamey to z in M, M will
still evaluatex if x 6= y, or M will evaluatezotherwise.
Lemma subst evals: ∀ M x y z,

evals M x→ evals([y trm fvar z] M) (if x == y then z else x).
By induction onevals M x.

If M ˆ x evaluatesx, thenM ˆ y will evaluatey for anyy.
Lemma evals rename: ∀ M x y,

x \notin fv M→
evals(M ˆ x) x→ evals(M ˆ y) y.

Follows fromsubst evals.

Specialization ofsubst evals, excluding the case thatx = y.
Lemma subst evals 2 : ∀ M x y z, x 6= y→

evals M x→ evals([y trm fvar z] M) x.
Follows fromsubst evals.

Generalization ofevals rename.
Lemma evals rename2 : ∀ M x y z,

x \notin fv M→ z 6= x→
evals(M ˆ x) z→ evals(M ˆ y) z.

Follows fromsubst evals 2.

If e reduces toe’, then if we rename a free variable by another in both terms thereduction relation will still hold.
Lemma subst red : ∀ e e’ x y,

red e e’→ red ([x trm fvar y] e) ([x trm fvar y] e’).
By induction onred e e’; usessubst evals 2.

If M ˆ x reduces toN ˆ x, thenM ˆ y will reduce toN ˆ y for anyy.
Lemma red rename: ∀ x y M N,

x \notin fv M→ x \notin fv N→
red (M ˆ x) (N ˆ x) → red (M ˆ y) (N ˆ y).

Follows trivially fromsubst read.

5.3 Term opening

Auxiliary lemma used to provein open, below.
Lemma in open aux: ∀ M x y k l, x 6= y →

x \in fv ({ k trm fvar y} M) → x \in fv ({ l trm fvar y} M).

17

By induction onM.

If x is free inM ˆ y andy 6= x, thenx is free inM.
Lemma in open: ∀ M x y,

x \in fv (M ˆ y) → y 6= x → x \in fv M.
By induction onM; usesin open aux.

If x is free ine, thenx will still be free when we substitute any bound variable ine.
Lemma in open 2 : ∀ e e’ k x,

x \in fv e→ x \in fv ({ k e’} e).
By induction one.

If x is not free int, then if we replace a bound variablek by y (wherex 6= y) in t, x will still not be free int.
Lemma open rec fv : ∀ t x y k,

x \notin fv t→ x 6= y → x \notin fv({ k trm fvar y} t).
By induction ont.

If t ˆ x is locally-closed, then substituting for any bound variables larger than 0 int has no effect.
Lemma open rec term open: ∀ t x,

term(t ˆ x) → ∀ k t’, k ≥ 1 → t = {k t’ } t.
Trivial.

5.4 Domain subtraction

Subtracting an elementx from the domain of an environmentfvarshas no effect whenx wasn’t in the domain
of fvarsto start with.
Lemma dsub not in dom: ∀ (fvars: env) x, x # fvars→

fvars= dsub x fvars.
By induction onfvars.

x removesx from a domain
Lemma not in dom dsub: ∀ fvars x, ok fvars→

x # dsub x fvars.
By induction onfvars.

Removingx from E & x ¬ t givesE.
Lemma dsub head: ∀ E x t, dsub x(E & x ¬ t) = E.
Trivial.

() distributes over (++).
Lemma dsub app: ∀ E1 E2 x, ok (E1++ E2) →

dsub x(E1++ E2) = dsub x E1++ dsub x E2.
By induction onE1.

() distributes over (&).
Corollary dsub concat: ∀ fvars1 fvars2 x, ok (fvars1& fvars2) →

dsub x(fvars1& fvars2) = dsub x fvars1& dsub x fvars2.
Follows trivially fromdsub app.

If removingx from fvars is the empty environment, theny cannot be in the domain offvars.
Lemma not in dom empty: ∀ fvars x y,

dsub x fvars= empty→ x 6= y → y \in dom fvars→ False.
By case analysis onfvars.

If E bindsx andx 6= y, then(yE) bindsx.
Lemma binds dsub: ∀ E x y T,

binds x T E→ x 6= y → binds x T(dsub y E).

18

By induction onE.

Inverse property ofbinds dsub inv.
Lemma binds dsub inv : ∀ E x y T,

binds x T(dsub y E) → x 6= y→ binds x T E.
By induction onE.

If x is in the domain ofE andx 6= y, thenx is in the domain ofdsub y E.
Lemma in dom dsub: ∀ E x y,

x \in dom E→ x 6= y → x \in dom(dsub y E).
By induction onE.

Inverse property ofin dom dsub.
Lemma in dom dsub inv : ∀ E x y,

x \in dom(dsub y E) → x \in dom E.
By induction onE.

If x is in the domain ofE and yE is the empty environment, thenx must bey.
Lemma in dom dsub empty: ∀ E x y,

x \in dom E→ dsub y E= empty→ x = y.
By induction onE.

If an environment isok, it will still be ok if we remove a variable from its domain.
Lemma ok dsub: ∀ E x,

ok E→ ok (dsub x E).
By induction onok E.

If an environment isok, it will still be ok if we add a single assumption aboutx to the environment, provided
thatx wasn’t already in the domain ofE.
Lemma ok dsub inv : ∀ E x,

ok (dsub x E) → x # dsub x E→ ok E.
By induction onE.

If removingx from an environment yields the empty environment, then either the environment was empty to
start with, or it is the singleton environment bindingx.
Lemma dsub empty: ∀ E x,

dsub x E= empty→ E = empty∨ ∃ t, E = x ¬ t.
By induction onE.

5.5 Kinding properties

An attributed type consists of a base type and an attribute.
Lemma kinding star inv : ∀ t u, kinding(t ’ u) kind star→

kinding t kind T ∧ kinding u kind U.
By inversion onkinding(t ’ u) kind star.

The domain and codomain of functions must have kind∗, and the attribute on the arrow must have kindU.
Lemma kinding fun inv : ∀ a u b, kinding(a 〈 u 〉 b) kind star→

kinding a kind star∧ kinding u kind U ∧ kinding b kind star.
By inversion onkinding(a 〈 u 〉 b) kind star.

Every type has at most one kind.
Lemma kind unique: ∀ t k1, kinding t k1→
∀ k2, kinding t k2→ k1= k2.

By induction onkinding t k1.

Equivalent types must have the same kind.

19

Lemma typ equiv samekind : ∀ t s, typ equiv t s→
∀ k, kinding t k↔ kinding s k.

By induction ontyp equiv t s; useskind unique.

or a b has kindU if a andb have kindu.
Lemma kinding or : ∀ a b, kinding a kind U → kinding b kind U →

kinding(or a b) kind U.
Trivial.

5.6 Well-formedness of environments

If an environment is well-formed, it must beok.
Lemma env wf ok : ∀ E k, env wf E k→ ok E.
Trivial.

The empty environment is well-formed.
Lemma env wf empty: ∀ k, env wf empty k.
Trivial.

The singleton environment is well-formed.
Lemma env wf singleton: ∀ x t k, kinding t k→

env wf (x ¬ t) k.
Trivial.

An environment can be extended with (x¬ t) if x is not already inE andt has the right kind.
Lemma env wf extend: ∀ E k x t, x # E → kinding t k→

env wf E k→ env wf (E & x ¬ t) k.
Trivial.

The tail of a well-formed environment is also well-formed.
Lemma env wf tail : ∀ E x t k,

env wf (E & x ¬ t) k → env wf E k.
Trivial.

Well-formedness of an environment is unaffected if we remove a variable.
Lemma env wf dsub: ∀ E k x,

env wf E k→ env wf (dsub x E) k.
Follows frombinds dsub inv.

Well-formedness of an environment is unaffected when we adda fresh variable of the right kind.
Lemma env wf dsub inv : ∀ E k x,

env wf (dsub x E) k →
(∀ t, binds x t E→ kinding t k) → x # dsub x E→
env wf E k.

Follows fromok dsub inv andbinds dsub.

Well-formed is unaffected if we replace a type by an equivalent one.
Lemma env wf typ equiv: ∀ E k x t s, typ equiv t s→

env wf (E & x ¬ t) k → env wf (E & x ¬ s) k.
Follows fromtyp equiv samekind.

Well-formedness of an environment is independent of the order of the assumptions.
Lemma env wf exch: ∀ E1 E2 k,

env wf (E1& E2) k → env wf (E2& E1) k.
Trivial (usesbinds exch).

Generalization ofenv wf exch.

20

Lemma env wf exch 3 : ∀ E1 E2 E3 k,
env wf (E1& E2& E3) k → env wf (E1& E3& E2) k.

Trivial (usesbinds exch 3).

Every type in a well-formed environment has the same kind.
Lemma env wf binds kind : ∀ E x t k, env wf E k→

binds x t E→ kinding t k.
Trivial.

Every part of a well-formed environment must be well-formed.
Lemma env wf concat inv : ∀ E1 E2 k, env wf (E1& E2) k →

env wf E1 k∧ env wf E2 k.
Trivial.

5.7 Regularity

A typing relation only holds when the environment is well-formed and the term is locally closed.
Lemma typing regular : ∀ E e T fvars,

typing E e T fvars→
env wf E kind star∧ env wf fvars kind U ∧ term e.

By induction ontyping E e T fvars.

The answer predicate only holds for locally closed terms.
Lemma answer regular : ∀ e,

answer e→ term e.
Trivial induction onanswer e.

The reduction relation only holds for pairs of locally closed terms.
Lemma body app: ∀ e e’, term e’→

body e→ body(trm app e e’).
Trivial.

The reduction relation only applies to locally closed terms.
Lemma red regular : ∀ e e’,

red e e’→ term e∧ term e’.
By induction onred e e’; usesopen rec term open.

5.8 Well-founded induction on subterms

Subterm relation on locally-closed terms.
Inductive subterm: trm → trm → Prop :=
| sub abs: ∀ x t, subterm(t ˆ x) (trm abs t)
| sub abs trans: ∀ x t t’, subterm t’(t ˆ x) → subterm t’(trm abs t)
| sub app1: ∀ t1 t2, subterm t1(trm app t1 t2)
| sub app2: ∀ t1 t2, subterm t2(trm app t1 t2)
| sub app1 trans: ∀ t’ t1 t2, subterm t’ t1→ subterm t’(trm app t1 t2)
| sub app2 trans: ∀ t’ t1 t2, subterm t’ t2→ subterm t’(trm app t1 t2).

Size is defined to be the number of constructors used to build up a term.
Fixpoint size(t:trm) : nat :=

match t with
| trm fvar x⇒ 1
| trm bvar i ⇒ 1
| trm abs t1⇒ 1 + size t1

21

| trm app t1 t2⇒ 1 + size t1+ size t2
end.

Size is unaffected by substituting free variables for boundvariables.
Lemma size subst free : ∀ t i x,

size t= size({ i trm fvar x} t).
By induction ont.

Special case ofsize subst free.
Lemma size open: ∀ t x,

size t= size(t ˆ x).
Follows directly fromsize subst free.

The subterm relation is well-founded9.
Lemma subtermwell founded: well founded subterm.
We prove the more general property∀ (n:nat) (t:trm), size t< n → Acc subterm tby induction onn.

5.9 Iterated domain subtraction

Removing a list of variables from the empty environment yields the empty environment.
Lemma dsub list nil : ∀ xs, dsub list xs nil = nil.
Trivial.

Like dsub list nil but usingdsub vars instead ofdsub list.
Lemma dsub vars nil : ∀ xs, dsub vars xs nil= nil.
Follows directly fromdsub list nil.

Auxiliary lemma used to provedsub list inv, below.
Lemma dsub list inv aux1: ∀ xs E v t, ok ((v, t) :: E) →

In v xs→ dsub list xs((v, t) :: E) = dsub list xs E.
By induction onxs; usesin dom dsub inv.

Auxiliary lemma used to provedsub list inv, below.
Lemma dsub list inv aux2: ∀ xs E v t,
¬ In v xs→ dsub list xs((v, t) :: E) = (v, t) :: dsub list xs E.

By induction onxs.

The following lemma is useful in proofs involvingdsub list. When we applydsub list xs to an environment
with head (v, t), then eitherv is in the listxsand the head of the list will be removed, orv is not in the listxsand
the head of the list will be left alone.
Lemma dsub list inv : ∀ xs E v t, ok ((v, t) :: E) →

(In v xs∧ dsub list xs((v, t) :: E) = dsub list xs E) ∨
(˜ In v xs∧ dsub list xs((v, t) :: E) = (v, t) :: dsub list xs E).

Follows fromdsub list inv aux 1 anddsub list inv aux 2.

Like dsub list inv but usingdsub vars instead ofdsub list.
Lemma dsub vars inv : ∀ xs E v t, ok ((v, t) :: E) →

(v \in xs∧ dsub vars xs((v, t) :: E) = dsub vars xs E) ∨
(v \notin xs∧ dsub vars xs((v, t) :: E) = (v, t) :: dsub vars xs E).

Follows fromdsub list inv.

The order in which we remove variables from the domain of an environment is irrelevant.
Lemma dsust list permut: ∀ E xs ys, ok E→

(∀ x, In x xs→ In x ys) →
(∀ y, In y ys→ In y xs) →

9Proof suggested by Arthur Charguéraud.

22

dsub list xs E= dsub list ys E.
By induction onE; usesdsub list inv twice in the induction step (once forxsand once forys).

Like dsust list permut, but usingdsub vars instead ofdsub list.
Lemma dsust vars permut: ∀ E xs ys, ok E→

(∀ x, x \in xs→ x \in ys) →
(∀ y, y \in ys→ y \in xs) →
dsub vars xs E= dsub vars ys E.

Proof analogous todsust list permutbut usingdsub vars inv instead.

Special case ofdsub vars inv.
Lemma dsub vars concat assoc: ∀ E xs x t, ok (E & x ¬ t) →

x \notin xs→ dsub vars xs(E & x ¬ t) = (dsub vars xs E) & x¬ t.
Follows fromdsub vars inv.

Special case ofdsub vars inv.
Lemma dsub vars cons: ∀ E xs x t, ok (E & x ¬ t) → x \in xs→

dsub vars xs(E & x ¬ t) = dsub vars xs E.
Follows fromdsub vars inv.

To remove ({{x}} \ u xs) from the domain of an environment, we first removex and thenxs.
Lemma dsub vars to dsub: ∀ E x xs, ok E→

dsub vars({{ x}} \ u xs) E = dsub vars xs(dsub x E).
Follows fromdsust list permut.

If x is in the domain of (E with xsremoved), thenx must be in the set (domain ofE) with xsremoved.
Lemma in dom dsub vars: ∀ E x xs, ok E→

x \in dom((dsub vars xs) E) → x \in (S.diff (dom E) xs).
By induction onE; usesdsub vars inv in the induction step.

If x is not in the domain ofE to start with, then it certainly will not be in the domain ofE after we have removed
some variables from the domain ofE.
Lemma notin dom dsub vars: ∀ E x xs, ok E→

x # E → x # (dsub vars xs E).
Trivial.

5.10 Context split

We can swap the two branches of a context split:

E1 E2

E

⇒
E2 E1

E

Lemma split exch: ∀ E E1 E2,
split context Eas (E1 ; E2) → split context Eas (E2 ; E1).

Trivial induction onsplit context Eas (E1 ; E2).

If

E1 E2

E andx is in the domain ofE1, thenx must be in the domain ofE.
Lemma in dom split 1 : ∀ E E1 E2 x,

split context Eas (E1 ; E2) → x \in dom E1→ x \in dom E.
By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E andx is in the domain ofE2, thenx must be in the domain ofE.
Lemma in dom split 2 : ∀ E E1 E2 x,

23

split context Eas (E1 ; E2) → x \in dom E2→ x \in dom E.
Follows fromin dom split 1 andsplit exch.

If

E1 E2

E andx is in the domain ofE, thenx must either be in the domain ofE1 or in the domain ofE2 (or
both).
Lemma in dom split inv : ∀ E E1 E2 x,

split context Eas (E1 ; E2) → x \in dom E→ x \in dom E1∨ x \in dom E2.
By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E andE1 bindsx, thenE must bindx. Note that unlikein dom split 1, we requireE to beok.
Lemma binds split 1 : ∀ E E1 E2 x t, ok E→

split context Eas (E1 ; E2) → binds x t E1→ binds x t E.
By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E andE2 bindsx, thenE must bindx. Note that unlikein dom split 1, we requireE to beok.
Lemma binds split 2 : ∀ E E1 E2 x t, ok E→

split context Eas (E1 ; E2) → binds x t E2→ binds x t E.
Follows frombinds split 1 andsplit exch.

If

E1 E2

E andE bindsx, then eitherE1 or E2 (or both) must bindx. Note that unlikein dom split inv, we
requireE to beok.
Lemma binds split inv : ∀ E E1 E2 x t,

split context Eas (E1 ; E2) → binds x t E→ binds x t E1∨ binds x t E2.
By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E then

xE1 xE2

xE .
Lemma split dsub: ∀ E E1 E2 x,

split context Eas (E1 ; E2) → ok E→
split context(dsub x E) as (dsub x E1; dsub x E2).

By induction on split context E as (E1 ; E2)].

We can always split an environmentE as

E ∅

E .
Lemma split empty: ∀ E,

split context Eas (E ; empty).
Trivial induction onE.

If

E′ ∅

E thenE must beE’.
Lemma split empty inv : ∀ E E’,

split context Eas (E’ ; empty) → E = E’.
We prove∀ E E’ E” , split context Eas (E’ ; E”) → E” = empty→ E = E’ by induction onsplit context Eas
(E’ ; E”).

We can always splitE, x : t as

E x : t

E, x : t .

24

Lemma split tail : ∀ E x t,
split context(E & x ¬ t) as (E ; x¬ t).

Follows fromsplit empty.

If

E1 E2

E , E bindsx andx is in the domain ofE1, thenE1 must bindx.
Lemma split binds in dom 1 : ∀ E E1 E2,

split context Eas (E1 ; E2) → ok E→
∀ x t, binds x t E→ x \in dom E1→ binds x t E1.

By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E , E bindsx andx is in the domain ofE2, thenE2 must bindx.
Lemma split binds in dom 2 : ∀ E E1 E2,

split context Eas (E1 ; E2) → ok E→
∀ x t, binds x t E→ x \in dom E2→ binds x t E2.

Follows fromsplit binds in dom 1 andsplit exch.

We prove a series of four reordering lemmas, with the first themost general and the basis for the other three.

E1a E1b

E1

E2a E2b

E2

E

⇒

E1a E2a

Ea

E1b E2b

Eb

E
Lemma reorder ab’cd ac’bd : ∀ E E1 E2,

split context Eas (E1 ; E2) → ∀ E1a E1b E2a E2b,
split context E1as (E1a; E1b) →
split context E2as (E2a; E2b) →
∃ Ea, ∃ Eb,

split context Eas (Ea ; Eb) ∧
split context Eaas (E1a; E2a) ∧
split context Ebas (E1b; E2b).

By induction onsplit context Eas (E1 ; E2) followed by inversion onsplit context E1as (E1a ; E1b) and
split context E2as (E2a; E2b). There are 34 cases to consider but they are all trivial.

Restructure a three-way split(Ea, Eb, Ec).

E1a E1b

E1 E2

E

⇒ E1a

E1b E2

E′

E

Corollary reorder ab’c a’bc : ∀ E E1 E2 E1a E1b,
split context Eas (E1 ; E2) →
split context E1as (E1a; E1b) →
∃ E’,

split context Eas (E1a; E’) ∧
split context E’as (E1b; E2).

Follows fromreorder ab’cd ac’bd.

Inverse ofreorder ab’c a’bc:

25

E1

E2a E2b

E2

E

⇒

E1 E2a

E′ E2b

E

Corollary reorder a’bc ab’c : ∀ E E1 E2 E2a E2b,
split context Eas (E1 ; E2) →
split context E2as (E2a; E2b) →
∃ E’,

split context Eas (E’ ; E2b) ∧
split context E’as (E1 ; E2a).

Follows fromreorder ab’cd ac’bd.

The final reordering lemma is its own inverse:

E1a E1b

E1 E2

E

⇒

E1a E2

E′ E1b

E

Corollary reorder ab’c ac’b : ∀ E E1 E2 E1a E1b,
split context Eas (E1 ; E2) →
split context E1as (E1a; E1b) →
∃ E’,

split context Eas (E’ ; E1b) ∧
split context E’as (E1a; E2).

Follows fromreorder ab’cd ac’bd.

Remove the assumption aboutx from E:

xE E′

E . We use this lemma insplit dom inv, below.
Lemma split dom: ∀ E x,
∃ E’, split context Eas (dsub x E; E’) ∧ dsub x E’= empty.

By induction onE.

Inverse property ofsplit dom.
Lemma split dom inv : ∀ E E’ x,

E’ = dsub x E→
∃ E x, split context Eas (E’ ; E x) ∧ dsub x Ex = empty.

By induction onE.

If

E1 E2

E andE is ok, then bothE1andE2must beok.
Lemma split context ok : ∀ E E1 E2,

split context Eas (E1 ; E2) → ok E→ ok E1∧ ok E2.
By induction onsplit context Eas (E1 ; E2).

If

E1 E2

E andE is well-formed, then bothE1andE2must be well-formed.
Lemma split context wf : ∀ E E1 E2 k,

split context Eas (E1 ; E2) → env wf E k→ env wf E1 k∧ env wf E2 k.
Follows fromsplit context ok, binds split 1 andbinds split 2.

26

We can always split the concatenation of two environments into its two constituents:

E1 E2

E1&E2 .
Lemma split concat: ∀ E2 E1,

split context(E1& E2) as (E1 ; E2).
By induction onE2.

Split a domainE into two domainsE1 andE2 so that all assumptions about variables inxsgo intoE1 and the

rest goes intoE2:

domE\xsE xsE

E .
Lemma split dom set: ∀ E xs, ok E→

split context Eas (dsub vars(S.diff (dom E) xs) E; dsub vars xs E).
By induction onE. The proof is slightly tricky, and relies ondsust vars permut, dsub vars concat assoc,
dsub vars consanddsub vars to dsub.

5.11 Type equivalence

If t1 t2 is equivalent tos, thens must be of the forms1 s2wheret1 ands1, andt2 ands2, are equivalent. This
however only holds for types of kind other thanU (counterexample:typ equiv(or a (not a)) a).
Lemma typ equiv app inv ex : ∀ t s, ¬ kinding t kind U →

typ equiv t s→
(∀ t1 t2 , t = typ app t1 t2→ ∃ s1, ∃ s2,

s= typ app s1 s2∧ typ equiv t1 s1∧ typ equiv t2 s2) ∧
(∀ s1 s2, s= typ app s1 s2→ ∃ t1, ∃ t2,

t = typ app t1 t2∧ typ equiv t1 s1∧ typ equiv t2 s2).
By induction ontyp equiv t s. This is a slightly tricky proof, and we do need to prove it in both directions (as
stated in the lemma). If we try to prove it in one direction only, we get stuck in the case fortyp equiv sym.

If t1 s1is equivalent tot2 s2, then the components must be equivalent.
Lemma typ equiv app inv : ∀ t1 t2 s1 s2,
¬ kinding(typ app t1 s1) kind U →
typ equiv(typ app t1 s1) (typ app t2 s2) →
typ equiv t1 t2∧ typ equiv s1 s2.

Follows fromtyp equiv app inv.

If t is equivalent toATTR, it must beATTR.
Lemma typ equiv ATTR inv : ∀ t s, typ equiv t s→

(t = ATTR→ s= ATTR) ∧ (s= ATTR→ t = ATTR).
By induction ontyp equiv t s.

Special case oftyp equiv app inv ex for attributed types.
Lemma typ equiv attr inv ex : ∀ t u s,

typ equiv s(t ’ u) → ∃ t’ , ∃ u’,
s= t’ ’ u’ ∧ typ equiv t t’∧ typ equiv u u’.

Follows fromtyp equiv app inv ex.

Special case oftyp equiv app inv for attributed types.
Lemma typ equiv attr inv : ∀ t u s v,

typ equiv(t ’ u) (s ’ v) → typ equiv t s∧ typ equiv u v.
Follows fromtyp equiv app inv.

Special case oftyp equiv app inv for function types.
Lemma typ equiv fun inv : ∀ a u b a’ u’ b’,

typ equiv(a 〈 u 〉 b) (a’ 〈 u’ 〉 b’) →

27

typ equiv a a’∧
typ equiv u u’∧
typ equiv b b’.

Follows fromtyp equiv attr inv.

Replace an attribute on an attributed type.
Lemma typ equiv new attr : ∀ t u v, typ equiv u v→

typ equiv(t ’ u) (t ’ v).
Trivial.

Replace the domain of an arrow
Lemma typ equiv fun new dom: ∀ a u b a’, typ equiv a a’→

typ equiv(a 〈 u 〉 b) (a’ 〈 u 〉 b).
Trivial.

Replace the codomain of an arrow
Lemma typ equiv fun new cod : ∀ a u b b’, typ equiv b b’→

typ equiv(a 〈 u 〉 b) (a 〈 u 〉 b’).
Trivial.

If t andsare equivalent and have kindU, then they must also be equivalent by the boolean equivalence relation.
Lemma typ equiv BA equiv: ∀ t s,

typ equiv t s→ kinding t kind U → BA.equiv t s.
By induction ontyp equiv t s.

Commutativity ofor.
Lemma typ equiv comm or : ∀ a b, kinding(or a b) kind U →

typ equiv(or a b) (or b a).
Trivial.

5.12 Non-unique types

If t andsare equivalent andt is non unique, smust benon unique.
Lemma non unique equiv: ∀ t s, typ equiv t s→

non unique t→ non unique s.
By inversion onnon unique t.

If tu is non-unique, thenu must be equivalent to false.
Lemma non unique star : ∀ t u,

non unique(t ’ u) → typ equiv u NU.
By inversion onnon unique(t ’ u). There are two possibilities (see the definition ofnon unique). For the first
case, (t ’ u) of kind ∗, the lemma follows immediately. For the second, we show thatkinding (t ’ u) kind U
leads to contradiction.

If u is non uniqueand has kindU, it must be equivalent to false.
Lemma non unique U : ∀ u,

non unique u→ kinding u kind U → typ equiv u NU.
By inversion onnon unique u. Proof analogous tonon unique star.

If

E1 E2

E , E bindsx, and bothE1 andE2 bindx, thenx must have a non-unique type. That is, only variables
of non-unique type can be duplicated.
Lemma split both inv : ∀ E E1 E2 x t, ok E→

split context Eas (E1 ; E2) →
binds x t E→ x \in dom E1→ x \in dom E2→

28

non unique t.
By induction onsplit context Eas (E1 ; E2).

If every type inE is non-unique, then

E E

E .
Lemma split non unique: ∀ E, ok E→

(∀ x t, binds x t E→ non unique t) →
split context Eas (E ; E).

By induction onE.

5.13 Equivalence of environments.

We start with a number of trivial consequences of∼=. These lemmas enable us to work directly with the notion
of an equivalence, rather than having to unfold the definition of ∼= every time we need one of its constituents.

Equivalence only holds between well-formed environments.
Lemma env equiv regular : ∀ E1 E2 k,

(E1∼= E2) k → env wf E1 k∧ env wf E2 k.
Trivial.

If E1∼= E2andE1bindsx, thenE2must bindx.
Lemma env equiv binds 1 : ∀ E1 E2 k, (E1∼= E2) k →
∀ x t, binds x t E1→ ∃ t’ , binds x t’ E2∧ typ equiv t t’.

Trivial.

If E1∼= E2andE2bindsx, thenE1must bindx.
Lemma env equiv binds 2 : ∀ E1 E2 k, (E1∼= E2) k →
∀ x t, binds x t E2→ ∃ t’ , binds x t’ E1∧ typ equiv t t’.

Trivial.

If E1∼= E2andx is in the domain ofE1, x must be in the domain ofE2.
Lemma env equiv in dom 1 : ∀ E1 E2 k, (E1∼= E2) k →
∀ x, x \in dom E1→ x \in dom E2.

Follows directly frombinds in domandenv equiv binds 1.

If E1∼= E2andx is in the domain ofE2, x must be in the domain ofE1.
Lemma env equiv in dom 2 : ∀ E1 E2 k, (E1∼= E2) k →
∀ x, x \in dom E2→ x \in dom E1.

Follows directly frombinds in domandenv equiv binds 2.

The equivalence relation is reflexive.
Lemma env equiv refl : ∀ E k, env wf E k→ (E ∼= E) k.
Trivial.

The equivalence relation is commutative.
Lemma env equiv comm: ∀ E1 E2 k, (E1∼= E2) k → (E2∼= E1) k.
Trivial.

The equivalence relation is transitive.
Lemma env equiv trans: ∀ E1 E2 E3 k,

(E1∼= E2) k → (E2∼= E3) k → (E1∼= E3) k.
Trivial.

If E is equivalent to the empty environment, it must be the empty environment.
Lemma env equiv empty: ∀ E k, (E ∼= empty) k → E = empty.
By case analysis onE.

29

If E is equivalent to a singleton environment, it must be that singleton environment.
Lemma env equiv singleton: ∀ E k y s, (E ∼= (y¬ s)) k →
∃ s’, E = y ¬ s’ ∧ typ equiv s s’.

By case analysis onE; distinguishing between the empty environment, the singleton environment, and the
environment with more than one element. We show contradiction for all cases except the singleton case.

Equivalence between environments is unaffected if we remove a variable from both sides.
Lemma env equiv dsub: ∀ E1 E2 k x,

(E1∼= E2) k → (dsub x E1∼= dsub x E2) k.
Follows frombinds in dom, binds dsubandbinds dsub inv.

Equivalence between environments is unaffected if we add a variable on both sides, provided that that variable
wasn’t already in the domain of the environments to start with and has the right kind.
Lemma env equiv extend: ∀ E E’ k x t s, x # E →

kinding t k→ typ equiv t s→
(E ∼= E’) k → (E & x ¬ t ∼= E’ & x¬ s) k.

Trivial.

Special case ofenv equiv extend.
Lemma env equiv typ equiv: ∀ E k x t s, env wf (E & x ¬ t) k →

typ equiv t s→
(E & x ¬ t ∼= E & x¬ s) k.

Follows fromenv equiv extendandenv wf binds kind.

Special case ofenv equiv dsub.
Lemma env equiv cons: ∀ E E’ k x t,

(E & x ¬ t ∼= E’) k → (E ∼= dsub x E’) k.
Follows fromenv equiv dsubanddsub not in dom.

Inverse property ofenv equiv cons.
Lemma env equiv cons inv : ∀ E E’ k x t,

(dsub x E∼= E’) k →
binds x t E→ env wf E k→
(E ∼= E’ & x ¬ t) k.

Follows frombinds dsubandbinds dsub inv.

We can take an environmentE, remove its assumption aboutx, and then re-insert that assumption at the start of
the environment; the result will be equivalent to the original environment.
Lemma env equiv reorder : ∀ E k x t,

env wf E k→ binds x t E→ (E ∼= dsub x E& x ¬ t) k.
Follows frombinds dsubandbinds dsub inv.

If

E1 E2

E andE’ is equivalent toE, then there exist two environmentsE′
1 andE′

2 such that

E′
1 E′

2

E′ andE1

andE2 are equivalent toE′
1

andE′
2.

Lemma env equiv split : ∀ E’ E E1 E2 k,
split context Eas (E1 ; E2) → (E ∼= E’) k →
∃ E1’, ∃ E2’,

split context E’as (E1’ ; E2’) ∧ (E1∼= E1’) k ∧ (E2∼= E2’) k.
By induction on E’. For the case (v, t) :: E’, we recurse ondsub v E, then add (v, t) to the partially constructed
E1’ or E2’ depending on whetherv \in dom E1or v \in dom E2.

Equivalence is unaffected by order.
Lemma env equiv exch: ∀ E1 E2 k, env wf (E1& E2) k →

(E1& E2∼= E2& E1) k.

30

Follows trivially fromenv wf exchandbinds exch.

Generalization ofenv equiv exch.
Lemma env equiv exch 3 : ∀ E1 E2 E3 k, env wf (E1& E2& E3) k →

(E1& E2& E3∼= E1& E3& E2) k.
Follows trivially fromenv wf exch 3 andbinds exch 3.

5.14 Range

The range of an environment containing only types of kindU is U.
Lemma rng kind U : ∀ E, env wf E kind U → kinding(rng E) kind U.
By induction onE.

Auxiliary lemma used to proverng non unique.
Lemma rng non unique BA : ∀ fvars,

BA.equiv(rng fvars) NU →
(∀ x u, binds x u fvars→ BA.equiv u NU).

By induction onfvars, using lemmaor false bothfrom the Boolean Algebra formalization.

If the range of an environment is equivalent to false, then every attribute in that environment must be equivalent
to false.
Lemma rng non unique: ∀ fvars, env wf fvars kind U →

typ equiv(rng fvars) NU →
(∀ x u, binds x u fvars→ typ equiv u NU).

Follows fromrng non unique BA, env wf binds kind andtyp equiv BA equiv.

Auxiliary lemma used to provesplit rng.
Lemma split rng BA : ∀ fvars fvars1 fvars2,

split context fvarsas (fvars1; fvars2) →
BA.equiv(rng fvars) (or (rng fvars1) (rng fvars2)).

By induction onsplit context fvarsas (fvars1; fvars2), using properties of the boolean equivalence relation and
rng concat.

If

fvars1 fvars2

fvars then the range offvars is equivalent to the range of the concatenation offvars1andfvars2.
This holds because if there is an assumption aboutx in both fvars1and fvars2, then that must be the same
assumption, and we know thatt is equivalent toor t t for anyt (disjunction is idempotent).
Lemma split rng : ∀ fvars fvars1 fvars2, env wf fvars kind U →

split context fvarsas (fvars1; fvars2) →
typ equiv(rng fvars) (or (rng fvars1) (rng fvars2)).

Follows fromsplit rng BA.

Auxiliary lemma needed to proveenv equiv rng.
Lemma rng reorder : ∀ (E : env) x t, binds x t E→

BA.equiv(rng E) (or (rng (dsub x E)) t).
By induction onE.

If two environments are equivalent, then their ranges must be equivalent.
Lemma env equiv rng : ∀ E E’,

(E ∼= E’) kind U → typ equiv(rng E) (rng E’).
By induction onE, using properties of the boolean equivalence relation,rng reorder, rng concatandtyp equiv BA equiv.

6 Properties of the typing relation

31

6.1 Kinding properties

Every assumption inE must have kind∗.
Lemma kinding env: ∀ E e t fvars,

E ⊢ e : t | fvars→ ∀ x s,
binds x s E→ kinding s kindstar.

Follows trivially from regularity andenv wf binds kind.

Every assumption infvarsmust have kindU .
Lemma kinding fvars: ∀ E e t fvars,

E ⊢ e : t | fvars→ ∀ x u,
binds x u fvars→ kinding u kind U.

Follows trivially from regularity andenv wf binds kind.

If ehas typet, thent must have kind∗.
Lemma typing kind star : ∀ E e t fvars,

E ⊢ e : t | fvars→ kinding t kind star.
By induction onE ⊢ e : t | fvars.

6.2 Free variables

If E ⊢ e : T | fvars, then ifx is free ine it must be in the domain ofE and in the domain offvars.
Lemma typing fv : ∀ E e T fvars,

E ⊢ e : T | fvars→ ∀ x, x \in fv e→ x \in dom E∧ x \in dom fvars.
By induction onE ⊢ e : T | fvars.

If there is an evaluation contextE such thatt = E[x], thenx must be free int.
Lemma eval fv : ∀ t x,

evals t x→ x \in fv t.
By induction onevals t x.

6.3 Consistency ofE and fvars

Every assumption infvarsmust have a corresponding assumption inE.
Lemma fvars and env consistent: ∀ E e S fvars x u,

E ⊢ e : S | fvars→ binds x u fvars→
∃ t, ∃ v, binds x(t ’ v) E ∧ typ equiv u v.

By induction onE ⊢ e : S | fvars.

Every assumption inE must have a corresponding assumption infvars.
Lemma env and fvars consistent: ∀ E e S fvars x t u,

E ⊢ e : S | fvars→ binds x(t ’ u) E → x \in fv e→
∃ v, binds x v fvars∧ typ equiv u v.

By induction onE ⊢ e :˜ S | fvars.

6.4 Weakening

Auxiliary lemma used to proveunusedassumptions.
Lemma unusedassumptionenv: ∀ E e T fvars x,

E ⊢ e : T | fvars→ x \notin fv e→ dsub x E⊢ e : T | fvars.
By induction onE ⊢ e : T | fvars.

Auxiliary lemma used to proveunusedassumptions.
Lemma unusedassumptionslist : ∀ xs E e T fvars,

32

E ⊢ e : T | fvars→ (∀ x, In x xs→ x \notin fv e) →
dsub list xs E⊢ e : T | fvars.

By induction onxs, usingunusedassumptionenv.

We can remove all assumptions inE about variables that are not free ine.
Lemma unusedassumptions: ∀ xs E e T fvars,

E ⊢ e : T | fvars→ (∀ x, x \in xs→ x \notin fv e) →
dsub vars xs E⊢ e : T | fvars.

Follows trivially fromunusedassumptionslist.

We can append unused assumptions to the typing environment.
Lemma weakening1 : ∀ E1 e T fvars,

E1⊢ e : T | fvars→ ∀ E E2, env wf E kind star→
split context Eas (E1 ; E2) → E ⊢ e : T | fvars.

By induction onE1⊢ e : T | fvars.

We can prepend unused assumptions to the typing environment.
Lemma weakening2 : ∀ E2 e T fvars,

E2⊢ e : T | fvars→ ∀ E E1, env wf E kind star→
split context Eas (E1 ; E2) → E ⊢ e : T | fvars.

Follows trivially fromweakening1 andsplit exch.

Every assumption infvarsmust be used.
Lemma no fvars weakening: ∀ E e T fvars,

E ⊢ e : T | fvars→ ∀ x, x \notin fv e→ x # fvars.
By induction onE ⊢ e : T | fvars.

Since every assumption infvarsmust be used, ifx is not free ine then removingx from fvarshas no effect (since
it wasn’t in fvarsto start with).
Lemma unusedassumptionfvars: ∀ E e T fvars x,

E ⊢ e : T | fvars→ x \notin fv e→ E ⊢ e : T | dsub x fvars.
Follows trivially fromno fvars weakeninganddsub not in dom.

Combination ofunusedassumptionenvandunusedassumptionfvars.
Lemma unusedassumption: ∀ E e T fvars x,

E ⊢ e : T | fvars→ x \notin fv e→ dsub x E⊢ e : T | dsub x fvars.
Follows directly fromunusedassumptionfvarsandunusedassumptionenv.

If ecan be typed in environmentE, we can splitE into two environmentsE1andE2such that every assumption
about variables inewill be in E1; thene can also be typed in environmentE1.
Lemma split env: ∀ E e t u fvars,

E ⊢ e : t ’ u | fvars→
(∃ E1, ∃ E2,

split context Eas (E1 ; E2) ∧
E1⊢ e : t ’ u | fvars∧
(∀ x, x \in dom E1→ x \in fv e)).

Follows fromsplit dom set.

6.5 Exchange

We can replace bothE andfvarsby equivalent environments. This is a powerful lemma, because the definition
of equivalence for environment is very general (in particular, it allows to replace a type by an equivalent type).
Lemma env equiv typing: ∀ E e T fvars,

E ⊢ e : T | fvars→ ∀ E’ fvars’,
(E ∼= E’) kind star→ (fvars∼= fvars’) kind U →

33

E’ ⊢ e : T | fvars’.
By induction onE⊢ e : T | fvars. This proof is slightly tricky. The case of variables reliesonenv equiv singleton.
In the case for abstraction, we needenv equiv rng, env equiv extendandenv equiv cons inv, and in the case
for application we needenv equiv split.

Change the order of the assumptions in the environment.
Lemma exchange: ∀ E1 E2 E3 e T fvars,

E1& E2& E3⊢ e : T | fvars→
E1& E3& E2⊢ e : T | fvars.

Follows trivially fromenv equiv typingandenv equiv exch 3.

Replace an assumption in the environment by an equivalent one.
Lemma typ equiv env: ∀ E x s s’ e t fvars,

E & x ¬ s⊢ e : t | fvars→ typ equiv s s’→
E & x ¬ s’ ⊢ e : t | fvars.

Follows trivially fromenv equiv typingandenv equiv typ equiv.

6.6 Inversion lemmas

Inversion lemma for variables.
Lemma typing var inv : ∀ E x s fvars,

E ⊢ trm fvar x : s | fvars→
∃ t, ∃ u, ∃ v,

typ equiv s(t ’ u) ∧
fvars= x ¬ v∧
env wf E kind star∧
binds x(t ’ u) E ∧
typ equiv u v.

We prove the more general lemma∀ E e s fvars, E ⊢ e : s | fvars→ ∀ x, e = trm fvar x → ∃ t, ∃ u, ∃ v,
typ equiv s(t ’ u) ∧ fvars= x ¬ v ∧ env wf E kind star∧ binds x(t ’ u) E ∧ typ equiv u v) by induction onE
⊢ e : s | fvars. The case for variables is trivial, the cases for application and abstraction can be dismissed, and
the case fortyping equivis a straightforward application of the induction hypothesis.

Inversion lemma for application.
Lemma typing app inv : ∀ E e1 e2 s fvars,

E ⊢ trm app e1 e2: s | fvars→
∃ E1, ∃ E2, ∃ fvars1, ∃ fvars2,
∃ a, ∃ b, ∃ u,

typ equiv s b∧
E1⊢ e1 : a 〈 u 〉 b | fvars1∧
E2⊢ e2 : a | fvars2∧
split context Eas (E1 ; E2) ∧ env wf E kind star∧
split context fvarsas (fvars1; fvars2) ∧ env wf fvars kind U.

Analogous to the proof of the inversion lemma for variables.

Inversion lemma for abstraction.
Lemma typing abs inv : ∀ E e s fvars’,

E ⊢ trm abs e: s | fvars’ →
∃ L, ∃ a, ∃ b,

typ equiv s(a 〈 rng fvars’ 〉 b) ∧
(∀ x fvars, x \notin L→ fvars’ = dsub x fvars→

(E & x ¬ a) ⊢ e ˆ x : b | fvars).
Analogous to the proof of the inversion lemma for variables.

34

Tactic typing inversioncan be used instead of a call to the standard Coq tacticinversionto do inversion on the
typing relation using the inversion lemmas we just proved.
Ltac typing inversion H:=

match type of Hwith
| ?E ⊢ trm fvar ?x : ?T | ?fvars⇒

let t := fresh"t" in
let u := fresh"u" in
let v := fresh"v" in
elim3(typing var inv H) t u v (?, (?, (?, (?, ?))))

| ?E ⊢ trm app?e1?e2 : ?T | ?fvars⇒
let E1 := fresh"E1" in
let E2 := fresh"E2" in
let fvars1:= fresh"fvars1" in
let fvars2:= fresh"fvars2" in
let a := fresh"a" in
let b := fresh"b" in
let u := fresh"u" in
elim7 (typing app inv H) E1 E2 fvars1 fvars2 a b u(?, (?, (?, (?, (?, (?, ?))))))

| ?E ⊢ trm abs?e : ?T | ?fvars⇒
let L := fresh"L" in
let a := fresh"a" in
let b := fresh"b" in
elim3(typing abs inv H) L a b (?, ?)

end.

7 Subject reduction

7.1 Progress

If e is locally-closed, then either it is an answer, it reduces tosome other terme’, or there exists an evaluation
contextE such thate = E[x] for some free variablex in e.
Lemma weak progress: ∀ e, term e→

answer e∨
(∃ e’:trm, red e e’) ∨
(∃ x, x \in fv e∧ evals e x).

By complete structural induction onterm e(usingsubtermwell founded).

If ecan be typed in the empty environment, then eithere is an answer or it reduces to some other terme’.
Theorem progress: ∀ e T fvars,

empty⊢ e : T | fvars→ answer e∨ ∃ e’, red e e’.
Follows fromweak progressandtyping fv.

7.2 Preservation

When a function is non-unique, then all of the elements in itsclosure must be non-unique. In other words,
all assumptions about the free variables of the function must be non-unique. That means that we can type the
function in an environmentE’ (which isE stripped from all unnecessary assumptions) so that we can duplicate
E’ (split it into E’ twice). We will need this lemma in the substitution lemma, when we have to substitute a
function for a free variable in both terms of an application (i.e., when we have to duplicate the function, or in
other words, apply it twice).

35

Lemma shared function: ∀ E e a b u f fvars,
E ⊢ trm abs e: a 〈 u f 〉 b | fvars→
typ equiv(rng fvars) NU →
∃ E’, ∃ E” ,

E’ ⊢ trm abs e: a 〈 u f 〉 b | fvars∧
split context Eas (E’ ; E”) ∧
split context E’as (E’ ; E’) ∧
split context fvarsas (fvars; fvars).

Follows fromsplit env, rng non uniqueandfvars and env consistent.

The substitution lemma is probably the most difficult lemma in the subject reduction proof. This is not surpris-
ing, because when we substitute a terme2for x in e1, e2may be duplicated (when there is more than one use for
x in e1). That is not necessarily a problem, because when there is more than one use ofx in e1, thenx must have
a non-unique type and therefore it should be okay to duplicate e2. However, for the result of the substitution
to be well-typed, ife2 is duplicated, we must also duplicate all the assumptions that are needed to typee2, and
that is not possible in the general case (we may need a unique assumption even when the result is non-unique).
However, in the specific case thate2is an abstraction, we know that ife2is non-unique, that all of the elements
in its closure must be non-unique, and so we can actually duplicate all assumptions required to typee2 (this is
what we proved in the previous lemma).
Lemma substitution: ∀ e1, term e1→
∀ E E1 E2 fvars fvars1 fvars2 x a b e2 T,

split context Eas (E1 ; E2) → env wf E kind star→
split context fvarsas (fvars1; fvars2) → env wf fvars kind U →
E1& x ¬ (a 〈 rng fvars2〉 b) ⊢ e1 : T | fvars1& x ¬ rng fvars2→
E2⊢ trm abs e2: a 〈 rng fvars2〉 b | fvars2→
x \notin (dom E1\u dom E2\u dom fvars1) →
x \in fv e1→
E ⊢ [x ˜> trm abs e2]e1 : T | fvars.

By induction onterm e1. For the case of variables, we know thate1must bex (it cannot be a different variable
because of the requirement thatx must be free ine1), and the lemma follows fromweakening2. In the case for
an applicatione1 e1’, we do case analysis onx \in fv e1andx \in fv e2(again, it cannot be in neither because
of the same requirement). If it ise1but not ine1’, or in e1’ but not ine1, then it is a matter of reordering the
environment so that the assumptions aboute2are passed to the appropriate branch of the application. If it is in
both, then we know thate2must be non-unique, and we can useshared functionto distribute the assumptions to
typee2 to both branches. Finally, the case for abstraction usessplit dom inv, exchangeandsimplify rng (and
we make sure to include the assumption about the bound variable of the abstraction when using the induction
hypothesis).

Preservation for evaluation rulered value.
Lemma preservationvalue: ∀ L M N,

term(lt trm abs M in N) →
(∀ x : S.elt, x \notin L→ evals(N ˆ x) x) →
∀ E T fvars,

(E ⊢ lt trm abs M in N : T | fvars) →
(E ⊢ N ˆˆ trm abs M : T | fvars).

Follows fromsubstitutionandeval fv.

Preservation for evaluation rulered commute.
Lemma preservationcommute: ∀ L M A N,

term(trm app(lt M in A) N) →
(∀ x : S.elt, x \notin L→ answer(A ˆ x)) →
∀ E T fvars,

(E ⊢ trm app(lt M in A) N : T | fvars) →
(E ⊢ lt M in trm app A N: T | fvars).

36

This and the next lemma are mainly a matter of re-ordering theassumptions in the environmentsE andfvars in
a useful way. Graphically, what we want is

(

E3⊢−:a0
u0−→(a

u
−→T)|fvars3

︷ ︸︸ ︷

(λ · A)

E4⊢−:a0|fvars4
︷︸︸︷

M)
︸ ︷︷ ︸

E1⊢−:a
u
−→T|fvars1

E2⊢−:a|fvars2
︷︸︸︷

N

︸ ︷︷ ︸

E⊢−:T|fvars

7→ (λ ·

E3,x:a0⊢−
x :a

u
−→T|fvars′′

︷︸︸︷

A

E2⊢−:a|fvars2
︷︸︸︷

N)
︸ ︷︷ ︸

E′⊢−:a0

∨

xfvars0−−−−−→T|
xfvars0

E4⊢−:a0|fvars4
︷︸︸︷

M

︸ ︷︷ ︸

E⊢−:T|fvars

The ordering ofE is straightforward:

E3 E4

E1 E2

E

⇒

E3 E2

E′ E4

E

but the reordering offvars is slightly more involved. We have

fvars3 fvars4

fvars1 fvars2

fvars

⇒

fvars3 fvars2

fvars′ = xfvars0 fvars4

fvars

Here, the equality onfvars’ comes from the premise of the abstraction rule. In addition,we can use
split dom inv to get

fvars3 fvars2

fvars′ = xfvars0 fvars0x

fvars0

⇒

fvars3 fvars0x

fvars′′ fvars2

fvars0

Together withsplit empty inv, that is sufficient to prove the lemma.

Preservation for evaluation rulered assoc.
Lemma preservationassoc: ∀ L M A N,

term(lt lt M in A in N) →
(∀ x : S.elt, x \notin L→ answer(A ˆ x)) →
(∀ x : S.elt, x \notin L→ evals(N ˆ x) x) →
∀ E T fvars,

(E ⊢ lt lt M in A in N : T | fvars) →
(E ⊢ lt M in (lt A in N) : T | fvars).

Like in the previous lemma, proving this lemma is mainly a matter of reordering the environments. The follow-
ing diagram shows roughly what we’re trying to achieve:

E1⊢−:a
u
−→T|fvars1

︷ ︸︸ ︷

(λ · N) (

E3⊢−:a0
u0−→a|fvars3

︷ ︸︸ ︷

(λ · A)

E4⊢−:a0|fvars4
︷︸︸︷

M)
︸ ︷︷ ︸

E2⊢−:a|fvars2
︸ ︷︷ ︸

E⊢−:T|fvars

7→ (λ ·

E1⊢−:a
u
−→T|fvars1

︷ ︸︸ ︷

(λ · N)

E3,x:a0⊢A
x :a|fvars′′

︷︸︸︷

A)
︸ ︷︷ ︸

E′⊢−:a0

∨

xfvars0−−−−−→T|
xfvars0

E4⊢−:a0|fvars4
︷︸︸︷

M

︸ ︷︷ ︸

E⊢−:T|fvars

37

Also, as for the last lemma, the reordering onE is straightforward,

E1

E3 E4

E2

E

⇒

E1 E3

E′ E4

E

but the ordering onfvars is again slightly more involved:

fvars1

fvars3 fvars4

fvars2

fvars

⇒

fvars1 fvars3

fvars′ = xfvars0 fvars4

fvars

fvars1 fvars3

fvars′ = xfvars0 fvars0x

fvars0

⇒ fvars1

fvars3 fvars0x

fvars′′

fvars0

Preservation for evaluation rulered closure app.
Lemma preservationclosure app: ∀ E E’ M,

term(trm app E M) →
red E E’→
(∀ (E0 : env) (T : typ) (fvars: env),

E0⊢ E : T | fvars→ E0⊢ E’ : T | fvars) →
∀ E0 T fvars,

(E0⊢ trm app E M : T | fvars) →
(E0⊢ trm app E’ M : T | fvars).

Trivial.

Preservation for evaluation rulered closure let.
Lemma preservationclosure let : ∀ L E E’ M,

term(lt M in E) →
(∀ x : S.elt, x \notin L→ red (E ˆ x) (E’ ˆ x)) →
(∀ x : S.elt,

x \notin L→
∀ (E0 : env) (T : typ) (fvars: env),
E0⊢ E ˆ x : T | fvars→ E0⊢ E’ ˆ x : T | fvars) →

∀ E0 T fvars,
(E0⊢ lt M in E : T | fvars) →
(E0⊢ lt M in E’ : T | fvars).

Trivial.

Preservation for evaluation rulered closure dem.
Lemma preservationclosure dem: ∀ L E0 E0’ E1,

term(lt E0 in E1) →
red E0 E0’→
(∀ (E : env) (T : typ) (fvars: env),

E ⊢ E0 : T | fvars→ E ⊢ E0’ : T | fvars) →
(∀ x : S.elt, x \notin L→ evals(E1 ˆ x) x) →
∀ E T fvars,

(E ⊢ lt E0 in E1 : T | fvars) →

38

(E ⊢ lt E0’ in E1 : T | fvars).
Trivial.

If ehas typeT ande reduces toe’, thene’ will also have typeT.
Theorem preservation: ∀ e e’, red e e’→
∀ E T fvars, E ⊢ e : T | fvars→ E ⊢ e’ : T | fvars.

Follows trivially by induction onE ⊢ e : T from the preceding preservation lemmas.

39

A Boolean algebra

This formalization is based on the second chapter (“The self-dual system of axioms”) in Goodstein’s book
“Boolean Algebra” [9].

A.1 Abstraction over the structure of terms

Module Type BooleanAlgebraTerm.

Parameter trm : Set.
Parameter true : trm.
Parameter false: trm.
Parameter or : trm → trm → trm.
Parameter and : trm → trm → trm.
Parameter not : trm → trm.

End BooleanAlgebraTerm.

A.2 Huntington’s postulates

Module BooleanAlgebra(Term: BooleanAlgebraTerm).
Import Term.

Inductive equiv: trm → trm → Prop :=
(** Commutativity*)

| comm or : ∀ (a b:trm), equiv(or a b) (or b a)
| comm and : ∀ (a b:trm), equiv(and a b) (and b a)
(** Distributivity *)

| distr or : ∀ (a b c:trm), equiv(or a (and b c)) (and(or a b) (or a c))
| distr and : ∀ (a b c:trm), equiv(and a(or b c)) (or (and a b) (and a c))
(** Identities*)

| id or : ∀ (a:trm), equiv(or a false) a
| id and : ∀ (a:trm), equiv(and a true) a
(** Complements*)

| compl or : ∀ (a:trm), equiv(or a (not a)) true
| compl and : ∀ (a:trm), equiv(and a(not a)) false
(** Closure*)

| clos not : ∀ (a b:trm), equiv a b→ equiv(not a) (not b)
| clos or : ∀ (a b c:trm), equiv a b→ equiv(or a c) (or b c)
| clos and : ∀ (a b c:trm), equiv a b→ equiv(and a c) (and b c)
(** Structural rules*)

| refl : ∀ (a:trm), equiv a a
| sym: ∀ (a b:trm), equiv a b→ equiv b a
| trans: ∀ (a b c:trm), equiv a b→ equiv b c→ equiv a c.

A.3 Setup for Coq setoids

Thanks to Adam Megacz.

Add Relation trm equiv
reflexivity proved by refl
symmetry proved by sym
transitivity proved by trans

40

as equiv relation.

Add Morphism or
with signature equiv==> equiv==> equiv
as or morphism.

Add Morphism and
with signature equiv==> equiv==> equiv
as and morphism.

Add Morphism not
with signature equiv==> equiv
as not morphism.

A.4 Derived Properties

Lemma false unique: ∀ (x:trm), (∀ (a:trm), equiv(or a x) a) → equiv false x.

Lemma true unique: ∀ (y:trm), (∀ (a:trm), equiv(and a y) a) → equiv true y.

Lemma complementunique: ∀ (a a’ a” :trm),
(** if a’ has the property of the complement*)
equiv(or a a’) true→ equiv(and a a’) false→
(** and so does a”*)
equiv(or a a”) true→ equiv(and a a”) false→
(** then a’ and a” must be equivalent*)
equiv a’ a”.

Lemma involution: ∀ (a:trm), equiv(not (not a)) a.

Lemma true compl false: equiv false(not true).

Lemma false compl true : equiv(not false) true.

Lemma zero or : ∀ (a:trm), equiv(or a true) true.

Lemma zero and : ∀ (a:trm), equiv(and a false) false.

Lemma idem or : ∀ (a:trm), equiv a(or a a).

Lemma idem and : ∀ (a:trm), equiv a(and a a).

Lemma abs or : ∀ (a b:trm), equiv(or a (and a b)) a.

Lemma abs and : ∀ (a b:trm), equiv(and a(or a b)) a.

Lemma equiv or and3: ∀ (a b c:trm),
equiv(or a b) (or a c) → equiv(and a b) (and a c) → equiv b c.

Lemma equiv or not : ∀ (a b c:trm),
equiv(or a b) (or a c) → equiv(or (not a) b) (or (not a) c) → equiv b c.

Lemma equiv and not : ∀ (a b c:trm),
equiv(and a b) (and a c) → equiv(and(not a) b) (and(not a) c) → equiv b c.

Lemma assocor : ∀ (a b c:trm), equiv(or a (or b c)) (or (or a b) c).

Lemma assocand : ∀ (a b c:trm), equiv(and a(and b c)) (and (and a b) c).

Lemma equiv or and2: ∀ (a b:trm), equiv(or a b) (and a b) → equiv a b.

Lemma DeMorgan or : ∀ (a b:trm), equiv(not (or a b)) (and(not a) (not b)).

Lemma DeMorgan and : ∀ (a b:trm), equiv(not (and a b)) (or (not a) (not b)).

41

A.5 “Non-standard” properties (not proven in Goodstein)

Lemma abs or or : ∀ (a b:trm), equiv(or (or a b) a) (or a b).

Lemma abs and and : ∀ (a b:trm), equiv(and(and a b) a) (and a b).

Lemma distr or or : ∀ a b c, equiv(or a (or b c)) (or (or a b) (or a c)).

Lemma distr and and : ∀ a b c, equiv(and a(and b c)) (and (and a b) (and a c)).

Lemma or false left : ∀ (a b:trm), equiv(or a b) false→ equiv a false.

Lemma or false right : ∀ (a b:trm), equiv(or a b) false→ equiv b false.

Lemma or false both: ∀ (a b:trm),
equiv(or a b) false→ equiv a false∧ equiv b false.

Lemma and true left : ∀ (a b:trm), equiv(and a b) true→ equiv a true.

Lemma and true right : ∀ (a b:trm), equiv(and a b) true→ equiv b true.

Lemma and true both: ∀ (a b:trm),
equiv(and a b) true→ equiv a true∧ equiv b true.

A.6 Conditional

Definition ifbool (b P Q:trm) : trm := or (and b P) (and(not b) Q).

Lemma if ident branch: ∀ (b P:trm),
equiv(ifbool b P P) P.

Lemma distr or if : ∀ (b P Q R:trm),
equiv(or (ifbool b P Q) R) (ifbool b (or P R) (or Q R)).

Lemma distr or if2 : ∀ (b P Q:trm),
equiv(ifbool b P Q) (or (ifbool b P Q) (and P Q)).

Lemma distr and if : ∀ (b P Q R:trm),
equiv(and(ifbool b P Q) R) (ifbool b (and P R) (and Q R)).

Lemma distr not if : ∀ (b P Q:trm),
equiv(not (ifbool b P Q)) (ifbool b (not P) (not Q)).

End BooleanAlgebra.

42

References

[1] AYDEMIR , B., CHARGUÉRAUD, A., PIERCE, B. C., POLLACK , R., AND WEIRICH, S. Engineering
formal metatheory.SIGPLAN Not. 43, 1 (2008), 3–15.

[2] BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984.

[3] BERTOT, Y., AND CASTERAN, P. Interactive Theorem Proving and Program Development (Coq’Art:
The Calculus of Inductive Constructions). Springer-Verlag, 2004.

[4] B IERNACKA , M., AND BIERNACKI , D. Formalizing constructions of abstract machines for functional
languages in Coq. InInformal Proceedings of the 7th International Workshop on Reduction Strategies in
Rewriting and Programming (WRS 2007)(June 2007).

[5] CERVESATO, I., AND PFENNING, F. A linear logical framework.Inf. Comput. 179, 1 (2002), 19–75.

[6] CHARGUÉRAUD, A. Formal PL metatheory: Locally nameless developments (Coq development), 2007.
http://www.chargueraud.org/arthur/research/2007/bin ders .

[7] DE VRIES, E., PLASMEIJER, R., AND ABRAHAMSON, D. M. Uniqueness typing simplified. In
Implementation and Application of Functional Languages(2008), vol. 5083/2008 ofLecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 181–198.

[8] DUBOIS, C. Proving ML type soundness within Coq. InTPHOLs ’00: Proceedings of the 13th
International Conference on Theorem Proving in Higher Order Logics(London, UK, 2000),
Springer-Verlag, pp. 126–144. Published version is incorrect; corrected version available from the
author’s website.

[9] GOODSTEIN, R. L. Boolean Algebra. Dover Publications, Inc, 2007. Unabridged republicaton of the
1966 printing of the work originally published by Pergamon Press, London, in 1963.

[10] HUNTINGTON, E. V. Sets of independent postulates for the algebra of logic. Transactions of the
American Mathematical Society 5(1904), 288–309.

[11] MARAIST, J., ODERSKY, M., AND WADLER, P. The call-by-need lambda calculus.J. Funct. Program.
8, 3 (1998), 275–317.

[12] PITTS, A. M. Nominal logic: A first order theory of names and binding. In TACS ’01: Proceedings of
the 4th International Symposium on Theoretical Aspects of Computer Software(London, UK, 2001),
Springer-Verlag, pp. 219–242.

[13] WALKER , D. Substructural type systems. InAdvanced Topics in Types and Programming Languages,
B. Pierce, Ed. The MIT Press, 2005.

43

