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Abstract

This technical report is an appendixtimiqueness Typing Simplifidd], in which we show how unique-
ness typing can be simplified by treating uniqueness attr#bas types of a special kind, allowing arbitrary
boolean expressions as attributes, and avoiding subtypimthe paper, we define a small core uniqueness
type system (a derivative of the simply typed lambda cakulbbat incorporates these ideas. We also outline
how soundness with respect to the call-by-need semantli¢sgh be proven, but we do not give any details.
This report describes the entire proof, which is writtemgghe proof assistai@oq[3]. The proof itself (as
Cogsources) is also available and can be downloaded from thershomepage
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1 Introduction

This technical report is an appendix tmiqueness Typing Simplifidd], in which we show how unigueness
typing can be simplified by treating uniqueness attribusetypes of a special kind, allowing arbitrary boolean
expressions as attributes, and avoiding subtyping. In dpep we define a small core uniqueness type system
(a derivative of the simply typed lambda calculus) that ipooates these ideas. We also outline how soundness
with respect to the call-by-need semantics [11] can be prokat we do not give any details. This report
describes the entire proof, which is written using the prassfistanCoq[3]. The proof itself (asCoqsources)

is also available and can be downloaded from the author'spagé.

This report is structured as follows. In sections 2 and 3 vghlight some of the difficulties we faced
when developing the proof, and discuss some of its moreesaisphects. In Section 4 we define the notion
of an environment, various operations on environmentskith@ing and typing relations, and the operational
semantics for our language. Sections 5 and 6 prove numewxilgasy lemmas that will be necessary in the
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main proof, which is described in Section 7. Appendix A fipalescribes a formalization of boolean algebra,
following Huntington’s Postulates [10].

Every lemma in this report is preceded by a brief descripdibtine lemma in informal language (English),
followed by a precise statement of the lemma (in the synt&omj) and a brief description (again in English) of
how the lemma can be proven. For most lemmas, this desariptibbegin with “By induction on..” or “By
inversion on..”; many descriptions will also include the most importartitetlemmas that the proof relies on.
Coqverifies a proof strictly from top to bottom, so if a lemrmBaelies on lemmai, A must have been proven
before lemmaB; this therefore applies equally to the structure of thisorep/Vhen the description of the proof
does not mention induction or inversion, then these teclas@re not necessary and the lemma can be proven
by direct application of other lemmas.

What we do not show is the actual proofs themselves: therddamrilittle point. The proofs have been
verified byCoq a widely respected proof assistant. If the reader neviedhrefers to verify the proofs by
hand, he will want to redo them himself; the short descriptibthe proof should provide enough information
to get started.

Besides, the proofs are written in the syntax@Qidg Coq is based on the calculus of constructions, a
powerful version of the dependently typed lambda calcuhAssuch, a proof irCoqis a program (a term of
the lambda calculus) that, given the premises, constrymtsaf of the conclusion. However, in all but the most
simple cases, these programs are too difficult to write bylhand instead the proof consists of a list of calls to
tacticswhich build up the program step-by-step.

Consider a simple example. Suppose we want to proveitha0 is equal ton for all natural numbers.
Here is a fullCoqproof of this property (this proof comes from t®qstandard library):

Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
induction n; simpl in |- *: auto.

Qed.

Although it should be clear whahduction n does, the purpose of the other tactics (suclsiagpl or
auto ) is less obviouseven to an experienced Coq usdractics interact with the current state of the proof
assistant, which includes information such as which lemanasvailable, the types of all variables, etc. Trying
to interpret aCoq proof withoutCoqis akin to hearing one part of a telephone conversation: thaltext is
missing.

The actual proof constructed by these tactics is

A(n:nat)-nat _ind (A(m:nat)-m=m+0)
(refl _equal 0)
A(m:nat )(IHy :m=m+0)-f _equal S I[Hy)
n
which makes use of various other lemmas, such as inductiotmal numbersiat _ind —essentially a fold
operation), the fact that equality is reflexivef{ _equal ) and a lemma that states thatvif= y, then for

all f, f x = f y (f —_equal ). The details do not matter; the point is that this is hardirereadable than the
original proof. In this report, we would simply describeglipiroof as By induction orm”.

2 Equivalence

Suppose we have a gétof objects together with an equivalence relatioron C, and some characterizatidh
of objects ofC. We wantP to have the property that ¥ x andx ~ y, thenP y. There are three different ways
in which we can guarantee thBthas this property.

e We can prove thaP has the required property.

e We can define® over the quotient sef /~ instead. This will give us the desired property by definition



e It may be possible to choose an alternative representétiarfithe objects irC, such that every equiva-
lence setirC’ /~ is a singleton set. In other words, so that the equivalerlagaris the identity relation.
The desired property d? then holds trivially.

For example, take the set of lambda terms together with adigjudévalence, and the property of being well-typed.
Then,

o We can prove that well-typedness is equivarianiif- x is well-typed, so is\y - y.
e We can define the well-typedness over the set of alpha-deuiv@rms.

e We can represent lambda terms using De Bruijn notation, iclwtaselx - x andAy - y are both repre-
sented as - 0.

Not all options are always practical, and each option haadtsantages and disadvantages. For the specific

example of alpha-equivalent terms, the first option may besipte, but cumbersome as we may have many

properties over lambda-terms; we will have to prove eqiavere for each one. The second approach is incon-

venient when we need to refer to the name of the bound vaiiiable abstraction, for example in the typing rule

for abstraction. The final approach does not have thesecaimirigs, but introduces new ones: many operations

on lambda terms in De Bruijn notation must juggle with theided, leading to additional complexity in proofs.
In informal proofs, we tend to gloss over this issue:

In this situation the common practice of human (as opposedrguter) provers is to say one thing
and do another. We say that we will quotient the collectioparfe trees by a suitable equivalence
relation of alpha-conversion, identifying trees up to maireg of bound variables; but then we try to
make the use of alpha-equivalence classes as implicit afy@by dealing with them via suitably
chosen representatives. How to make good choices of repiadises is well understood, so much
so that it has a name—the “Barendregt Variable Conventichtiose a representative parse tree
whose bound variables are fresh, i.e., mutually distinct distinct from any (free) variables in
the current context. This informal practice of confusingaggha-equivalence class with a member
of the class that has sulfficiently fresh bound variables dd®taccompanied by a certain amount
of hygiene on the part of human provers: our constructiomspnofs have to be independent of
which particular fresh names we choose for bound variab\esarly always, the verification of
such independence properties is omitted, because it isuga@ind detracts from more interesting
business at hand. Of course this introduces a certain ambimibrmality into “pencil-and-paper”
proofs that cannot be ignored if one is in the business of ywindy fully formalized, machine-
checked proofs.

—Andrew Pitts,Nominal logic, a first order theory of names and bind[ftg]

In the remainder of this section, we detail how we tackle thésie for the specific examples of terms under
alpha-equivalence, typing environments under substralctules and boolean expressions under Huntington’s
Postulates.

2.1 Lambda terms

We already described the problem of dealing with terms uldfgita-equivalence in the introduction to this
section, so all that remains is to discuss the solution. & ez various proposals in the literature; we will adopt
thelocally namelesapproach suggested by Ayderatral. in Engineering Formal Metatheoifl] (we refer the
reader to the same paper for an overview of alternatives).

In the locally nameless approach, bound variables aresepted by De Bruijn indices, but free variables are
represented by ordinary names. This means that alphaadeniterms are represented by the same term (and
so we do not have to reason explicitly about alpha-equieagmut we do not have to perform any arithmetic



operations on terms. We do however have to solve one prol@lemsider the typing rule for application. In the
locally nameless style, the rule is

Mx:tke¥:o freshx

I'HFA-e:t—0
When we typecheck the bodywe “open it up” using a fresh variabie and then record the type of the variable
as normal. That is, we replace bound variable 0 (the varihbliewvas bound by the lambda) by a fresh variable
(for some definition of “fresh”). This is a consequence ofltally nameless approach: every time a previously
bound variable becomes free, we have to invent a fresh nanite fo
Without the freshness condition, we would be able to derive

ABS

x:T,x:0kF (x,x):(0,0)
x:THEA-(0,x):0— (0,0)

where the (original) free variablehas suddenly changed type (the typing environment acts imslarband the
variablex has been “captured”). The minimal freshness conditionésetore that the variable that is used to
open up a term, does not already occur free in the term:

Ix:the*:0 xdfve
T'FAe:T—0

A weak premisexX ¢ fv e) is good when using rule Bs to prove the type of a term since we only have to
show thafl’, x : T - ¢* holds for one particular. It is however not so good when doing induction on a typing
relation. In that case, we know that thehas typer for one particularx. But thatx may not be fresh enough
for our purposes, at which point we need to rename the terwoid aame clashes. To circumvent this problem,
Aydemiret al. [1, Section 4] propose to use cofinite quantification

Vx¢gL-T,x:tkHe¥:0
TFAe:T—0

To use C-/s, we have to show that th& has typer for all x not in some set,, but using this rule is no more
difficult than using M-A8s: we simply pick an arbitrary variable not in The induction principle however is
now much stronger: we now know thdthas typer for anyx notin some set’. Then when we have to prove
thatA - e has typer — o, knowing that* has typer for all x notinL’, and we need to be distinct from some
other variabley, we can simply apply rule Bs choosingL’ U {y} for L. We still occasionally need renaming
lemmas, but they too become much more straightforward teeprdnen using cofinite quantification (we prove
a number of renaming lemmas in Section 5.2).

Arthur Charguéraud, one of the authors of Eregineering Formal Metatheonyaper, has developedaoq
library [6] which facilitates the use of the locally namelagpresentation of terms and the use of cofinite
quantification. The proofs in this report will make essdniise of this library, which we will dub th€éormal
Metatheonylibrary. As an example, here is a trivial lemma that we caragbpick a variable that is distinct
from all other variables in a typing environment:

M-ABS

C-ABS

Lemma fresh_from_env : forall E e T fvars,
E |- e ~ T | fvars -> exists x, x \notin dom E.

intros.
pick_fresh x.
exists x ; auto.
Qed.

The proof is essentially just a call to tpeek _fresh  from theFormal Metatheoryibrary. This tactic collects
all variables in the environment, and then chooses a varialt is distinct from all these variables. The proof
thatx satisfies the necessary freshness condition is also haadiethatically. The use of the locally nameless
approach, and in particular the use of fiemal Metatheoryibrary, meant that little of our subject reduction
proof needs to be concerned with alpha-equivalence orriessh

3A cofinite subset of a seX is a subseY whose complement iX is a finite set.



2.2 Environments

Consider this definition of a simple linear lambda calculus:

VAR Ix:tke:o ABS I'Ffit—o AkFe:t

S R — App
X:Thx:T I'FAx-e:T1—0 IAFfe:o

Suppose we want to prove an exchange lemma:
Lemma (Exchange). I, Al e: 1,thenA, T Fe: 7.

In informal practice, we might not even consider provingtileimma, because we might represent environments
as (multi-)sets so thdt, A andA, T are the same environment. In a formal (constructive) proofvever, we
must choose a concrete representation. If we represembaenvénts by lists, we must proexchangesince
I', A andA, T are certainly not the same list. Unfortunatehg definition of the typing relation above does not
permit ExchangeExchangealoes not hold.

One solution is to choose a different concrete represemntatror example, if we choose to represent en-
vironments by sorted lists of pairs of variables and types $bme arbitrary ordering relation) th&nA and
A, T again denote the same environment. Although this approaghwork well, we have chosen not to use
it for two reasons. It is probably sufficient to define the aindg relation entirely syntactically (ignoring any
equivalence relation between types), but this orderiragica will not be intuitive (isva.Vb.a — b equalto, less
than or greater thavia.Vb.b — a?). SinceCoqverifies our proofs, but naturally cannot verify our defioits,
we prefer not to have these doubts about the foundationgqifrthof.

The second reason we have chosen not to use this solutiat suhdefinition of an environmentis actually
taken from thd-ormal Metatheoryibrary (discussed in Section 2.1). Our subject reductimopis large enough
as it is, and the more infrastructure we can re-use, therb&#placing the definition of an environment would
involve considerable refactoring of thermal Metatheonylibrary. One complicating factor is that tf@rmal
Metatheonfibrary abstracts over the “type of types” (the Coq datatiyz is used to model types in the object
language). This is useful, but if we want to keep the envirentisorted, we cannot abstract over an arbitrary
type, but require that the type comes with an ordering @hati hus, not only would the implementation of the
library have to be modified, its interface would also havehtarge.

We must therefore explicitly allow for exchange in the tygstem. The traditional way is to include the
exchange lemma as an axitm

I[LAOFe:T
IO,Ate:T

The downside of this approach is that the inversion lemmashi® typing relation become more difficult to
state. For example, in the original type system we could@tbe following inversion lemma:

ExcH

Lemma (Inversion lemma for application). I[F - f e : T, then there exist&, © such that
I'=A,0, and there exists suchthal - f : 0 — Tand® e : 0.

In the modified type system, however, this lemma no longetdsolnstead, we would have to allow for an
application of the exchange rule, which makes the inveriiomma harder to state. This problem is amplified
by the presence of other substructural rules:

T'ke:T ly:o,z:oke:t

_ CONTR
Ix:ocke:t Ix:okelx/z,x/yl:T

With these two rules, the inversion lemma for applicationdyees very difficult to state indeed. Fortunately,
for an affine (as opposed to linear) substructural type systech as ours, weakening is unrestricted so that rule

4t is often presented as
I'AFe:T ,

-~ ———EXCH
ATkFe:T
but that rule is not strong enough. In particular, we canhotnsEXCH from EXcH'.



WEAK can easily be integrated into the typing rule for variabM& do however need to control contraction
(only unique variables can be used more than once), and dtismobvious how to integrated® TR into the
other rules.

The solution we adopt is the one described in [13], whereattigbuted to [5]. We define a generic context
splitting operation, denotefl = E; o E,, as follows:

E=Ei0E
—— SPLIT-EMPTY SPLIT-LEFT
Q=Qo® E,x:t=E|,x:toEp
E=Ei0E; non-unique E=E|0E,
SPLIT-BOTH SPLIT-RIGHT
E,x:t=E,x:toEy)x:t E,x:t=EjoEy)x:t

We can use the context splitting operation in the rule fodiappon as follows:

I'+f:t—0oc Ate:7
ToAFfe:o

ApP

With this rule, lemméaxchangéecomes admissible because we can prove an auxiliary teatulf E = E; o

E, thenE = E;, o Eq. This approach is attractive for two reasons. First, therision lemma is straightforward
to state and prove. Second, we can reason about contexingphis a separate notion, and we will do so
extensively (Section 5.10). This means that in those praisre we need to reason about reordering of the
environment (in particular lemmaseservationcommuteandpreservationasso¢ Section 7), this reasoning is
explicit and usually done in separate lemmas.

2.3 Boolean expressions

In our type system, we allow for arbitrary boolean exprassias uniqueness attributed; t <, t4, t4V?, 4\
andt™* are all valid types. Moreover, we we want to identify “equérs” boolean expressions?V? andt?V*

are the same type. In other words, we want to identify unigesrattributes (boolean expressions) that are
equivalent under the usual set of axioms (Huntington’siiatgs; see Appendix A).

Perhaps the most obvious solution is to quotient boolearessns by Huntington’s Postulates, and for-
mally regard uniqueness attributes as equivalence clagdssolean expressions rather than boolean expres-
sions. Since the equivalence clggs/ v] and[v V u] are the same class (since both expressions are equivalent),
the typeg V7l andt[?V are then also identified.

Unfortunately, this solution is difficult to adopt for twoagons. First, since the equivalence class of a
boolean expression is infinite, we would need to use coinclutt define the classes—not difficult conceptually,
but technically awkward nevertheless. The other comptioais that in our type system, and hence in the
formalization, we do not distinguish between types andbaittes (this is a key contribution of the paper).
An attributed type" is syntactic sugar for the application of a special type tam#ttr to two arguments
(Attr  t u); a kind system weeds out ill-formed types. This approaadsdwot combine well with treating
uniqueness attributes as equivalence classes.

Instead, we explicitly allow to replace a type by an equinatgpe as a non-syntax directed rule:

Ie:tlp TR

UE
[ie:olg QUIV

As it turns out, adding this lemma does not make the invergiormas more difficult to state (we prove the
inversion lemmas in Section 6.6; see also Section 2.2). M@ adding this rule is sufficient to be able to
replace a type anywhere in a typing derivafipin particular, it is sufficient to be able to replace a type in
an environment (lemmtyp_equiv_eny, Section 6.5). We will discuss the type equivalence retaioper in
Section 3.2.

5This is notquite true; in the typing rule for variables, we must be carefulltovafor a different (but equivalent) attribute i andfo.



3 Inversion

As we saw in the previous section, adding additional typirigs makes forward reasoning easier, but backward
reasoning more difficult. For example, if we add a contractigle to the type system, it becomes trivial to
provel,x :o,y: 0t e:tfroml,z: 0+ [z/x,z/yle : T (forward reasoning), but the inversion lemma for
application becomes more difficult to state (backward rea). Generally, we want to make the definition
of the type system permissive enough to facilitate forwa@soning, but not too permissive to complicate
backward reasoning. We already saw one example of thiserdtlan adding a separate contraction rule, it
is better to integrate contraction into the other rules tiyoduction a generic context splitting operation; see
Section 2.2). In this section, we will see a humber of othemeples of this tension between forward and
backward reasoning.

3.1 Domain subtraction

In the definition of the type system we make use of a domainraaion operation, denoted. fo, which
removesx from the domain ofv. In this section we discuss how we should define this operalipparticular:

if x occurs more than once in the domainfof should domain subtraction remove all of them, or only the
first? Using an example, we will see that we will need to chdbsdatter option to be able to use backwards
reasoning.

We will need a few definitions first. An environment is welldficed if it is ok and well-kinded: that is, if
every variable occurs at most once in its domain and all thesyn the codomain of the environment have the
same kind. Two environments are equivalent, dendteg I”, if they are both well-formed and map the same
variables to the same types (the subsdrigenotes the kind of the types in the codomain of the envirorisye
these definitions are given formally in Section 4).

An important lemma is that it e : 7|, I =, T’ andfv = fo', thenT’ - e : 7|sy (Lemma
env_equiv_typing, Section 6.5). This lemma is important because it allowshemge the order of the assump-
tions in the environment (Lemmexchanggor replace a type by an equivalent type in an environmenntha
typ_equiv_eny). The proof of the lemma is by induction on the typing relatio

Consider the case for the rule for abstraction. We know Fhat, I’ andfo’ =, fv;. The induction
hypothesis gives s

(T,x:a=, T x:a) — (fl,x vy fo) = (T,x:a ke : blg)
and we have to show that

UAeza b,

Replacing the attribute on the arrow by an equivalent onesjivk A -e : a ﬂ b|f06’ at which point we can
apply the typing rule for abstraction. Remains to show that

I, x:ab e bl

where we know thafy;, = Py foandx ¢ T U fu,. We can use the induction hypothesis to complete the proof,
but only if we can prove its two premises. The first one is gtrdorward, but the second is more tricky:

fol,x vy,

To be able to show this equivalence, we need to be able to dtaifwtis well-formed; in particular, we need to
be able to show that it isk (every variable occurs at most once in its domain). Sing® = fv,, we know that
Py fuis ok becausgv) =; fv’, and we know that ¢ P, fo becauser ¢ fvj. However, it now depends on the
definition of domain subtractior whether we can show thft is ok

6This is a minor simplification of the proof; in the actual pfowe need to distinguish between the case where the bourableof the
abstraction is used in the body (the case which is shown teard)the case where it is not used. We do not discuss the sézasidr) case.



If >» fo removesall occurrences of from fv, then we will be unable to complete the proof: evehiffo
is ok, that does not allow us to conclude anything about tHefaenedness ofo. On the other hand, if, fo
only removes thédirst occurrence of, thenfo can contain at most one more assumption ababanb, fo; if
additionally we know that ¢ %fv, then we can conclude thft must be ok.

Hence, we conclude that domain subtraction must removeri@&currence of a variable only. This makes
forward reasoning slightly more difficult, since where efave could prove a lemma that¢ Py fo, now that
only holds iffv is ok Fortunately, we always require environments to be weltaked, so this is no problem in
practice. On the other hand, backwards reasoning (prolaigt is ok given that>y fo is okandx ¢ Py fv) is
impossible if domain subtraction removes all variablesftbe domain of an environment.

3.2 Type equivalence

Huntington’s Postulates give us an equivalence relatigron types. For example, we have that v ~g vV u
(commutativity of disjunction) om A e ~pg u (identity element for conjunction). We want to extend this
equivalence relation to a more general equivalence relgta), which is effectively &) extended with a
closure rule for type application:

t~pt t Tt s~Ts

t1t! ts~1t's

This allows us to derive that'V? ~t £*V¥, for example, or that ifi ~1 a’, thena 25 b ~1 a’ 5 b (recall that
a % b is syntactic sugar foAttr (Arr a b) u). However, we also occasionally need to reason backwards on
the typing equivalence relation: if we know thét~t t*, we would like to be able prove that~T v.

It would seem that the easiest way to prove that would be tweptbe following inversion lemma: if
t s ~1 t' ¢, thent ~1 t' ands ~1 s’. Unfortunately, that lemma does not hold. Recall that we db n
distinguish between types and attributes in our type systéhat is, the “attribute™ Vv v is a type (which
happens to have kind). Moreoveru V v is really syntactic sugar for the application of a specipktgonstant
Or of kindU/ — U — U to two arguments@r u v). By Huntington’'s Postulates we have that v ~t v V u,
or desugaredOr u v ~1 Or v u. If the inversion lemma were true, we would thus be able tachate that
u =7 v, for anyu ando.

So, to make backwards reasoning possible, we need to redefiséghtly:

t~pgt/ LU U tert saTS —(ts:U)
~1t/ ts~1ts

(In addition, we need to introduce reflexivity, commutdthand transitivity rules; they were previously implied
by (~g)). We can now prove the following inversion lemma:tit ~t ' s’, andt s does not have kindy,
thent ~t t’ ands ~t s’. Restricting the closure rule to types of kind other thais not strictly necessary to
prove this inversion lemma, but makes proving other lemraagee (for example, Lemmsip_equiv.BA_equiy,
Section 5.11) without reducing the equivalence relatiolosure for types of kind/ is already implied by
Huntington’s Postulates.
This modification to the type equivalence relation has aritmél benefit. Recall the following rule for
context splitting:
E=Ei0E; non-unique
E,x:t=E,x:toEy)x:t

Since the context splitting operation is applied both tdrgpenvironmentsk() and the lists of free variables
(fv), we give the following two axioms to prove “non-unique”:

SPLIT-BOTH

U T X U T X

non-uniquét) =~ non-uniquéu) Y

Now consider proving the following lemma: if = b is non-unique, them ~t x. The proof proceeds by
inversion on non-uniqye — b). The case for rule NUis trivial, but how can we dismiss the case for rule



NU;,? Without the kind requirements added to the type equivalealation, we would have to show that it is
impossible that - b is equivalent tox by Huntington’s Postulates; not an easy préof!

3.3 Evaluation contexts

The operational semantics we use is the call-by-need sé&adoyt Maraistet al. [11]. In this semantics, the
definition of evaluation depends on the notion ofemaluation contextwhich is essentially a term with a hole
in it (the difference between an evaluation context and tbeengeneral notion of a “context” [2] is that in an
evaluation context, we restrict where the hole can appedeiterm). There are various ways in which we can
formalize an evaluation context in Cog. In simple cases, arefollow informal practice and define a context
E inductively, followed by a definition of plugging a term into the hole in the context[M]. This is the
approach taken in [4], for instance, but it does not applyetimcause we need the definitionEjfVI] when
definingE[].

Another approach [8] is to define a context as an ordinarytionon terms, and then (inductively) define
which functions on terms can be regarded as evaluationxsnfEhis is an attractive and elegant approach, but
does not work so well in the locally-nameless approach:essmne evaluation contexts place a term within the
scope of a binder but others do not, we must distinguish batlieding contexts which have the property that
if +* is a term for some fresh, thenE|[x] is also a term, antegular contexts (which do not have this property).

For example, consider the proof that reduction is regufar:++ ¢, then bothe ande’ are locally close®
The proof is by induction om — ¢’. In the case for the closure rule, we know tit4¢] andE[¢’] are locally
closed, and we have to show tlradnde’ are locally closed. However, we may or may not be able to shasv t
(depending on whethédtis a regular or a binding context). Thus, we need to distislythie “closing” evaluation
contexts from the others, at which point the elegance of fpgaach starts disappearing. We now need two
closure rules (one for closing and one for regular contextsl we have introduced a new characterization of
evaluation contexts that we will need to reason about.

To avoid having to reason about closing contexts and regolatexts, we instead inline the definition of the
evaluation contexts into the definition of the reductiomtien. This gives only one more rule than when giving
a closure rule for regular contexts and a closure rule fogintpcontexts, and moreover, the resulting closure
rules correspond to intuitive notions about the semantics.

We still need to define the notion of an evaluation contextaise the reduction relation depends on it in the
other rules too. As mentioned before, we cannot define thiemof a context separately from plugging a term
into the hole. The solution we adopt is to defifias a binary relation between a term and a free variable, where
E t x should be read asevaluatest (there is an evaluation contektsuch that = E[x]). This gives good
inversion principles (suitable for backwards reasonimg) @mbines well with the locally nameless approach.
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4 Definitions

4.1 Types
A type is either a type constant or the application of one tgmmother.

Inductive typ: Set :=
(** Type application*)
| typ-app: typ — typ — typ
(** Type constants)
| ARR: typ
| ATTR: typ
| UN : typ
| NU : typ
| OR: typ
| AND: typ
| NOT : typ.

For convenience, we define a number of functions to denoteranty used types, and some custom notation
for attributed types.

Definition bi_app(f a b: typ) : typ :=typ_app(typ-app f g b.
Definition arr (a b: typ) : typ:=bi_app ARR ab

Definition attr (t u: typ) : typ:=bi_app ATTR tu

Definition or (U v: typ) : typ:=bi_app OR u v

Definition and (u v: typ) : typ := bi_app AND u v

Definition not (u : typ) : typ := typ_app NOT u

Notation "t u" := (attr t u) (at level60).

Notation "a { u) b" := ((arr a b) ' u) (at level68).

(A subset of the) language of types forms a boolean algebra.
Module TypeAsBooleanAlgebra BooleanAlgebraTerm

Definition trm := typ.
Definition true := UN.
Definition false:= NU.
Definition or :=or.
Definition and:= and
Definition not:= not

End TypeAsBooleanAlgebra
Module BA := BooleanAlgebra TypeAsBooleanAlgebra

4.2 Kinding relation
The definition of kinds.

Inductive kind : Set :=
| kind_T : kind
| kind_U : kind
| kind_star : kind
| kind_arr : kind — kind — kind.
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Kinding relation.

Inductive kinding: typ — kind — Prop :=
| kinding-app: V t1 t2 k1 k2
kinding t1(kind_arr k1 k2) —
kinding t2 k1—
kinding (typ_app t1 t9 k2
| kinding-ARR: kinding ARRkind_arr kind_star (kind_arr kind_star kind.T))
| kinding_ATTR: kinding ATTRkind_arr kind_T (kind_arr kind_U kind_star))
| kinding_UN : kinding UN kind.U
| kinding-NU : kinding NU kind .U
| kinding-OR: kinding OR(kind_arr kind_U (kind_arr kind_U kind_U))
| kinding-AND : kinding AND(kind_arr kind_U (kind_arr kind_U kind_U))
| kinding-NOT : kinding NOT(kind_arr kind_U kind_U).

Hint Constructors kinding
Equivalence between types

Inductive typ_equiv: typ — typ — Prop :=
(** The type equivalence includes the boolean equivalenceaely
| typ_equiv_attr : V u v,
kinding u kindU —
kinding v kindU —
BA.equiv u v—
typ_equiv u v
(** Closure(does not apply to types of kind)t)
| typ_equiv.app: Vsts't,
= kinding (typ_app s ) kind_-U —
typ_equiv s s'—
typ_equivtt —
typ-equiv(typ-app s ) (typ-app s’ t)
(** Structural rules*)
| typ_equiv_refl : V' t,
typ_equiv t t
| typ_equiv.sym: V' t s,
typ_equiv t s— typ_equivst
| typ_equiv_trans: Vtsr,
typ_equiv t s— typ_equiv s r— typ_equiv tr.

Hint Constructors typequiv

4.3 Environment

The definition of an environment comes from the Formal Metatia library; we just need to instantiate it with
our definition of a type.

Definition env: Set := Env.env typ

An environment is well-formed if it i®k and well-kinded.

Definition env_kind (k : kind) : env— Prop :
env_prop (fun t = kinding t K.

Definition envwf (E : eny) (k : kind) : Prop :
ok EA envkind k E

12



Two environments are considered equivalent if they botd e same variables to equivalent types, and both
are wellformed. For clarity, we introduce a special syntagénote equivalence.

Definition env_equiv(E1 E2: en\) (k : kind) : Prop :=
envwf E1 kA envwf E2 kA
(Vxt bindsxt El— 3 t', binds x t" E2A typ_equiv t t) A
(Vxt, bindsx t E2— 3 t', binds x t' E1A typ_equiv t t).

Notation "E1 2 E2':= (env_equiv E1 E2 (at level70).

The definition of the context split operation, as explairmethie introduction. The context split is used both to
split E, the typing environment anftars, the list of free variables and their uniqueness attribinéke typing
rules. For this reason, we introduce a separate “noigue” property of types, which applies to types of kind
when they have a non-unique attribute, and to attributge&yf kind/) when they are non-unique themselves.

Reserved Notatiofi split_context’ E'as’ (E1; E2)".

Inductive non_unigue: typ — Prop :=
| NU_star: Vtu,
typ-equiv u NU— non_unique(t ' u)
| NU_U : V u,
typ_equiv u NU— non_unique u

Inductive contextsplit: env— env— env— Prop :=

| split_empty:
split_context emptgs (empty; empty

| split_both: V E E1 E2 x t split_context Eas (E1; E2) — non_unique t—
split_context{(E & x —t)as (E1& X ~t; E2& x — 1)

| split_left: V E E1 E2 x f split_context Eas (E1; E2) —
split_context(E & x —t)as (E1& x—t; E2)

| split_right : ¥ E E1 E2 x t split_context Eas (E1; E2) —
split_context(E & x —t) as (E1; E2& X — 1)

where

" split_context’ E'as’ (E1; E2)" := (contextsplit E E1 E2.

Hint Constructors nonunique contexisplit.

4.4 Operations on the typing context

Disjunction of all types on the range of the environment
Fixpointrng (E : eny) : typ:=

match E with

| nil = NU

| (x, u) :: tail = or u (rng tail)

end.

Remove the first occurrence ofn E
Fixpoint dsub(x : var) (E : enJ) {struct B : env:=
match E with
| nil = nil
| (y, 1) :: tail = if x ==y then tail else (y, t) :: dsub x tail
end.

Call dsubfor everyx in xs
Fixpoint dsublist (xs: list var) (E : eny) : env:=
match xswith
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| nil = E
| x:: xs' = dsuhlist xs’ (dsub x B
end.

Variation ondsuh list working on setxsrather than lists.
Definition dsub.vars(xs: vars) (E : eny) : env:= dsuh/list (S.elements ¥&.

4.5 Typing relation

The rule for variablesyping_var is subtle in two ways: since it only requires théhds x(t * u) E, and therefore
allows for other assumptions i it implicitly allows weakening ote. However, it is much more strict duars
(the only assumption ifvars must be the assumption: u; hence, no weakening is allowed brars). This is
important, because while additional assumptiorts @annot affect the type of a term, additional assumptions in
fvarscan (by unnecessarily forcing an abstraction to be unidu®.typing rule for abstraction uses the cofinite
quantification discussed in the introduction.

Reserved NotatiotE -t : T | fvars' (at level69).

Inductive typing: env— trm — typ — env— Prop :=

| typing-var: VE xtuvy
envwf E kind_star —
binds x(t' u) E —
typ_equiv u v—
EF (trm_fvarX):t’ u|x-v

| typing-abs: VL E ab e fvars
(V x fvars x\notin L — fvars’ = dsub x fvars—

(E&x—-a)ke"x:b|fvarg —

EF (trm_abs ¢ :a(rngfvars’) b | fvars’

| typing-app: V E E1 E2 fvars fvarsl fvars2 el e2 abu
ElFel:a(u)b|fvarsl—
E2} e2:a|fvars2—
split_context Eas (E1; E2) — env.wf E kind_star —
split_context fvarss (fvarsl; fvars?d — env.wf fvars kindU —
EF (trm_app el e: b | fvars

| typing-equiv: V E e a b fvars
Ele:alfvars—
typ_equiv a b—
El e:b]|fvars

where"E Ft: T | fvars' := (typing Et T fvar.

Hint Constructors typing

4.6 Semantics

We treat “letx = y in z” as syntactic sugar fofAx - z) .
Notation " It' X "in’ y" := (trm_app(trm_abs y) X) (at level70).

Definition ofanswer evalandred as in [11]; again, we're using cofinite quantification.

Inductive answer: trm — Prop =
| answetabs: ¥V M, term(trm_abs M) —
answer(trm_abs M)
| answetlet: VLM A term (It M in A) —
(V %, x\notin L — answer(A~ x)) —
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answer(lt M in A).
Definition of an evaluation context

Inductive evals: trm — var — Prop :=

| evalshole: V x,
evals(trm_fvar X) x

| evalsapp: V x E M, evals E x—
evals(trm_app E M) x

| evalslet: VLXE M,
(Vy, y\notin L — evals(E " y) X) —
evals(lt M in E) x

| evalsdem: V L x E M, evals E x—
(Vy,y\notin L— evals(M "y) y) —
evals(lt E in M) x.

Hint Constructors evals

As mentioned before, the reduction relation we use is thedstia reduction from [11], except thegd_value
is defined as in [11, SectiorOh types and logig p. 38] (adapted for standard reduction). None of thesesrul
adjust any of the bound variables (which are after all De jBrariables); this is justified by lemmad_regular,
given in Section 5.7, which states that the reduction matais defined folocally closedterms only (that is,
they may contain free variables, but no unbound De Bruijicies).

Inductive red : trm — trm — Prop :=

(** Standard reduction rule¥y

| red_value: V L M N, term(lt (trm_abs M) in N) —
(V %, x\notin L — evals(N " x) x) —
red (It (trm_abs M) in N) (N ™" trm_abs M)

| red_commute ¥ L M A N, term(trm_app(lt M in A) N) —
(¥ x, x\notin L — answer(A~ x)) —
red (trm_app(it M in A) N) (It M intrm_app AN

| red_assoc VLM AN, term(lt (It M in A)in N) —
(V %, x\notin L — answer(A~ x)) —
(¥ x, x\notin L — evals(N " x) x) —
red (It (ItM in A)in N) (It M inlt Ain N)

(** Compatible closuré&)

| red_closure.app: V E E’ M, term(trm_app E M) —
red EE —
red (trm_app E M (trm_app E’ M)

| red_closurellet: VL E E' M, term(lt M in E) —
(V¥ x, x\notinL— red (E" x) (E" " x)) —
red(t M inE) (ItM inE")

| red_closure.dem: V L EO EO’ EJ, term (It EOin E1) —
red EO EO'—
(¥ %, x\notin L — evals(E1" x) x) —
red (It EOin E1) (It EO’ in EX).

Hint Constructors answer red

5 Preliminaries

15



5.1 Some additional lemmas aboubk and binds

Every variable occurs at most once.
Lemma ok_mid: V (E2 E1: eny x t,

Ok(E1& X ~t& E2) — X#E1A X#E2
By induction onE2.

If two environments are botbk and their domains are disjoint, then their concatenatiafsisok.
Lemma ok_concat: V (E2 E1: eny),

ok E1— ok E2—

(¥ %, x\in dom E1— x\notin dom E2 —

(¥ %, x\in dom E2— x\notin dom E} —

ok (E1& E2).
By induction onE2.

If the concatenation of two environmentsol then their domains must be disjoint.
Lemma ok_concatinv_2: VY (E2 E1: eny),

ok(E1& E2) —

(¥ %, x\in dom E1— x\notin dom E2 A

(¥ %, x\in dom E2— x\notin dom EJ}.
By induction onE2.

We can change the order of the assumptions in an environnigrtiw affectingok.
Lemma ok_exch: V (E1 E2: eny),

ok(E1& E2) — ok (E2& EI).
By induction onEL

Generalization obk_exch

Lemma ok_exch.3:V (E1 E2 E3: eny),
ok(E1& E2& E3) — ok(E1& E3& E2).

Follows fromok_concatinv_2 andok_exch

If an environment binds a variable thenx must be in the domain of the environment.
Lemma binds.in_dom: V (A: Set) x (T : A) E,

binds x T E— x\indom E
By induction onE.

Inverse ofbinds.in_dom if a variablex is in the domain of an environment, then the environment rinstx.
Lemma in_dom_binds: V (E : eny) X,

x\indom E— dt, bindsxtE
By induction onE.

Binds is unaffected by the order of the assumptions in arrenmient.
Lemma binds.exch: V (E1 E2: eny x t, ok (E1 & E2) —

binds x t(E1& E2) —

binds x t(E2 & E1).
Follows fromok_concatinv_2.

Generalization obinds_exch

Lemma binds.exch.3: V (E1 E2 E3: eny x t, ok(E1& E2& E3) —
bindsxt(E1& E2& E3) —
binds x t(E1& E3& E2).

Trivial.

A variable can only be bound to one type.

Lemma binds.head.inv: V (E:eny xab,
bindsx a(E & x—b) — a=h.

Trivial.
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5.2 Renaming Lemmas

All these renaming lemmas are proven in the same way. We fiosem substitution lemma which states that
the names of the free variables do not matter, and then weegh@vrenaming lemma using the substitution
lemma and the fact thaf™ u =[x~ u] t " x, as long ax \notin fv t

If eis an answer, then it will still be an answer when we renameoéitg free variables.
Lemma substanswer: V e x y,

answer e— answer([x ~» trm_fvar y] e).
By induction onanswer e

If t~ xis an answer, theti” y will also be an answer for any
Lemma answecrename V X y

x\notin fv t—

answer(t ~ x) — answer(t " y).
Follows fromsubstanswer

If M evaluates< (by the evaluation context relation defined previouslyhtifeve renamey to zin M, M will
still evaluatex if x # y, or M will evaluatez otherwise.
Lemma substevals: VM xy z
evals M x— evals([y ~~ trm_fvar Z M) (if x ==y then z else X).
By induction onevals M x

If M~ x evaluatex, thenM " y will evaluatey for anyy.
Lemma evalsrename V M Xy,

x\notin fv M —

evals(M " x) x — evals(M " y) y.
Follows fromsubstevals

Specialization obubst evals excluding the case that=y.
Lemma substevals2: VM xyzx#y—

evals M x— evals([y ~» trm_fvar 2 M) x.
Follows fromsubst evals

Generalization oévals.rename

Lemma evalsrename?2: VM Xy z
x\notinfv M — z # x —
evals(M " x) z— evals(M "y) z

Follows fromsubst evals 2.

If ereduces t@’, then if we rename a free variable by another in both termedtiection relation will still hold.
Lemma substred: Vee’'xy,

red e e'— red ([x ~ trm_fvar y] e) ([x ~> trm_fvar y] e’).
By induction onred e e} usessubstevals 2.

If M~ xreduces tiN ~ x, thenM " y will reduce toN " y for anyy.
Lemma red_rename V Xy M N,

x\notin fv M — x\notin fv N —

red(M~“x) ((N"x) —red(M"y) (N"y).
Follows trivially from substread

5.3 Term opening

Auxiliary lemma used to proviem_open below.
Lemma in_openaux: VM xy k| x#y —
x\in fv ({k ~» trm_fvar y} M) — x\in fv ({| ~> trm_fvar y} M).
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By induction onM.

If xis free inM "y andy # x, thenx s free inM.
Lemma in_open: ¥V M x y,

x\infv(M"y) =y # x— x\infv M.
By induction onM; usesin_open.aux

If xis free ine, thenx will still be free when we substitute any bound variablein
Lemmain_open2:Vee kx

x\in fv e — x\infv ({k ~ €'} €).
By induction one.

If xis not free int, then if we replace a bound varialdy y (wherex # y) in t, x will still not be free int.
Lemma openrec_fv: Vtxyk

x\notin fv t— x # y — x\notin fv({ k ~ trm_fvar y} t).
By induction ont.

If t~ xis locally-closed, then substituting for any bound vargdarger than 0 ihhas no effect.
Lemma open.rec_term.open: V t X,

term(t"x) > Vkt,k>1—-t={k~t}t
Trivial.

5.4 Domain subtraction

Subtracting an elememtfrom the domain of an environmefuars has no effect wher wasn’t in the domain
of fvarsto start with.
Lemma dsub.not.in_dom: V (fvars: eny) x, x # fvars —
fvars= dsub x fvars
By induction onfvars

P, removes from a domain

Lemma not_in_dom.dsub: V fvars x ok fvars—
X #dsub x fvars

By induction onfvars

Removingx from E & x — t givesE.
Lemma dsubLhead: VE xt dsub x(E & x—~t) = E.
Trivial.

(7) distributes over (++).

Lemma dsuhapp: V E1 E2 x ok (E1++ E2) —
dsub x(E1++ E2) = dsub x E1++ dsub x E2

By induction onE1.

(7) distributes over (&).

Corollary dsuh.concat: V fvarsl fvars2 xok (fvars1& fvarsd —
dsub x(fvars1& fvars? = dsub x fvars®& dsub x fvars2

Follows trivially from dsub.app.

If removingx from fvarsis the empty environment, thgrcannot be in the domain dfars
Lemma not.in_dom.empty: V fvars x y

dsub x fvarss empty— x # y — y\in dom fvars— False
By case analysis ofvars

If E bindsx andx # y, then(%,E) bindsx.
Lemma binds.dsub: VE xy T,
binds x T E— X # y — binds x T(dsub y B.
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By induction onE.

Inverse property obinds dsuh.inv.
Lemma binds.dsubinv: VE Xy T,

binds x T(dsuby B — x#y — bindsx T E
By induction onE.

If xis in the domain o andx # y, thenx s in the domain ofisub y E
Lemma in_dom.dsub: V E x y;

x\in dom E— x # y — x\indom(dsub y B.
By induction onE.

Inverse property oin_dom.dsub
Lemma in_dom.dsuh.inv: V E x y,

x\in dom(dsub y B — x\in dom E
By induction onE.

If xis in the domain oE and%yE is the empty environment, theemust bey.
Lemma in_.dom.dsub.empty: V E x y,

x\in dom E— dsub y E= empty— x =Y.
By induction onE.

If an environment ik, it will still be ok if we remove a variable from its domain.
Lemma ok_dsub: V E X,

ok E— ok (dsub x B.
By induction onok E

If an environment ik, it will still be ok if we add a single assumption abouto the environment, provided
thatx wasn't already in the domain &.
Lemma ok_dsub.inv: V E x,
ok(dsub x B — x#dsub x E— ok E
By induction onE.

If removingx from an environment yields the empty environment, theneeithe environment was empty to
start with, or it is the singleton environment bindixg
Lemma dsub.empty: V E X,
dsub x E=empty— E =emptyv 3t,E=x - t.
By induction onE.

5.5 Kinding properties

An attributed type consists of a base type and an attribute.

Lemma kinding_star_inv : V¥ t u, kinding(t ' u) kind_star —
kinding t kind. T A kinding u kind U.

By inversion orkinding(t ' u) kind_star.

The domain and codomain of functions must have kindnd the attribute on the arrow must have kind
Lemma kinding_fun_inv: ¥ a u b kinding(a ( u ) b) kind_star —

kinding a kind star A kinding u kind U A kinding b kind star.
By inversion orkinding(a ( u ) b) kind_star.

Every type has at most one kind.

Lemma kind_unique: V t k1, kinding t k1—
v k2, kinding t k2— k1=k2.

By induction onkinding t k1

Equivalent types must have the same kind.
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Lemma typ_equiv.samekind: V t s, typ_equiv t s—
v k, kinding t k< kinding s k
By induction ontyp_equiv t $ useskind_unique

or a bhas kindU if a andb have kindu.

Lemma kinding-or : V a b, kinding a kindU — kinding b kindU —
kinding(or a b) kind_U.

Trivial.

5.6 Well-formedness of environments

If an environment is well-formed, it must lwd
Lemma envwf_ok: V E k, env.wf E k— ok E
Trivial.

The empty environment is well-formed.
Lemma env.wf_empty: V k, en.wf empty k
Trivial.

The singleton environment is well-formed.

Lemma env.wf_singleton: ¥ x t k, kinding t k—
envwf (X = t) k.

Trivial.

An environment can be extended with t) if x is not already irE andt has the right kind.
Lemma env.wf_extend: V E k x t x#E — kinding t k—

env.wf E k— envwf (E& x —t) k.
Trivial.

The tail of a well-formed environment is also well-formed.
Lemma env.wf_tail : VE xtk

envwf (E& x—t) k — envwf E k
Trivial.

Well-formedness of an environment is unaffected if we ree@variable.
Lemma env.wf_dsub: V E k X

env.wf E k— envwf (dsub x B k.
Follows frombinds_dsub.inv.

Well-formedness of an environment is unaffected when wesaliidsh variable of the right kind.
Lemma envwf_dsuhinv: V E k x

env.wf (dsub x B k —

(V't, binds x t E— kinding t § — x# dsub x E—

envwf E k
Follows fromok_dsuh.inv andbinds.dsub

Well-formed is unaffected if we replace a type by an equivbdme.
Lemma env.wf_typ_equiv: V E k x t s typ_equivt s—

envwf (E& x=t) k — envwf (E& x—9) k.
Follows fromtyp_equiv_samekind.

Well-formedness of an environment is independent of theroofithe assumptions.
Lemma env.wf_exch: V E1 E2 k

env.wf (E1& E2) k — env.wf (E2& E1) k.
Trivial (usesbinds_excly.

Generalization oénv.wf_exch
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Lemma env.wf_exch.3: VE1E2 E3k
env.wf (E1& E2& E3) k — envwf (E1& E3& E2) k.
Trivial (usesbinds_exch 3).

Every type in a well-formed environment has the same kind.
Lemma env.wf_binds kind: V E xtk env.wf E k—

binds x t E— kinding t k
Trivial.

Every part of a well-formed environment must be well-formed

Lemma env.wf_concatinv: V E1 E2 k env.wf (E1& E2) k —
env.wf E1 kA envowf E2 k

Trivial.

5.7 Regularity

A typing relation only holds when the environment is weltffeed and the term is locally closed.

Lemma typingregular: VE e T fvars

typing E e T fvars—

envwf E kind_star A env.wf fvars kindU A term e
By induction ontyping E e T fvars

The answer predicate only holds for locally closed terms.
Lemma answerregular: V e,

answer e— term e
Trivial induction onanswer e

The reduction relation only holds for pairs of locally cldgerms.
Lemma body app: Ve e, term e’ —

body e— body(trm_app e €).
Trivial.

The reduction relation only applies to locally closed terms
Lemma red_regular: V e €/,

red e e’— term e/ term e’
By induction onred e e} usesopenrec_term.open

5.8 Well-founded induction on subterms

Subterm relation on locally-closed terms.
Inductive subterm: trm — trm — Prop :=
| sub.abs: V x t, subterm(t ~ x) (trm_abs )
| sub.abs trans: V x tt', subterm t'(t * x) — subterm t'(trm_abs )
| sub.appl: V t1 t2, subterm ti(trm_app t1 t9
| sub.app2: V t1 t2, subterm tXtrm_app t1 t9
| sub.appltrans: V t' t1 t2, subterm t' t1— subterm t'(trm_app t1 t9

| sub.app2.trans: V t' t1 t2, subterm t’ t2— subterm t'(trm_app t1 t2.

Size is defined to be the number of constructors used to bpiklterm.
Fixpoint size(t:trm) : nat:=

match t with

| trm_fvar x=-1

| trm_bvari= 1

| rm_abs t1= 1 +size t1

21



| trm_app t1 t2=- 1 + size t1+ size t2
end.

Size is unaffected by substituting free variables for bovariables.
Lemma size_substfree: Vti X,

size t=size({i ~» trm_fvar x} t).
By induction ont.

Special case dize substfree
Lemma size open: V t X,

size t=size(t " X).
Follows directly fromsize subst free

The subterm relation is well-foundgd
Lemma subtermwell_founded: well_founded subterm
We prove the more general propextyn:nat) (t:trm), size t< n — Acc subterm by induction om.

5.9 lterated domain subtraction

Removing a list of variables from the empty environmentdsghe empty environment.
Lemma dsulvlist_nil : V xs dsul.list xs nil = nil.
Trivial.

Like dsuh.list_nil but usingdsuh.varsinstead ofdsuh.list.
Lemma dsuh.vars.nil : V xs dsuhb.vars xs nil= nil.
Follows directly fromdsuh.list_nil.

Auxiliary lemma used to provesuhb list_inv, below.

Lemma dsuh.list_inv_auxl: V xs Evtok((v,t) :: E) —
In v xs— dsub.list xs((v, t) :: E) =dsuh.list xs E

By induction onxs usesn_dom.dsuh.inv.

Auxiliary lemma used to provesuhb list_inv, below.
Lemma dsub.list_inv_aux2: VxsE v t

= Inv xs— dsuhlist xs((v, t) :: E) = (v, t) :: dsuh.list xs E
By induction onxs

The following lemma is useful in proofs involvindsuh.list. When we applydsuh. list xsto an environment
with head ¢, t), then eithew is in the listxsand the head of the list will be removed \ois not in the lisixsand
the head of the list will be left alone.
Lemma dsullist_inv: V xs Eviok((v,t):: E) —

(Inv xsA dsublist xs((v, t) :: E) =dsublist xs B) vV

(" Inv xsA dsublist xs((v, t) :: E) = (v, t) :: dsub.list xs B).
Follows fromdsuh list_inv_aux_1 anddsub.list_inv_aux_2.

Like dsuh list_inv but usingdsuh.varsinstead ofdsuh list.
Lemma dsuhvars.inv: V xs E viok((v,t) :: E) —
(v\in xsA dsub.vars xs((v, t) :: E) =dsub.vars xs B vV
(v\notin xsA dsub.vars xs((v, t) :: E) = (v, t) :: dsub.vars xs B.
Follows fromdsuh.list_inv.

The order in which we remove variables from the domain of asirenment is irrelevant.
Lemma dsustlist_permut: V E xs ysok E —

(V% Inxxs— Inxyg —

(Vy,Inyys— Inyx9 —

9Proof suggested by Arthur Charguéraud.
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dsuh.list xs E=dsuh.listys E
By induction onE; usesdsuh list_inv twice in the induction step (once fasand once foys).

Like dsustlist_permut but usingdsuh varsinstead ofdsuh list.
Lemma dsustvars permut: V E xs ysok E—

(V %, x\in xs — x\inyg) —

(Vy, y\inys— y\in xg —

dsuhvars xs E= dsuh.vars ys E
Proof analogous tdsust list_permutbut usingdsuh vars_inv instead.

Special case alsuh vars_inv.

Lemma dsuh.vars_.concatassoc V E xS X foOK(E& x—t) —
x\notin xs— dsuh.vars xs(E & x — t) = (dsuh.vars xs B & x - t.

Follows fromdsuh.vars_inv.

Special case alsuh vars_inv.

Lemma dsuhvars_cons: V E xs X ok (E & x = t) — x\in xs—
dsuhvars xs(E & x = t) =dsuhvars xs E

Follows fromdsuh.vars_inv.

To remove ({f}} \ u x9 from the domain of an environment, we first remonend therxs
Lemma dsuh.vars to_dsub: V E x xs ok E—

dsubvars({{ x}} \ u x9 E = dsuh.vars xs(dsub x B.
Follows fromdsust list_permut

If xis in the domain of £ with xsremoved), therx must be in the set (domain &) with xsremoved.
Lemma in_dom.dsuh.vars: V E x xs ok E—

x\in dom((dsub.vars x3§ E) — x\in (S.diff (dom B x9).
By induction onE; usesdsub.vars_inv in the induction step.

If xis notin the domain o to start with, then it certainly will not be in the domain®ffter we have removed
some variables from the domain f
Lemma notin_.dom.dsub.vars: V E x xs ok E —
X#E — x# (dsub.vars xs B.
Trivial.

5.10 Context split

Ey E; E E
NTT NS
We can swap the two branches of a context split:E E
Lemma split_exch: VE E1 E2
split_context Eas (E1; E2) — split_context Eas (E2; EJ).
Trivial induction onsplit_context Eas (E1; E2).

Ey E
NS
If E  andxis in the domain of;, thenx must be in the domain d.
Lemma in_dom.split_1: VE E1E2 x
split_context Eas (E1; E2) — x\in dom E1— x\in dom E
By induction onsplit_context Eas (E1; E2).

Er B
\/

If E  andxis in the domain of,, thenx must be in the domain df.
Lemma in_dom.split.2: VE E1 E2 x
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split_context Eas (E1; E2) — x\in dom E2— x\in dom E

Follows fromin_dom.split_1 andsplit_exch
Ei E
N

If E  andxis in the domain of, thenx must either be in the domain &% or in the domain oft, (or

both).
Lemma in_dom.split_inv: V E E1 E2 X

split_context Eas (E1; E2) — x\in dom E— x\in dom E1V x\in dom E2

By induction onsplit_context Eas (E1; E2).
Ey E

If E  andE; bindsx, thenE must bindx. Note that unliken_dom.split_1, we requireE to beok.

Lemma binds.split-1: VEE1E2xtok E—

split_context Eas (E1; E2) — binds xt E1— binds xt E

By induction onsplit_context Eas (E1; E2).
Ei E

NS

If E  andE, bindsx, thenE must bindx. Note that unliken_dom_split_1, we requireE to beok

Lemma binds.split-2: VEE1E2xtok E—

split_context Eas (E1; E2) — binds xt E2— binds xt E

Follows frombinds split_1 andsplit_exch
EL B

If E  andE bindsx, then eitherE; or E, (or both) must bindk. Note that unliken_dom.split_inv, we

requireE to beok.
Lemma binds.split_inv: VE E1 E2 x {

split_context Eas (E1; E2) — binds x t E— binds x t E1V binds x t E2

By induction onsplit_context Eas (E1; E2).
E1 Ez 9xE1 9xE2

N
If E then  DxE :
Lemma split_dsub: V E E1 E2 x
split_context Eas (E1; E2) — ok E—

split_context(dsub x B as (dsub x EX;, dsub x E2.

By induction on splitcontext E as (E1 ; E2)].

E @
NS

We can always split an environmebtas E
Lemma split_empty: V E,
split_context Eas (E ; empty.
Trivial induction onE.
E @
NS
If E thenE mustbeE'.
Lemma split_emptyinv: V E E’,
split_context Eas (E’ ; empty — E=FE".

We proveY E E' E”, split_context Eas (E' ; E") — E” = empty— E = E’ by induction onsplit_context Eas

(E'; E").
E «x:t
\/

We can always spliE, x : tas E,x:t |
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Lemma split_tail : V E x t
split_context(E & x —t) as (E ; x — t).
Follows fromsplit_empty

Ey E
N
If E | Ebindsx andxis in the domain of;, thenE; must bindx.
Lemma split_binds.in_.dom.1: VE E1 E2
split_context Eas (E1; E2) — ok E—
V x t, binds x t E— x\in dom E1— binds x t E1
By induction onsplit_context Eas (E1; E2).

Ey E
N
If E | Ebindsx andx is in the domain of,, thenE, must bindx.
Lemma split_binds.in_.dom.2: VE E1 E2
split_context Eas (E1; E2) — ok E—
v x t, binds x t E— x\in dom E2— binds x t E2
Follows fromsplit_binds.in_dom_1 andsplit_exch

We prove a series of four reordering lemmas, with the firsttlost general and the basis for the other three.

Ey,, Ey, E, E, E, E, E, B
N N N N
El E2 = Ea Eh
\E/ \E“/

Lemma reorder_ab’cd_ac’bd: V E E1 E2
split_context Eas (E1; E2) — V ElaElb E2a E2p
split_context Elas (Ela; E1b —
split_context E2as (E2a; E2b) —
3 Ea 3 Eb,
split_context Eas (Ea; Eb) A
split_context Eaas (Ela; E28) A
split_context Elas (E1b; E2b).
By induction onsplit_context Eas (E1; E2) followed by inversion orsplit_context Elas (Ela; E1b) and
split_context E2as (E2a; E2h). There are 34 cases to consider but they are all trivial.

Restructure a three-way spli,, Ey, E.).

Ela Elb Elb E2
E1 EZ = Ela E/
\/ \E/

E

Corollary reorder.ab’c_a’bc: V E E1 E2 Ela Elp
split_context Eas (E1; E2) —
split_context Elas (Ela; E1b —
JE,
split_context Eas (Ela; E’) A
split_context E'as (E1b; E2).
Follows fromreorder_ab’cd_ac’bd.

Inverse ofreorder_ab’c_a’bc:
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E,, Ey E E

N N
Ey E, = F Ea,
\/ \E/
E

Corollary reorder.a’bc_ab’c: V E E1 E2 E2a E2p
split_context Eas (E1; E2) —
split_context E2as (E2a; E2b) —
JE,
split_context Eas (E’ ; E2b) A
split_context E'as (E1; E2d).
Follows fromreorder_ab’cd_ac’bd.

The final reordering lemma is its own inverse:

Ela Elh Ela E2
\/ \/
Eq E, = £’ Ey,
\/
E E

Corollary reorder.ab’c_ac’b: V E E1 E2 Ela Elp
split_context Eas (E1; E2) —
split_context Elas (Ela; E1b —
JE,
split_context Eas (E’ ; E1b A
split_context E'as (Ela; E2).
Follows fromreorder_ab’cd_ac’bd.

bxE E
o

Remove the assumption abourom E: E . We use this lemma igplit_dom.inv, below.

Lemma split.dom: V E X,
J E’, split_context Eas (dsub x E; E’) A dsub x E'= empty
By induction onE.

Inverse property o$plit_.dom
Lemma split_dom.inv: V E E’ X,
E’ =dsub x E—
J E_X, split_context Eas (E’ ; E_X) A dsub x Ex = empty
By induction onE.

Ey E
N
If E andEis ok then bothE1landE2 must beok
Lemma split_contextok: V E E1 E2
split_context Eas (E1; E2) — ok E— ok E1A ok E2
By induction onsplit_context Eas (E1; E2).
Ey, E
N
If E  andEis well-formed, then botE1 andE2 must be well-formed.
Lemma split_contextwf : VE E1 E2 k
split_context Eas (E1; E2) — env.wf E k— env.wf E1 kA env.wf E2 k
Follows fromsplit_context ok, binds_split_1 andbinds_split_2.
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We can always split the concatenation of two environmendsita two constituents:E1&E2
Lemma split_concat: V E2 EJ,

split_context(E1 & E2) as (E1; E2).
By induction onE2.

Split a domairE into two domain€E1 andE2 so that all assumptions about variables&go intoE1 and the
Pdom E\xsE brsE

rest goes int@&2: E .
Lemma split_dom.set: V E x5 ok E—
split_context Eas (dsuh.vars(S.diff (dom B x9) E; dsuh.vars xs B.
By induction onE. The proof is slightly tricky, and relies odsustvars_permut dsuhvars concatasso¢
dsub.vars consanddsub. vars to_dsub

5.11 Type equivalence

If t1 t2is equivalent tcs, thens must be of the forns1 s2wheretl andsl, andt2 ands2, are equivalent. This
however only holds for types of kind other thein(counterexampletyp_equiv(or a (not &) a).
Lemma typ_equiv.app-inv_ex: V t s, - kinding t kindU —
typ_equiv t s—
(Vtlt2,t=typ_apptl t2— 3s1, 3s2
s=typ_app sl s\ typ_equiv t1 s1A typ_equiv t2 s2 A
(Vsls2 s=typ_appsls2— dtl, 312,
t = typ_app t1 t2A typ_equiv t1 s1A typ_equiv t2 s2.
By induction ontyp_equiv t s This is a slightly tricky proof, and we do need to prove it mthodirections (as
stated in the lemma). If we try to prove it in one directionypmbe get stuck in the case ftyp_equiv.sym

If t1 slis equivalent td2 s2 then the components must be equivalent.
Lemma typ_equiv_app-inv: V t1t2 s1 s2

= kinding(typ_app t1 s} kind_U —

typ-equiv(typ-app t1 s} (typ-app t2 s3 —

typ-equiv t1 t2A typ_equiv s1 s2
Follows fromtyp_equiv_app-inv.

If tis equivalent teATTR it must beATTR

Lemma typ_equiv-ATTR.inv: V t s, typ_equiv t s—
(t=ATTR— s=ATTR A (s=ATTR— t =ATTR.

By induction ontyp_equivts

Special case dip_equiv_app_inv_exfor attributed types.
Lemma typ_equiv_attr_inv_ex: Vtus

typ_equivs(t’ u) — 3t', 3 u’,

s=t' ' U Atyp_equivtt Atyp_equiv u u:
Follows fromtyp_equiv_app_inv_ex

Special case dfyp_equivapp_inv for attributed types.
Lemma typ_equiv.attr_inv: Vtusy,

typ_equiv(t’ u) (s’ v) — typ_equiv t SA typ_equiv u v
Follows fromtyp_equiv_app-inv.

Special case diyp_equiv_app_inv for function types.
Lemma typ_equiv_fun_inv: Yauba' u' b’,
typ-equiv(a(u)b)(@ (u ) b’) —
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typ_equivaa’'A
typ_equiv u u’'A
typ_equiv b b!
Follows fromtyp_equiv_attr_inv.

Replace an attribute on an attributed type.

Lemma typ_equiv_new_ attr : V t u v, typ_equiv u v—
typ_equiv(t’ u) (t’ v).

Trivial.

Replace the domain of an arrow

Lemma typ_equiv-fun_new.dom: V a u b a’ typ_equiva a —
typ-equiv(a (u) b) (@ (u) b).

Trivial.

Replace the codomain of an arrow

Lemma typ_equiv_-fun_new.cod: V au b b’, typ_equivb b’—
typ_equiv(a{u)b)(@(u)b’).

Trivial.

If t andsare equivalent and have kil then they must also be equivalent by the boolean equivalesiation.

Lemma typ_equiv-BA_equiv: V't s,
typ-equiv t s— kinding t kindU — BA.equivts

By induction ontyp_equivts

Commutativity ofor.

Lemma typ_equiv.comm.or : V a b, kinding(or a b) kind_U —
typ_equiv(or a b) (or b a).

Trivial.

5.12 Non-unique types

If t ands are equivalent antlis non_unique s must benon_unique
Lemma non_unique.equiv: V t s, typ_equivt s—

non_unique t— non_unique s
By inversion omon_unique t

If * is non-unique, then must be equivalent to false.
Lemma non_uniquesstar: Vtu,

non_unique(t ' u) — typ-equiv u NU
By inversion ommon_unique(t ' u). There are two possibilities (see the definitiomofLuniqug. For the first
case, (' u) of kind %, the lemma follows immediately. For the second, we show kivating (t ' u) kind_U
leads to contradiction.

If u is non_unigueand has kindJ, it must be equivalent to false.
Lemma non_unique U : V u,

non_unique u— kinding u kindU — typ_equiv u NU
By inversion omon_unique u Proof analogous tnon_unique star.

Ey E
N
If E | Ebindsx, and bothE1 andE2 bind x, thenx must have a non-unique type. That is, only variables
of non-unique type can be duplicated.
Lemma split_both_inv: VE E1 E2 X fok E—
split_context Eas (E1; E2) —
binds x t E— x\in dom E1— x\in dom E2—
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non_unique t
By induction onsplit_context Eas (E1; E2).

E E
NS

If every type inE is non-unique, then E

Lemma split_non_unique: V E, ok E—
(V x t, binds x t E—~ non_unique } —
split_context Eas (E ; E).

By induction onE.

5.13 Equivalence of environments.

We start with a number of trivial consequencesbfThese lemmas enable us to work directly with the notion
of an equivalence, rather than having to unfold the definitib= every time we need one of its constituents.

Equivalence only holds between well-formed environments.
Lemma envequiv_regular: V E1 E2 k

(E1= E2) k — envwf E1 kA envwf E2 k
Trivial.

If E1= E2 andE1bindsx, thenE2 must bindx.

Lemma env.equivbinds.1: VE1E2 Kk (E1= E2 k —
V xt, binds x t E1— 3 t', binds x t' E2A typ_equiv t t.

Trivial.

If E1= E2 andE2bindsx, thenE1 must bindx.

Lemma env.equivbinds.2: VE1E2 K (E1= E2 k —
vV xt, binds x t E2— 3 t', binds x t' E1A typ_equiv t t.

Trivial.

If E1= E2andx s in the domain oE1, x must be in the domain d2.
Lemma envequivin_.dom.1: VE1E2k (E1= E2) k —

V X, x\in dom E1— x\in dom E2
Follows directly frombinds.in_domandenv_equiv_binds_1.

If EL= E2andx s in the domain oE2, x must be in the domain d1.
Lemma envequivin_.dom2: VE1E2k (E1= E2) k —

V X, x\in dom E2— x\in dom E1
Follows directly frombinds.in_domandenv_equiv_binds 2.

The equivalence relation is reflexive.
Lemma env_equivrefl : V E k env.wf E k— (E = E) k.
Trivial.

The equivalence relation is commutative.
Lemma envequiv.comm: VE1 E2k (E1= E2) k — (E2= E1) k.
Trivial.

The equivalence relation is transitive.
Lemma env_equiv_trans: V E1 E2 E3 k

(E1~2¥E2)k — (E2~E3) k — (E1X E3) k.
Trivial.

If Eis equivalent to the empty environment, it must be the empéjrenment.
Lemma envequiv.empty: V E k, (E = empty k — E = empty
By case analysis oOE.
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If E is equivalent to a singleton environment, it must be thagleton environment.
Lemma env.equivsingleton: VEkys(E=(y—~9)k—
ds,E=y—-s Atyp_equivss!
By case analysis of; distinguishing between the empty environment, the stogleenvironment, and the
environment with more than one element. We show contradidtr all cases except the singleton case.

Equivalence between environments is unaffected if we renaoxariable from both sides.
Lemma env.equiv.dsub: V E1 E2 k

(E1= E2) k — (dsub x E1= dsub x E2 k.
Follows frombinds.in_dom binds dsubandbinds.dsuh.inv.

Equivalence between environments is unaffected if we adatiable on both sides, provided that that variable
wasn'’t already in the domain of the environments to sta aitd has the right kind.
Lemma envequiv.extend VE E'KXt§X#E —
kinding t k— typ_equiv t s—
(E=ZE)k—(E&X-t=ZE &x—-9k
Trivial.

Special case afnv_equiv_extend

Lemma envequiv_typ_equiv: VE kxtsenvwf (E& xt) k—
typ_equiv t s—
(E&Xx-t=ZE& X9k

Follows fromenv_equiv_extendandenv.wf_binds kind.

Special case afnv_equiv_dsub

Lemma env.equiv.cons: V E E'k x
(E&x—-t=E)k— (E=dsubxE)k

Follows fromenv_equiv.dsubanddsub.not.in_dom

Inverse property oénv_equiv.cons

Lemma env.equiv.consinv: VE E kxt,
(dsubx EZ E')k —
binds xt E— env.wf E k—
(E=ZE &x-t)k

Follows frombinds.dsubandbinds dsuh.inv.

We can take an environmelt remove its assumption abaytand then re-insert that assumption at the start of
the environment; the result will be equivalent to the ordgi@nvironment.
Lemma env_equiv_reorder: V Ek x t,

envwf E k— binds xt E— (E = dsub x E& x = t) k.
Follows frombinds.dsubandbinds_dsuh.inv.

Ey E E] E

NS NS

If E andE'is equivalent tcE, then there exist two environmeri#$ andE} such that E'  andE;
andE, are equivalent t&] andE’,.
Lemma envequivsplit: VE'EE1E2k

split_context Eas (E1; E2) - (E= E')k —

JE1, 3 E2,
split_context E'as (E1'; E2') A (E1= E1)k A (E2= E2) k.

By induction on E’. For the case,(t) :: E’, we recurse omlsub v E then add ¥, t) to the partially constructed
E1’ or E2’ depending on whethenin dom Elor v\in dom E2

Equivalence is unaffected by order.
Lemma envequiv.exch: V E1 E2 kenv.wf (E1& E2) k —
(E1& E2~=E2& E1) k.
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Follows trivially from env.wf_exchandbinds exch

Generalization oénv_equiv_exch

Lemma envequivexch3:V E1E2 E3 kenvwf (E1& E2& E3) k —
(E1& E2& E3~E1& E3& E2) k.

Follows trivially from env.wf_exch 3 andbinds exch.3.

5.14 Range

The range of an environment containing only types of Kihid U.
Lemma rng-kind_U : V E, env.wf E kind.U — kinding(rng E) kind_U.
By induction onE.

Auxiliary lemma used to proveng_non_unigue
Lemma rng-non_unique-BA: V fvars
BA.equirng fvarg NU —
(V x u, binds x u fvars— BA.equiv u NU.
By induction onfvars using lemmaor_false_bothfrom the Boolean Algebra formalization.

If the range of an environment is equivalent to false, themeattribute in that environment must be equivalent
to false.
Lemma rng_non_unique: V fvars env.wf fvars kindU —
typ_equiv(rng fvarg NU —
(V x u, binds x u fvars— typ_equiv u NU.
Follows fromrng_non_unique.BA, env_wf_binds kind andtyp_equiv_BA_equiv

Auxiliary lemma used to provsplit_rng.
Lemma split_-rng-BA: V fvars fvarsl fvars2
split_context fvarss (fvarsl; fvars? —
BA.equi(rng fvarg (or (rng fvars] (rng fvars?).
By induction onsplit_context fvarsas (fvarsl; fvars?, using properties of the boolean equivalence relation and
rng_concat

foars,  foars,
~_

If foars then the range divarsis equivalent to the range of the concatenatiofvafslandfvars2
This holds because if there is an assumption abdntboth fvarslandfvars2 then that must be the same
assumption, and we know thiais equivalent tar t t for anyt (disjunction is idempotent).
Lemma split_rng : V fvars fvarsl fvarsgenvwf fvars kindU —
split_context fvarss (fvarsl; fvars? —
typ_equiv(rng fvarg (or (rng fvars) (rng fvars?).
Follows fromsplit_rng_BA.
Auxiliary lemma needed to provenv_equiv.rng.
Lemma rng-reorder: V (E : eny x t, binds x t E—
BA.equirng E) (or (rng (dsub x B) t).
By induction onE.

If two environments are equivalent, then their ranges mestduivalent.
Lemma envequivrng: vV E E’,
(E = E’) kind_U — typ_equiv(rng E) (rng E’).
By induction onE, using properties of the boolean equivalence relatiog, reorder, rng_concatandtyp_equiv_BA_equiv

6 Properties of the typing relation
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6.1 Kinding properties

Every assumption it must have kindk.

Lemma kinding_env: V E e t fvars
EFe:t|fvars— Vxs
binds x s E— kinding s kindstar.

Follows trivially from regularity anénv_wf_binds kind.

Every assumption ifvarsmust have kind/.

Lemma kinding_fvars: V E e t fvars
Ele:t|fvars— Vxu,
binds x u fvars— kinding u kind U.

Follows trivially from regularity anénv_wf_binds kind.

If e has typd, thent must have kind.
Lemma typing_kind_star: V E e t fvars

E e:t|fvars— kinding t kind_star.
By induction onE - e: t | fvars

6.2 Free variables

If EF e: T | fvars then ifxis free ineit must be in the domain d& and in the domain dfivars
Lemmatypingfv: VE e T fvars

El e: T|fvars— V x, x\in fv e— x\in dom EA x\in dom fvars
By inductiononE + e: T | fvars

If there is an evaluation contektsuch that = E[x], thenx must be free ir.
Lemma evalfv: Vtx,

evals t x— x\infv t.
By induction onevals t x

6.3 Consistency ot and fvars

Every assumption ifvarsmust have a corresponding assumptio&.in
Lemma fvars.and_env_consistent V E e S fvars x y

Et+ e: S| fvars— binds x u fvars—

Jt, 3 v, binds x(t’ v) E A typ_equiv u v
By induction onE |- e: S| fvars

Every assumption it must have a corresponding assumptiofvars
Lemma env.and_fvars_consistent VE e S fvars x tu

Etl e: S| fvars— binds x(t' u) E — x\infve—

3 v, binds x v fvars\ typ_equiv u v
By induction onE - e:” S| fvars

6.4 Weakening

Auxiliary lemma used to provenusedassumptions
Lemma unusedassumptionenv: V E e T fvars X

EFe:T|fvars— x\notinfve— dsubx E-e: T | fvars
By inductiononE + e: T | fvars

Auxiliary lemma used to provenusedassumptions
Lemma unusedassumptiondist : V xs E e T fvars
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Ele:T|fvars— (VX Inxxs— x\notinfve —
dsuhlist xs EFe: T | fvars
By induction onxs usingunusedassumptionenv.

We can remove all assumptionsrabout variables that are not freedn
Lemma unusedassumptionsV xs E e T fvars

Ele:T|fvars— (V x x\in xs— x\notinfv § —

dsubvars xs B-e: T | fvars
Follows trivially from unusedassumptiondist.

We can append unused assumptions to the typing environment.
Lemma weakeningl: VEle T fvars

Elle: T |fvars— V E E2 envwf E kind_star —

split_context Eas (E1; E2) — E+e: T | fvars
By induction onE1te: T | fvars

We can prepend unused assumptions to the typing environment
Lemma weakening2: VE2 e T fvars

E2Fe: T |fvars— V E E1, envwf E kind_star —

split_context Eas (E1; E2) — E+e: T | fvars
Follows trivially fromweakeningl andsplit_exch

Every assumption ifvarsmust be used.
Lemma no_fvars_.weakening VE e T fvars

ElF e:T|fvars— V x, x\notin fve— x #fvars
By inductiononE - e: T | fvars

Since every assumption faarsmust be used, i is not free inethen removing fromfvarshas no effect (since
it wasn’t in fvarsto start with).
Lemma unusedassumptionfvars: V E e T fvars x
El e:T|fvars— x\notinfve— EF e: T | dsub x fvars
Follows trivially from no_fvars_weakeninganddsuhb.not_in_dom

Combination ofunusedassumptionenvandunusedassumptionfvars
Lemma unusedassumption V E e T fvars x

Et e: T | fvars— x\notin fv e— dsub x B- e: T | dsub x fvars
Follows directly fromunusedassumptionfvarsandunusedassumptionenv.

If eccan be typed in environmeBt we can spli€ into two environment&1andE2 such that every assumption
about variables ir will be in E1; thene can also be typed in environmest.
Lemma split_env: V E e t u fvars
Ele:t’u|fvars—
(3EL JE2
split_context Eas (E1; E2) A
Elke:t’ u|fvarsA
(¥ %, x\in dom E1— x\in fv €)).
Follows fromsplit_dom_set

6.5 Exchange

We can replace botl andfvarsby equivalent environments. This is a powerful lemma, bsedhe definition
of equivalence for environment is very general (in paricyit allows to replace a type by an equivalent type).
Lemma env.equivtyping: V E e T fvars

Ele:T|fvars— V E fvars’,

(E = E’) kind_star — (fvars= fvars’) kind_U —
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E'Fe:T|fvars.
By inductionorEt-e: T | fvars This proofis slightly tricky. The case of variables rel@senwv_equiv_singleton
In the case for abstraction, we nesul_equiv_rng, env_equiv_extendandenv_equiv_cons.inv, and in the case
for application we neednv_equiv_split.

Change the order of the assumptions in the environment.
Lemma exchange VE1 E2 E3 e T fvars

E1& E2& E3+e: T | fvars—

E1& E3& E2+e: T |fvars
Follows trivially from env_equiv_typingandenv_equiv_exch.3.

Replace an assumption in the environment by an equivalent on
Lemma typ_equiv_env: V E x s s’ e t fvars
E& x—-ske:t|fvars— typ_equivs s'—
E&x—s'Fe:t]|fvars
Follows trivially from env_equiv_typingandenv_equiv_typ_equiv.

6.6 Inversion lemmas

Inversion lemma for variables.
Lemma typing-var_inv: V E x s fvars
EF trm_fvar x: s | fvars —
dt,3u,Jv,

typ_equiv s(t’ u) A

fvars=x - v A

envwf E kind_star A

binds x(t" u) E A

typ_equiv u v
We prove the more general lemriveE e s fvarsEF e: s | fvars — V x, e=trm_fvar x — 3t, Ju, T v,
typ_equiv s(t’ u) A fvars=x - v A env.wf E kind.star A binds x(t * u) E A typ_equiv u Y by induction onE
 e:s|fvars The case for variables is trivial, the cases for applicasind abstraction can be dismissed, and
the case fotyping_equivis a straightforward application of the induction hypoikes

Inversion lemma for application.
Lemma typing-app.inv: V E el e2 s fvars
E+ trm_app el e2s|fvars—
JE1, F E2 dfvarsl, 3 fvars2
da, db, 3y,
typ_equiv s bA
ElFel:a(u)b|fvarsin
E2F e2:a| fvars2A
split_context Eas (E1; E2) A envwf E kind_star A
split_context fvarsas (fvarsl; fvarsd A envwf fvars kind.U.
Analogous to the proof of the inversion lemma for variables.

Inversion lemma for abstraction.
Lemma typing-abs.inv: V E e s fvars,
E+ trm_abs e: s| fvars’ —
dL,da b,
typ_equiv s(a ( rng fvars’) b) A
(¥ x fvars x\notin L — fvars’ = dsub x fvars—
(E& x—a)le”x:b|fvars.

Analogous to the proof of the inversion lemma for variables.
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Tactictyping.inversioncan be used instead of a call to the standard Coq temtizsionto do inversion on the
typing relation using the inversion lemmas we just proved.
Ltac typing_inversion H:=
match type of Hwith
| 2E - trm_fvar 2x: 7T | Xvars=
lett :=fresh"t" in
let u :=fresh"u" in
letv :=fresh"v" in
elim3(typing_var_inv H) tu v (?, (7, (?, (?, ?))))
| ?EF trm_app?el?e2: 7T | Avars=
let E1:=fresh"E1" in
let E2:=fresh"E2" in
let fvarsl:= fresh"fvarsl' in
let fvars2:= fresh"fvars2' in
leta:=fresh"a" in
let b :=fresh"b" in
let u :=fresh"u" in
elim7 (typing_app_inv H) E1 E2 fvarsl fvars2 a b (?, (?, (?, (7, (7, (7, ?))))))
| ?EF trm_abs?e: 7T | Avars=
let L :=fresh"L" in
leta:=fresh"a" in
let b :=fresh"b" in
elim3(typing.abs.invH) Lab(?, ?)
end.

7 Subject reduction

7.1 Progress

If eis locally-closed, then either it is an answer, it reducesaime other terne’, or there exists an evaluation
contextE such that = E[x] for some free variabl&in e.
Lemma weak progress. V e, term e—
answer ev
(Je:trmredee)V
(3x x\infveA evalse ¥
By complete structural induction darm e(usingsubtermwell_founded.

If ecan be typed in the empty environment, then eithisran answer or it reduces to some other tefm
Theorem progress V e T fvars

emptyt e: T | fvars— answer eV Je’,red e €'
Follows fromweak progressandtyping_fv.

7.2 Preservation

When a function is non-unique, then all of the elements irclésure must be non-unique. In other words,
all assumptions about the free variables of the functiontribesion-unique. That means that we can type the
function in an environmeri’ (which isE stripped from all unnecessary assumptions) so that we galicete

E’ (split it into E’ twice). We will need this lemma in the substitution lemma,ewlwe have to substitute a
function for a free variable in both terms of an applicatioa.( when we have to duplicate the function, or in
other words, apply it twice).
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Lemma sharedfunction: V E e a b uf fvars
Et trm_abse a(u-f)b|fvars—
typ_equiv(rng fvarg NU —
JE,3JE",
E'trm_abse:a(u_f)b|fvarsA
split_context Eas (E’ ; E”) A
split_context E'as (E' ; E') A
split_context fvarsas (fvars; fvars).
Follows fromsplit_eny, rng_non_uniqueandfvars.and_env_consistent

The substitution lemma is probably the most difficult lemmé#hie subject reduction proof. This is not surpris-
ing, because when we substitute a te&?fior x in e1, e2may be duplicated (when there is more than one use for
xin el). That is not necessarily a problem, because when thereris tinan one use ofin el, thenx must have
a non-unique type and therefore it should be okay to duglieat However, for the result of the substitution
to be well-typed, ife2is duplicated, we must also duplicate all the assumptioatsate needed to typ?, and
that is not possible in the general case (we may need a uniguengtion even when the result is non-unique).
However, in the specific case the?is an abstraction, we know thatéRis non-unique, that all of the elements
in its closure must be non-unique, and so we can actuallyichtplall assumptions required to typ2(this is
what we proved in the previous lemma).
Lemma substitution V el, term el—
V EE1E2fvarsfvarslfvars2xabe2T

split_context Eas (E1; E2) — env.wf E kind_star —

split_context fvarss (fvarsl; fvars? — env.wf fvars kindU —

E1& x— (a(rngfvars2) b) - el: T | fvars1l& x — rng fvars2—

E2F trm_abs e2 a ( rng fvars2) b | fvars2—

x\notin (dom E2\u dom E2u dom fvars] —

x\infvel—

EF [x™>trm_abs e2fl: T | fvars
By induction onterm el For the case of variables, we know tledtmust bex (it cannot be a different variable
because of the requirement tixahust be free irel), and the lemma follows frorweakening2. In the case for
an applicatiorel el; we do case analysis on\in fv elandx\in fv e2(again, it cannot be in neither because
of the same requirement). If it s1but not inel’, or in e1’ but not inel, then it is a matter of reordering the
environment so that the assumptions alefidre passed to the appropriate branch of the applicatiohislin
both, then we know th&2must be non-unique, and we can gbared.functionto distribute the assumptions to
typee2to both branches. Finally, the case for abstraction apsdom.inv, exchangeandsimplify_rng (and
we make sure to include the assumption about the bound \@élthe abstraction when using the induction
hypothesis).

Preservation for evaluation ruted_value
Lemma preservationvalue: VL M N,
term (It trm_abs Min N) —
(V x: S.elt x\notin L — evals(N " x) x) —
VY ET fvars
(EF lttrm_abs Min N : T | fvars) —
(EF N trm_abs M: T | fvars).
Follows fromsubstitutionrandeval fv.

Preservation for evaluation ruted_commute
Lemma preservationcommute VL M AN,
term (trm_app(It M in A) N) —
(V x: S.elt x\notin L — answer(A” x)) —
VET fvars
(EF trm_app(tM in A)N : T | fvarg) —
(EFItEMintrm_app AN: T | fvars).
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This and the next lemma are mainly a matter of re-orderin@#samptions in the environmefigndfvarsin
a useful way. Graphically, what we want is

1o u u
E3)——:a0—>(a—>T)\fw,,53 Eﬁ*”o\ﬁm% E2F7:a|ﬁwsZ E3,x:a0}—_1;a—>T\st//E2F7:a|ﬁ,ﬂ,SZ E4F7:a0\ﬁms4
—N— = =~ = ~ =~ ~ =~
( - A) M) N = (- A N) M
u
F—a—
Eq a levar51 E-—eay \/>xﬁ)m’50 T|
%xfmrso
E}__:T‘ﬁmrs
EF*ZT‘]LW,S

The ordering ok is straightforward:

Es E E; E
ANy ANy
Eq Ey, = E’ E4
N N
E E
but the reordering divarsis slightly more involved. We have
foarsy  foars, foarsy  foars,
\/ \/
foars, foarsy = foars' = pyfoars,  foars,
\/ \/
foars foars

Here, the equality orivars’ comes from the premise of the abstraction rule. In additiee,can use
split_dom.inv to get

foarsy  foars, foars,  foars,
~_
foars' = bxfvars,  foars, = foars” foars,
\/ \/
foarsg foars,

Together withsplit_empty.inv, that is sufficient to prove the lemma.

Preservation for evaluation ruted_assoc
Lemma preservationassoc. VL M AN,
term(Itit M in Ain N) —
(V x: S.elt x\notin L — answer(A~ x)) —
(V x: S.elt x\notin L — evals(N " x) x) —
VET fvars
(EFItEM inAinN:T | fvarg —
(EFIEMin(tAinN): T | fvars).
Like in the previous lemma, proving this lemma is mainly ateradf reordering the environments. The follow-
ing diagram shows roughly what we’re trying to achieve:

Ell——:aLTUWSI E3)——:a0u—0>a|fmr53 E4F*1ﬂ0|fmrs4 E1F—:aL>T|fW51 E3,x:a0|—A":a\st// E4F7:a0|ﬁ,m4
O A 1Y 0 ) R N e Y
Eob—afuars, o \/%xﬁfﬂ%‘o .

EF—:Tloars o D foarsy

EF—:T|fyars
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Also, as for the last lemma, the reordering®is straightforward,
Es E4 E; Ej;

N N
Eq E, = F E4
\E/ \E/

but the ordering offvarsis again slightly more involved:

foarsy  foars,  foars;  foars,

\/ \/
foars, foars, = foars' = bxfoars,  foars,
\/ \/
foars foars
foars,  foars, foarsy  foars,
\/ \/
foars' = bafvarsy  foarsy = foars, foars”
\/
foars, foars,

Preservation for evaluation ruted_closure.app.
Lemma preservationclosure.app: V E E' M,
term(trm_appE M) —
red EE —
(V (EO: eny) (T : typ) (fvars: env),
EOFE: T |fvars— EOF E : T | fvarg —
VEOT fvars
(EOF trm_app E M: T | fvarg) —
(EOF trm_app E'M: T | fvars).
Trivial.

Preservation for evaluation ruted_closure_let.
Lemma preservationclosurellet: VL E E’' M,
term(It M in E) —
(Vx: S.eltx\notin L— red (E~ X) (E' " X)) —
(Vx: S.elt
x\notin L —
vV (EO: eny) (T : typ) (fvars: eny),
EOFE"x:T|fvars— EOFE " x: T | fvarg —
VEOT fvars
(EOFItMinE: T |fvarg —
(EOFItMinE’: T | fvars).
Trivial.

Preservation for evaluation ruted_closure.dem
Lemma preservationclosure dem: V L EO EQ' E,
term(lt EOin E1) —
red EO EO'—
(V (E:eny (T : typ) (fvars: eny),
EFEO:T|fvars— EFEQO : T | fvarg —
(V x: S.elt x\notin L — evals(E1" x) X) —
VET fvars
(EFItEQInE1: T | fvars —
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(EFItEQ InEL: T | fvars).
Trivial.

If ehas typel ande reduces te’, thene’ will also have typeT.
Theorem preservation Ve e, red ee'—
VET fvarsEte: T|fvars— Er e’ : T |fvars

Follows trivially by induction orE - e: T from the preceding preservation lemmas.
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A Boolean algebra

This formalization is based on the second chapter (“Thedgdd system of axioms”) in Goodstein’s book
“Boolean Algebra” [9].

A.1 Abstraction over the structure of terms
Module Type BooleanAlgebraTerm

Parameter trm : Set.

Parameter true : trm.

Parameter false: trm.

Parameter or : trm — trm — trm.
Parameter and: trm — trm — trm.
Parameter not: trm — trm.

End BooleanAlgebraTerm

A.2 Huntington’s postulates

Module BooleanAlgebrgTerm: BooleanAlgebraTerin
Import Term

Inductive equiv: trm — trm — Prop :=

(** Commutativity*)

| commor : V (a b:itrm), equiv(or a b) (or b a)

| command: V (a b:itrm), equiv(and a b (and b g
(** Distributivity *)

| distr_or : ¥ (a b ctrm), equiv(or a (and b §) (and(or a b) (or a ¢))

| distr_and: V (a b ctrm), equiv(and a(or b ¢)) (or (and a i) (and a 9)
(** Identities*)

|id_or : V¥ (a:trm), equiv(or a falsg a

|id_and: V (a:trm), equiv(and a trug a
(** Complementy)

| compLor : V (a:trm), equiv(or a (not &) true

| compLand: V (a:trm), equiv(and a(not @) false
(** Closure*)

| clos_not: V (a b:itrm), equiv a b— equiv(not @ (not b)

| clos_or : V (a b ctrm), equiv a b— equiv(or a c) (or b ¢

| clos.and: V (a b ctrm), equiv a b— equiv(and a9 (and b ¢
(** Structural rules")

| refl : ¥ (a:itrm), equiv a a

| sym: V (a b:trm), equiva b— equivb a

|trans: V (a b ctrm), equiv a b— equiv b c— equivac

A.3 Setup for Coq setoids
Thanks to Adam Megacz.

Add Relation trm equiv
reflexivity proved by refl
symmetry proved by sym
transitivity proved by trans
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as equiv_relation.

Add Morphism or
with signature equiv=> equiv==>equiv
as or_morphism

Add Morphism and
with sighature equiv=> equiv==>equiv
as and_morphism

Add Morphism not
with signature equive=> equiv
as hot. morphism

A.4 Derived Properties

Lemma false_unique: V (x:trm), (V (a:trm), equiv(or a X) a) — equiv false x
Lemma true_unique: V (y:trm), (V (a:itrm), equiv(and a y) a) — equiv true y

Lemma complementunique: V (a a’ a”:trm),
(** if &’ has the property of the complemeint
equiv(or a a’) true — equiv(and a a) false—
(** and so does a*)
equiv(or a a”) true — equiv(and a a”) false—
(** then a’ and a” must be equivalert)
equiva’ a”.
Lemma involution: V (a:trm), equiv(not(not &) a.
Lemma true_complfalse: equiv falsgnot trug.
Lemma false_.compltrue: equiv(not false true.
Lemma zera.or : V (a:trm), equiv(or a true) true.
Lemma zera.and: V (a:itrm), equiv(and a fals¢ false
Lemma idem.or : V (a:trm), equiv a(or a a).

Lemma idem.and: V (a:trm), equiv a(and a 3.

Lemma abs or : V (a b:trm), equiv(or a (and a b) a.
Lemma abs.and: V (a b:itrm), equiv(and a(or a b)) a.

Lemma equiv.or_and3: V (a b ctrm),
equiv(orab) (orac) — equiviand a (anda g — equivb c

Lemma equiv.or_not: V (a b ctrm),
equiv(or a b) (or a ¢) — equiv(or (not d b) (or (not @ c) — equivb c

Lemma equiv.and.not: V (a b ctrm),
equiv(and a b (and a 9 — equiv(and(not @ b) (and(not @ c) — equivb ¢

Lemma assocor : V (a b ctrm), equiv(or a (or b c)) (or (or a b) c).

Lemma assocand: V (a b ctrm), equiv(and a(and b 9) (and(and a B c).
Lemma equiv.or_and2: V (a b:trm), equiv(or ab) (and al) — equiva b
Lemma DeMorgan.or : V (a b:itrm), equiv(not (or a b)) (and(not @ (not b)).
Lemma DeMorgan.and: V (a b:trm), equiv(not(and a ) (or (not @ (not b)).
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A.5 “Non-standard” properties (not proven in Goodstein)
Lemma abs.or_or : V (a b:itrm), equiv(or (or a b) a) (or a b).
Lemma abs.and_and: V (a b:trm), equiv(and(and a b a) (and a B.

Lemma distr_or_or : ¥V a b ¢ equiv(or a (or b ¢)) (or (or ab) (or a ¢)).

Lemma distr_and_and: V a b ¢ equiv(and a(and b 9) (and(and a § (and a g).

Lemma or_false_left : V (a b:trm), equiv(or a b) false— equiv a false
Lemma or_false_right : V (a b:itrm), equiv(or a b) false— equiv b false

Lemma or_false_both: V (a b:trm),
equiv(or a b) false— equiv a false\ equiv b false

Lemma and_true_left: V¥ (a b:trm), equiv(and a B true — equiv a true
Lemma and_true_right : V¥ (a b:trm), equiv(and a b true — equiv b true

Lemma and_true_both: V (a b:trm),
equiv(and a b true — equiv a trueA equiv b true

A.6 Conditional
Definition ifbool (b P Qtrm) : trm := or (and b B (and (not b) Q).

Lemma if _ident.branch: V (b P:trm),
equiv(ifboolb P P P.

Lemma distr_or_if : V (b P Q Rtrm),
equiv(or (ifboolb P Q R) (ifbool b (or P R) (or Q R)).

Lemma distr_or_if2 : V (b P Qtrm),
equiv(ifbool b P Q (or (ifboolb P Q (and P Q).

Lemma distr_andLif : V (b P Q Rtrm),
equiv(and(ifbool b P Q R) (ifbool b (and P R (and Q R).

Lemma distr_not.if : vV (b P Qtrm),
equiv(not(ifbool b P Q) (ifbool b (not P) (not Q)).

End BooleanAlgebra
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