
Liveness of Communicating Transactions?

(Extended Abstract)

Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Trinity College Dublin
{Edsko.de.Vries,Vasileios.Koutavas,Matthew.Hennessy}@cs.tcd.ie

Abstract. We study liveness and safety in the context of CCS extended
with communicating transactions, a construct we recently proposed to
model automatic error recovery in distributed systems. We show that
fair-testing and may-testing capture the right notions of liveness and
safety in this setting, and argue that must-testing imposes too strong
a requirement in the presence of transactions. We develop a sound and
complete theory of fair-testing in terms of CCS-like tree failures and show
that, compared to CCS, communicating transactions provide increased
distinguishing power to the observer. We also show that weak bisimilarity
is a sound, though incomplete, proof technique for both may- and fair-
testing. To the best of our knowledge this is the first semantic treatment
of liveness in the presence of transactions. We exhibit the usefulness of
our theory by proving illuminating liveness laws and simple but non-
trivial examples.

1 Introduction

The correctness of distributed systems can to a large extent be specified in terms
of its safety and liveness properties. In the presence of some form of built-in fault
tolerance, such as support for transactions, the verification of safety properties
is simplified but the verification of liveness properties becomes more subtle.

In previous work [22] we defined the novel language construct of communicat-
ing transactions, which drops the isolation requirement of classical transactions
and models automatic error recovery of distributed communicating systems. We
gave a high-level semantics of communicating transactions in a calculus called
TransCCS, an extension of CCS, and developed a compositional theory for this
calculus based on may-testing preorder.

May-testing can be used to reason about safety [14]. The intuition of safety
is that “nothing bad will happen” [18]. A safety property can be formulated as
a safety test T$ which detects and reports the bad behaviour on a channel $.
We say that a process P passes a safety test if (P | T$) cannot report on $.
An implementation I then preserves the safety properties of a specification S if
I passes all the safety tests of S (i.e. S A∼may

I).

? This research was supported by SFI project SFI 06 IN.1 1898.

2 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Let us briefly consider in a value-passing version of TransCCS a simple dis-
tributed communication system Sys that implements the specification

Specrec,del = rec(x).del〈x〉.0

The implementation uses restarting communicating transactions. A restarting
transaction is written as µX. JP .k XK and executes its default P until P com-
mits the transaction by executing a co k or the runtime non-deterministically
aborts the transaction. P can communicate with the environment of the trans-
action, but these effects are rolled back automatically in the case of an abort.

Sysrec,del = νq.νs.
(
Srcrec,s,q | Trgdel,s,q | s〈0〉

)
Srcrec,s,q = µX Js(x).ifx = 0 then rec(y).(q〈y〉 | s〈1〉 | co k) else 0 .k XK

Trgdel,s,q = µX
q
s(x).ifx = 1 then q(y).(del〈y〉 | s〈0〉 | co l) else 0 .l X

y

The system uses a one-place queue, with Src storing the value received on rec
as an output on q, if the current size of the queue, stored in s, is 0; Trg conveys
the value from q to del , if the queue is not empty. Both Src and Trg rely on an
abort to undo the input on s if their condition is not satisfied.

As discussed, Sys is a safe implementation of Spec if Spec A∼may
Sys. This

would guarantee that an observer testing for a violation of the safety property
that the received and delivered values match,

T$ = rec〈v〉.del(x).ifx = v then 0 else$

can not report $ with Sys because it can not report this with Spec.
The intuition of liveness is that “something good will eventually happen”.

As for safety properties, a liveness property can be formulated as a liveness test
Tω which detects and reports the good behaviour on a channel ω. For example,

Tω = ω + rec〈v〉.del(x).ω

tests for the property that if an input is received on rec we eventually get an
output on del (ω appears twice in the test because the implication can be satisfied
in two ways). The definition of passing a liveness test however is delicate.

One possibility, corresponding to must-testing [11], is to require that every
computation of (Sys | Tω) reports success. A restarting transaction can however
be aborted by the runtime system infinitely often, even though at every point
in the computation the transaction can follow a path to a commit. Under such,
admittedly pathological, schedules no restarting transaction can guarantee live-
ness: in (Sys | Tω), after the value is received on rec, infinite aborts of Trg will
prevent the value from being delivered on del , and the test will not succeed along
this schedule. Indeed, under this scheme there would be no difference between
Sys and the process µX.τ.X, as neither can guarantee any liveness properties.

A more useful definition assumes a notion of fairness, and considers only
schedules where every transaction that gets a chance to commit infinitely often
will eventually do so [8]. We say that a process P passes a liveness test Tω if

Liveness of Communicating Transactions (Extended Abstract) 3

(P | Tω) should report success on ω: (P | Tω) will eventually ring under a fair
scheduler. This definition of passing a liveness test leads to fair-testing [21].

With that definition we can show that Sys is a live implementation of Spec:
Sys passes all the liveness tests of Spec (i.e. Spec @∼fair

Sys). This is a non-trivial
property of Sys which implies, among others, that relying on the abort of the
transactions to restore the output on s when the conditions of Src and Trg are
not satisfied does not introduce any deadlocks.

We make the following contributions in this paper:

1. We study liveness and safety in a concurrent language with communicat-
ing transactions and show that these notions are captured respectively by
fair-testing and may-testing. To the best of our knowledge this is the first
semantic treatment of liveness in the presence of transactions.

2. We give a characterization of liveness preservation in TransCCS in terms of
so-called clean tree failures. This builds on previous results about clean traces
(traces that contain only actions that will be committed), as well as newly
proved properties of communicating transactions and the identification of
characteristic TransCCS liveness tests.

3. We show that transactions add observational power to the observer with
respect to liveness preservation and explain this through examples.

4. We define a variation on weak bisimilarity over clean traces and show that
this is a sound but incomplete proof technique for safety and liveness.

5. We exhibit the usefulness of our theory by illuminating laws and examples.

2 Syntax and Reduction Semantics of TransCCS

The syntax and the reduction semantics of TransCCS are shown in Fig. 2; as
usual a ranges over a set of actions Act on which is defined a bijective function
(·) : Act → Act , used to formalize communication, and µ ranges over Actτ , the
set Act augmented with a new action τ , used to represent internal activity. We
use the standard abbreviations for CCS terms.

TransCCS extends CCS with the constructs JP .k QK which denotes a trans-
action, and co k which commits transaction k. The transaction runs its default
P , which replaces the transaction in the case of a commit. The alternative Q re-
places the transaction in the case of a non-deterministic abort. The occurrences
of k in P are bound by the transaction; after a commit any remaining free co k
behave as the nil process. Fig. 1 shows some simple examples of transactions.
We will refer to these examples throughout the paper.

Sab = µX. Ja.b.co k .k XK
I1 = Ja.b.co k .k 0K I3 = µX. Ja.b.co k + err .k XK
I2 = µX. Ja.b.0 .k XK I4 = µX. Ja.b.co k | err .k XK

Fig. 1. Example Transactions

4 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Syntax

P,Q ::=
∑
µi.Pi prefix | JP .k QK transaction (k bound in P)

| (P | Q) parallel | co k commit
| νa.P hiding | µX.P recursion

Reduction Rules (→) is the least relation that satisfies

R-Comm
ai = aj∑

i∈I

ai.Pi |
∑
j∈J

aj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R→ JP | R .k Q | RK

R-Tau
µi = τ∑

i∈I

µi.Pi → Pi

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

R-Rec

µX.P → P [X := µX.P]

R-Str
P ≡ P ′ → Q′ ≡ Q

P → Q

and is closed under the contexts C ::= [] | (C | Q) | JC .k QK | νa.C.
Structural equivalence (≡) contains the usual rules for parallel and hiding.

Fig. 2. Language Definition

A transaction can communicate with a process R in its environment by em-
bedding R in its default and alternative (R-Emb). This simple but important
operation allows the default of the transaction to interact with R.

Example 1. Consider transaction Sab in parallel with the test Tωab = a.b.ω. After
an embedding step, the transaction can communicate with the process; both will
be restored to their original state in the case of an abort. The possible traces
are summarized in the following graph.

Sab | a.b.ω
R-Rec

)) Ja.b.co k .k SabK | a.b.ω
R-Emb��R-Ab

ii

q
a.b.co k | a.b.ω .k Sab | a.b.ω

y

R-Comm��

R-Ab

PP

q
b.co k | b.ω .k Sab | a.b.ω

y

R-Comm��

R-Ab

q
co k | ω .k Sab | a.b.ω

y R-Co //R-Ab ω ut

3 Liveness

We now formalize liveness as described in the introduction. A process P (typi-
cally the parallel composition of a test and a process-under-test) can output on
a channel ω, written P⇓ω if it can reach a top-level ω after some internal steps:

Definition 1. P⇓ω iff there exist P ′ such that P →∗ ω | P ′.

Liveness of Communicating Transactions (Extended Abstract) 5

We are interested only in top-level occurrences of ω, because an output that is
still inside a transaction may still be undone.

A process P passes a liveness test Tω if it cannot reach a state from which
the test cannot detect the good behaviour.

Definition 2 (Passing Liveness Tests). A process P passes a liveness test
Tω, written P shdTω, when ∀R. if P | Tω →∗ R then R ⇓ω.

Example 2. Transaction Sab passes the liveness test Tωab = a.b.ω even though it
may keep aborting. Sab would not pass this test with the stronger definition of
liveness (must-testing [11]), which would not ignore this pathological schedule.

The reduction graph of Sab | Tωab was shown in Ex. 1. Although there are
infinite aborting paths, at no point does the system reach a state in which
communication on a and b has become impossible. This is not true for I1:

I1 | Tωab
R-Ab // 0 | Tωab 6⇓ω

Transaction I2 also fails the liveness test since the transaction never commits
and the output on ω by the test therefore never becomes top-level. ut

Given a specification S, an implementation I preserves the liveness properties
of S if every successful liveness test of S is also a successful liveness test of I.
This naturally leads us to the standard definition of fair-testing [21] which here
we call liveness preservation.

Definition 3 (Liveness Preservation). I preserves the liveness properties of
S, written S @∼live

I, when for all liveness tests Tω, if S shdTω then I shdTω.
We write S hlive I if S @∼live

I and I @∼live
S.

Example 3. We saw in Ex. 2 that Sab passes the test Tωab and that neither I1 nor
I2 does. It follows immediately that Sab 6@∼live

I1 and Sab 6@∼live
I2. ut

Example 4. We will formally prove Sab @∼live
I3 after we develop our theory of

liveness. Here we note only that I3 shdTωab, which is easy to see from the reduction
graph of I3 | Tωab (which is almost identical to the graph shown in Ex. 1). ut

Example 5 (Transactional Liveness Tests). Another interesting case are the pro-
cesses P = a.(b.c+ b.d) and Q = a.b.c+ a.b.d. In TransCCS (unlike in CCS) we
have that P 6@∼live

Q. To see that consider the transactional liveness test

Tω = ω + a.
(
µX. Jb.c.(ω | co k) .k XK

)
We can see that P passes this test by the reduction graph of P | Tω(a,bd):(
a.(b.c+ b.d)

)
|
(
ω + a.

(
µX. Jb.c.(ω | co k) .k XK

))
R-Comm��

(b.c+ b.d) | µX. Jb.c.(ω | co k) .k XK
R-Rec

%% (b.c+ b.d) | Jb.c.(ω | co k) .k T
ωK

R-Ab

ee

Jb.c.(ω | co k) | (b.c+ b.d) .k T
ω | (b.c+ b.d)K

��
R-Emb

R-Comm2��

R-Ab

OO

Jω | co k .k T
ω | (b.c+ b.d)K R-Co //R-Ab ω

6 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

The restarting transaction makes it possible to restore the choice b.c+ b.d if
the wrong branch of P communicates on b. However, Q does not pass this test:

(a.b.c+ a.b.d) | ω + a.
(
µX. Jb.c.(ω | co k) .k XK

)
R-Comm−−−−→ b.d | µX. Jb.c.(ω | co k) .k XK 6⇓ω ut

Proposition 1. If co k /∈ R then

JP +R .k QK hlive JP .k QK µX. JP +R .k XK hlive µX. JP .k XK
JP .k QK A∼live

τ.P + τ.Q µX. JP | co k .k XK hlive P

In TransCCS, unlike CCS, the point of internal choice is important with
respect to liveness preservation.

Proposition 2 (Choice). τ.a.P + τ.a.Q @∼live
a.P + a.Q hlive a.(τ.P + τ.Q).

To see that τ.a.P+τ.a.Q 6A∼live
a.P+a.Q consider the processes R1 = τ.a.c+τ.a.d

and R2 = a.c + a.d and the liveness test Tω = µX. Ja.c.(ω | co k .k XK). R2

passes this test but R1 does not (cf. Ex. 5).

Proposition 3 (Compositionality Laws). If P @∼live
P ′ and Q @∼live

Q′ then:

a.P @∼live
a.P ′ P | Q @∼live

P ′ | Q′ a.P + b.Q @∼live
a.P ′ + b.Q′

These laws can be proven using our characterization of liveness preservation in
Sect. 6. As in CCS [21], however, recursive contexts do not preserve (@∼live

), as
illustrated in the next example.

Example 6 (Fault tolerance). Consider the processes P = a + τ and Q = 0. P
can be thought of as a process with a fault: it may do an a action or it may get
stuck. Any liveness test that P passes can therefore not rely on the a action,
and hence we have P @∼live

Q. However, consider the context

C = νa.µX. Ja.(b | co k) | [] .k XK

This context adds fault tolerance: if P faults in C[P], the transaction can abort
and try again, so that C[P] will pass the liveness test Tωb = b.ω. However, Q
never does the a action, so the addition of fault tolerance makes no difference;
in particular, C[Q] does not pass Tωb . Hence, C[P] 6@∼live

C[Q]. ut

4 Safety

As discussion in the introduction, a safety test T$ is a process that tests and
reports “bad” behaviour on a channel $; a process P passes the test if P | T$
cannot output on $:

Definition 4 (Passing Safety Tests). A process P passes a safety test T$,
written P cannotT$, when P | T$ 6⇓$.

Liveness of Communicating Transactions (Extended Abstract) 7

Given a specification S, an implementation I preserves the liveness properties
of S if every successful safety test of S is also a successful safety test of I. This
leads us to the definition of safety preservation, which amounts to the inverse of
the standard definition of may-testing [11].

Definition 5 (Safety Preservation). I preserves the safety properties of S,
and we write S @∼safe

I, if for every safety test T$ if S cannotT$ then I cannotT$.

Example 7. Consider the safety test T$ab = err .$ | a.b. Transaction I3 passes
this test, because there is no possibility of reaching a top-level output on $:

I3 | err.$ | a.b Ja.b.co k + err .k I3K | err .$ | a.b
R-Emb

��
R-Ab

kk ,,
R-Rec

q
(a.b.co k + err) | err .$ | a.b .k I3 | T$ab

y

R-Comm tthhhhh
R-Comm2++WWWWWWWR-Ab

OO

q
$ | a.b .k I3 | T$ab

y
R-Ab Jco k | err .$.k I3 | T$abK

R-Comm��
R-Ab err .$

At no point do we have a top-level output on $, so that I3 passes this test. In
fact, we have that Sab @∼safe

I3 (we prove this formally in Ex. 12). I4 however is
not a safe implementation of Sab because it does not pass this test:

I4 | a.b.err .$
R-Rec−−−→ R-Emb−−−→

q
(a.b.co k | err) | a.b.err .$.k I4 | T$ab

y

R-Comm3−−−−−→ Jco k | $.k I4 | T$abK
R-Co−−→ $ ut

As we will prove by Thm. 3 in Sect. 6, liveness preservation implies safety
preservation. Thus, to show that an implementation I preserves both the liveness
and safety properties of a specification S, it suffices to show that S @∼live

I.

5 Clean Traces and Safety

We give an overview of the definitions and results we reuse from previous work
[22, 23]. These involve the definition of a Labelled Transition System (LTS) that
describes the traces of processes, the definition of clean traces over this LTS, and
a rephrasing of results about may-testing in terms of safety.

5.1 Labelled Transition System

The LTS (Fig(s). 3 and 4) is defined over an extension called TransCCS◦, ranged
over by P,Q. Transactions in TransCCS◦ are distributed as a primary transac-
tion, denoted by JP .k QK, and zero or more secondary transactions, denoted by
JP .k QK◦ which correspond to embedded processes. This simulates embedding
in the reduction semantics while keeping processes separate, supporting compo-
sitional reasoning. Internal actions in the LTS correspond to reduction steps up
to this distribution of transactions; this is made precise in [22].

As an example, consider the trace starting with I3 | a.b.ω:

8 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

L-Act∑
µi.Pi

µi−→ Pi

L-Par

P k̃(µ)−−−→ P ′

P | Q k̃(µ)−−−→ P ′ | Q

L-Trans

P l̃(µ)−−→ P ′

JP .k QK
k(l̃(µ))−−−−→

q
P ′ .k Q

y

L-Rec

µX.P τ−→ P[X := µX. 〈P〉]

L-Hide
P µ−→ P ′ a /∈ µ
νa.P µ−→ νa.P ′

L-Comm

P k̃(a)−−−→ P ′ Q k̃(a)−−−→ Q′

P | Q k̃(τ)−−−→ P ′ | Q′
(eliding L-Trans for secondary transactions)

Fig. 3. LTS: Standard Actions

µX. Ja.b.co k + err.0 .k XK | a.b.ω
τ−→ emb k−−−→ Ja.b.co k + err.0 .k I3K |

q
a.b.ω .k a.b.ω

y◦

k(τ)−−−→ k(τ)−−−→ Jb.co k .k I3K |
q
b.ω .k a.b.ω

y◦ co k−−→ ω

Notice how (after unfolding the transaction once) the test is embedded and be-

comes a secondary transaction
q
a.b.ω .k a.b.ω

y◦
. Actions in the LTS are marked

with the transactions that execute them (rule L-Trans); a primary and sec-
ondary k-transaction can communicate and therefore the action k(a) of the pri-
mary k-transaction is matched by the action k(a) of the secondary k-transaction
(L-Comm), resulting in a k(τ) action.

Consider also the trace starting with I3 | T$ab (cf. Ex. 7):

µX. Ja.b.co k + err.0 .k XK | err .$ | a.b
τ−→ emb k−−−→ Ja.b.co k + err.0 .k I3K |

q
err .$ | a.b .k err .$ | a.b

y◦

k(τ)−−−→ J0 .k I3K |
q
$ | a.b .k err .$ | a.b

y◦

At this point, the transaction can only abort:

ab k−−→ µX. Ja.b.co k + err.0 .k XK | err .$ | a.b

As in the reduction semantics, no trace of I3 | T$ab leads to a top-level $.

5.2 Clean Traces

There is an essential difference between the two traces of the previous section:

I3 | Tωab
τ,emb k,k(τ),k(τ),co k−−−−−−−−−−−−−−→ ω I3 | T$err

τ,emb k,k(τ),ab k−−−−−−−−−−→ I3 | T$err

In the first, every action performed inside a transaction is eventually committed;
in the second trace, however, the embedding step into the k transaction and the
internal step within the k transaction are subsequently aborted and undone.

Liveness of Communicating Transactions (Extended Abstract) 9

B-CoPri
P ≡ P ′ | co k

JP .k QK co k−−→ P ′
B-CoSec

JP .k QK◦ co k−−→ P

B-Ab

JP .k QK ab k−−→ Q

B-Emb

P emb k−−−→ JP .k 〈P〉K◦

B-Trans

P β−→ P ′ β 6= co k, ab k

JP .k QK β−→
q
P ′ .k Q

y

B-Par

P β−→ P ′ Q β−→ Q′

P | Q β−→ P ′ | Q′

B-Rec

µX.P
β−→ µX.P

B-Act∑
µi.Pi

β−→
∑

µi.Pi

B-Co

co k
β−→ co k

B-Hide

P β−→ P ′

νa.P β−→ νa.P ′

(eliding B-Ab and B-Trans for secondary transactions)

Fig. 4. LTS: Broadcast actions

P k̃(µ)−−−→ P ′′ t−→∆ P ′ k̃ ⊆ ∆

P µ,t−−→∆ P ′
C-Act

P ab k−−→ P ′′ t−→∆ P ′ k /∈ ∆

P t−→∆ P ′
C-Ab

P emb k−−−→ P ′′ t−→∆ P ′ k ∈ ∆

P t−→∆ P ′
C-Emb

P co ∆−−−→ P ′

P ε−→∆ P ′
C-Co

Fig. 5. Clean Traces

Clean traces are CCS traces that correspond to raw traces in the LTS where
all transactions performing actions are eventually committed at the end of the

trace. Formally, clean traces are specified by the relation P t−→∆ P ′, given in
Fig. 5. The parameter ∆ is used to record which transactions will commit, and
hence which actions are allowed inside the trace.

Example 8. The clean trace I3 | Tωab
τ,τ,τ−−−→{k} ω corresponds to the first trace

above. In isolation, I3 has the clean traces I3
ε−→∅ I3 and I3

ab−→{k} 0, but not
the singleton trace a: we need k ∈ ∆ to do the a action inside the transaction,
but we cannot derive I3

a−→{k} since the transaction cannot yet commit having
done only the a action. Clean traces are hence not prefix closed. ut

Usually, we care only that there is some ∆ for which P t−→∆ P ′ can be derived,
which motivates the following definition:

Definition 6. We write P t−→CL iff t is a clean trace of P, that is ∃∆,P ′ such

that P t−→∆ P ′. We write P t
=⇒CL to denote that t is a weak clean trace of P.

5.3 Characterization of Safety as Clean Trace Inclusion

Safety preservation is characterized by clean trace inclusion [22].

10 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Definition 7 (Language). The language of a process P is the set of weak clean
traces it can do:

L(P)
def
= {t | P t

=⇒CL}

Theorem 1 (Safety preservation). P @∼safe
Q iff L(P) ⊇ L(Q).

6 Characterization of Liveness as Clean Tree Failures

We now proceed with the main technical result of this paper: a sound and com-
plete characterization of liveness preservation in terms of clean tree failures. In
this section we present the model, give a number of examples, and state the main
results. The proof of soundness and completeness is summarized in Sect. 8.

The intuition of our model is that P has a clean tree failure (t,Ref) iff P can
do a clean trace to P ′ and P ′ cannot do any of the clean traces in the set Ref .

Definition 8 (Tree failures). Tree failures are defined as

F(P)
def
= {(t,Ref) | ∃P ′. P t

=⇒CL P ′ and L(P ′) ∩ Ref = ∅}

Theorem 2 (Liveness Preservation). P @∼live
Q iff F(P) ⊇ F(Q).

Example 9. Consider the transactions Sab and I3 from Fig. 1. The only clean
traces either of these processes can do is the empty trace ε and the trace ab;
moreover, for either process, the only clean trace that they cannot refuse after
the empty trace is the trace ab, and both can refuse all clean traces after the
trace ab. Hence, the set of failures for both processes is

{(ε,Ref) | ab /∈ Ref } ∪ {(ab,Ref) | any Ref }

so that by Thm. 2 we have Sab hlive I3. ut

Our model is simpler than the model of liveness preservation in CCS [21].
This is due to the existence of transactional tests that do not allow processes to
deadlock while they communicate with these tests, as shown in Ex. 5.

As in CCS, liveness preservation implies safety preservation.

Theorem 3 (Liveness implies safety). If P @∼live
Q then P @∼safe

Q.

Proof. By Thm. 1 it suffices to prove that if t is a clean trace of Q then it is a
clean trace of P . Let t be a clean trace of Q; then (t, ∅) ∈ F(Q) and by Thm. 2,
(t, ∅) ∈ F(P). Thus t is a clean trace of P . ut

7 Canonical Tests

We identify a class of canonical liveness tests that encode sufficient power to
distinguish any processes P and Q for which P 6 @∼live

Q. We use these tests in
the definition of a restricted form of liveness preservation, which we will show
by Prop. 8 in the following section implies inverse failure inclusion. This result
is crucial to show completeness of our characterization, but also implies that
restricted liveness coincides with standard liveness.

Liveness of Communicating Transactions (Extended Abstract) 11

Definition 9 (TωRef). If Ref is a set of clean traces, we define the liveness test

TωRef
def
= µX.

r∑
t∈Ref τ.t.(co k | ω) .k X

z

Definition 10 (Tω(t,Ref)). If t is a clean trace and Ref a set of clean traces, we
define the liveness test Tω(t,Ref) by induction on t:

Tω(ε,Ref)
def
= TωRef Tω(at,Ref)

def
= ω + a.Tω(t,Ref)

These tests are interesting because (as we will show in Sect. 8) a process P
passes the liveness test Tω(t,Ref) exactly if (t,Ref) is not a failure of P . Note that
P fails the liveness test Tω(t,Ref) only if it can do a clean trace t and then refuse
to do all the traces of Ref .

Example 10. The liveness test Tω we considered in Ex. 5 is exactly the test
Tω(a,{bc}). We saw that P = a.(b.c + b.d) passes this test, but Q = a.b.c + a.b.d

does not. Hence, (a, {bc}) is a failure of Q but not of P . ut

Definition 11 (Restricted Liveness Preservation (@̂∼live
)).

P @̂∼live
Q

def
= ∀t,Ref . if P shdTω(t,Ref) then Q shdTω(t,Ref)

Theorem 4. (@∼live
) = (@̂∼live

).

Proof. Follows by Prop. 6 (soundness) and Prop. 8 in the following section. ut

8 Soundness and Completeness

We now outline the proof that the characterization of the fair-testing preorder
in terms of clean tree failures is sound and complete. This proof makes use of
the ability to zip and unzip clean traces, proved in [22, 23], which means that
processes can communicate independently of their transaction structure.

Proposition 4 (Clean unzipping). If P | Q ε
=⇒CL R then there exist t, P ′,

and Q′ such that P
t

=⇒CL P ′ and Q
t

=⇒CL Q′ and R is equal up to merging of
distributed transactions with P ′ | Q′.

Proposition 5 (Clean zipping). If P
t

=⇒CL P ′ and Q
t

=⇒CL Q′ then there ex-

ists an R such that P | Q ε
=⇒CL R and R is equal up to merging of distributed

transactions with P ′ | Q′.

The following theorem is key in the proof of soundness and completeness,
and states that we can construct clean traces from raw traces:

Theorem 5 (Clean trace construction). If P ε
=⇒ R then there exists R′ such

that P ε
=⇒CL R′ and

12 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

1. If R↓ω then R′↓ω (success is preserved)
2. If R6⇓ω then R′ 6⇓ω (failure is preserved)

This theorem strengthens an earlier result [22], where we proved (1) but not
(2); the proof is however significantly different. Intuitively, the construction of
the clean trace postpones all commits to the end of the trace and aborts all
actions that are never committed in the raw trace.

Definition 12. Lω(P)
def
= {t | P t

=⇒CL, ω /∈ t}

The proof of soundness is based on the construction of a clean trace from a
raw trace, and zipping and unzipping of clean traces.

Proposition 6 (Soundness). If F(P) ⊇ F(Q) then P @∼live
Q.

Proof. Assume F(P) ⊇ F(Q). We prove the contrapositive of P @∼live
Q: suppose

¬(Q shdT) for some test T ; we have to show that ¬(P shdT).

Since ¬(Q shdT), there exists an R such that Q | T ε
=⇒ R6⇓ω. Hence by

Thm. 5, there exists R′ such that Q | T ε
=⇒CL R′ 6⇓ω. By Prop. 4, there exist

t,Q′, T ′ such that Q
t

=⇒CL Q′ and T
t

=⇒CL T ′, where R′ is equal to Q′ | T ′

up to distribution of transactions. Define Ref = {t′ | T ′ t
′

=⇒CL T ′′ | ω}. Then
L(Q′)∩Ref must be empty, because otherwise R′⇓ω by zipping the clean traces.
Hence (t,Ref) ∈ F(Q) and therefore (t,Ref) ∈ F(P). It follows that exists P ′

such that P
t

=⇒CL P ′ and L(P ′)∩Ref = ∅. By Prop. 5, P | T t′
=⇒CL P ′ | T ′ where

P ′ | T ′ 6⇓ω since L(P ′) ∩ Ref = ∅. Therefore ¬(P shdT). ut

The proof of completeness makes essential use of the canonical tests (Sect. 7).

Lemma 1. Lω(TRef) = Ref

Proof. By definition of Lω() and TRef . Note that Lω(TRef) is not the prefix
closure of Ref because we used a transactional TRef . ut

Lemma 2. L(P) ∩ Ref = ∅ iff (P | TRef)6⇓ω.

Proof. (Only if) By contradiction: Assume (P | TRef)⇓ω, i.e. P | TRef
ε

=⇒ R↓ω.

Then by Thm. 5 there exists R′ such that P | TRef
ε

=⇒CL R′↓ω. We can therefore
apply Prop. 4 to get a clean trace t ∈ L(P) and t ∈ Lω(TRef). Hence by Lem. 1
we must have t ∈ Ref , contradicting the assumption that L(P) ∩ Ref = ∅.

(If) By contradiction: Assume there exists t ∈ L(P) ∩ Ref . Then we can

apply Prop. 5 to get P | TRef
ε

=⇒CL P ′↓ω contradicting (P | TRef)6⇓ω. ut

Lemma 3. Lω(T(t,Ref)) = {t1 | ∃t2. t = t1t2} ∪ {tt′ | t′ ∈ Lω(TRef)}

Proof. By definition of Lω() and T(t,Ref). ut

A process fails a canonical liveness test iff it has the corresponding tree failure.

Proposition 7 (Tests and Failures). (t,Ref) ∈ F(P) iff ¬(P shdT(t,Ref)).

Liveness of Communicating Transactions (Extended Abstract) 13

Proof. (Only if) Let (t,Ref) ∈ F(P), i.e. ∃P ′. P t
=⇒CL P ′ and L(P ′) ∩ Ref = ∅.

Clearly T(t,Ref)
t

=⇒CL TRef so that, by Prop. 5, P | T(t,Ref)
ε

=⇒CL R equal up to
merging of transactions to P ′ | TRef . It follows from Lem. 2 that success is not
reachable from this state.

(If) Since ¬(P shdT(t,Ref)) it follows that ∃R. P | T(t,Ref)
ε

=⇒ R6⇓ω. Then by

Thm. 5, ∃R′. P | T(t,Ref)
ε

=⇒CL R′ 6⇓ω. By Prop. 4, there exist t′,P ′, T ′ such that

P
t′
=⇒CL P ′ and T(t,Ref)

t
′

=⇒CL T ′, and P ′ | T ′ 6⇓ω. Thus, t′ ∈ L(P) and by Lem. 3

t
′ ∈ Lω(T(t,Ref)) = {t1 | ∃t2. t = t1 t2} ∪ {t t2 | t2 ∈ Lω(TRef)}

We take cases on t
′ ∈ Lω(T(t,Ref)):

1. t
′

= tt2 for some t2 ∈ Lω(TRef). Not possible, because then T ′ = ω↓ω.

2. t
′

= t1 for some t1t2 = t with t2 non-empty; again, not possible because then
T ′ = ω + T ′′↓ω.

3. t
′

= t. Then T ′ = TRef and by Lem. 2 L(P ′) ∩ Ref = ∅. Hence (t,Ref) ∈
F(P). ut

Restricted liveness preservation implies inverse failure inclusion.

Proposition 8. If P @̂∼live
Q then F(P) ⊇ F(Q).

Proof. Let (t,Ref) ∈ F(Q). By Prop. 7 we have ¬(Q shdT(t,Ref)), therefore
¬(P shdT(t,Ref)) since P @∼live

Q, and finally (t,Ref) ∈ F(P) by Prop. 7. ut

Corollary 1 (Completeness). If P @∼live
Q then F(P) ⊇ F(Q).

Proof. By the definitions of (@∼live
) and (@̂∼live

) and Prop. 8. ut

9 Weak Clean-Trace Bisimilarity

In this section we present a convenient coinductive proof technique for liveness
preservation, which is based on weak bisimilarity over clean traces. We show that
this technique is sound but not complete with respect to liveness preservation,
and use it to prove liveness and safety preservation.

Definition 13 (Weak Clean-Trace Bisimulation). Θ is a weak clean-trace
bisimulation if whenever (P,Q) ∈ Θ the following two conditions are satisfied.

1. ∀t,P ′. P t
=⇒CL P ′ we have ∃Q′ such that Q t

=⇒CL Q′ and (P ′,Q′) ∈ Θ,

2. ∀t,Q′. Q t
=⇒CL Q′ we have ∃P ′ such that P t

=⇒CL P ′ and (P ′,Q′) ∈ Θ.

Weak clean-trace bisimilarity, denoted by ≈, is the largest weak clean-trace bisim-
ulation.

Weak clean-trace bisimilarity is sound with respect to both liveness and safety.

14 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Theorem 6 (Soundness of (≈)). If P ≈ Q then P hlive Q and P hsafe Q.

Proof. Since ≈ is commutative, it suffices to prove that P @∼live
Q and hence by

Thm. 2 that F(P) ⊇ F(Q). Let (t, S) ∈ F(Q), i.e. P t
=⇒CL P ′ where L(P ′)∩S =

∅. Since P ≈ Q, ∃Q′ such that Q t
=⇒CL Q′ where P ′ ≈ Q′. It remains to show that

L(Q′)∩S = ∅. We proceed by contradiction. Suppose that ∃t′ ∈ L(Q′)∩S. Then

∃Q′′ such that Q′ t
′

=⇒CL Q′′. But then since P ′ ≈ Q′, ∃P ′′ such that P ′ t
′

=⇒CL P ′′,
contradicting the assumption that L(P ′) ∩ S = ∅. ut

The following example shows that weak clean-trace bisimilarity is not complete
with respect to liveness and safety.

Example 11. Consider the processes P = a.(τ.b + τ.c) and Q = a.b + a.c. The

two processes are not bisimilar: P can do a clean trace P
a

=⇒CL (τ.b+ τ.c) and

Q can only follow it by Q
a

=⇒CL b or Q
a

=⇒CL c. Neither b nor c are bisimilar to
(τ.b + τ.c). It is not difficult to show, however, that P hlive Q (and thus, by
Thm. 3, P hmay Q) by observing that any tree failure (t, S) ∈ F(P) is a tree
failure of Q and vice versa. ut

The next result simplifies reasoning about weak clean-trace bisimilarity by
allowing us to consider a single unfolding of recursive transactions.

Proposition 9. If JP .k 0K ≈ JQ .k 0K then µX. JP .k XK ≈ µX. JQ .k XK.

Proof. By enumeration of the clean traces of the restarting transactions, which
start with a number of aborts and continue with a clean trace of the non-
restarting transactions. ut

We use weak clean-trace bisimilarity to give simple coinductive proofs of
liveness and safety preservation for the examples of the introduction and Fig. 1.

Example 12. Recall once more transactions Sab and I3 (Fig. 1). We prove that
Sab hlive I3 and Sab hmay I3 by showing Sab ≈ I3. By Prop. 9 it suffices to show
Ja.b.co k .k 0K ≈ Ja.b.co k + err.0 .k 0K, which can be easily proved by showing
that the relation containing the two transactions and (0, 0) is a bisimulation. ut

Example 13. We now turn our attention to the example of the introduction.
We show that the implementation Sys preserves both the liveness and safety
properties of the specification Spec. In fact, we prove the stronger results that
Spec hlive Sys and Spec hsafe Sys by showing that Spec ≈ Sys. Consider the rela-
tion Θ = {(Spec,Sys)}∪

{(
rec〈v〉, νq.νs.

(
Trgdel,s,q | q〈v〉 | s〈1〉

))
|∃v
}
∪{(0, 0)}.

It is easy to verify that Θ is a weak clean-trace bisimulation. ut

10 Related work

The study of safety and liveness in concurrent languages goes back thirty years
[18, 19], but although there are many studies of (isolated) transactions in con-
current languages [1–6, 9, 12, 15, 17] none of them study liveness.

Liveness of Communicating Transactions (Extended Abstract) 15

There is much less research on communicating transactions. We are aware
of only three other studies: Committed π [7], RCCS [10], and Transactors [13],
none of which discuss safety or liveness properties of transactions.

Most closely related is the Committed π calculus where, like in TransCCS,
transactions must be combined before they can communicate. However, they are
merged rather than embedded: JP1 . Q1K | JP2 . Q2K → JP1 | P2 . Q1 | Q2K.
This leads to pessimistic rollback behaviour: when transactions communicate
and a failure happens, all transactions must be rolled back to their initial state.
Moreover, Committed π includes an explicit abort construct, which makes un-
committed actions observable [22]. For example, the transaction Ja.0 . 0K can
be distinguished from 0 by Ja.ab . ωK.

Reversible CCS extends CCS with reversible actions which can be rolled back
and irreversible actions which act as a commit. The most important difference
with TransCCS is that in RCCS a commit by a single transaction will cause the
commit of all transactions it has communicated with. For example, the RCCS
transaction Ja.0 .k 0K can be distinguished from 0 by Ja.(co l | ω) .l 0K.

Finally, Transactors is an extension of the actors model with communicating
transactions. It is a much lower level language than TransCCS with a more
complicated semantics, but it is similar in intent: for instance, Ja.0 .k 0K seems
indistinguishable from 0, although in the absence of a behavioural theory for the
language this is difficult to show.

We studied liveness properties of communicating transactions under an as-
sumption of fairness, which must be guaranteed by potential implementations of
the language. There is some work that investigates the fairness guarantees that
can be offered by implementations of isolated transactions [16, 20]; an extension
of those studies to communicating transactions would be worthwhile.

11 Conclusions

We studied liveness and safety in TransCCS; to the extent of our knowledge,
this is the first semantic study of liveness in the presence of transactions. We
showed that fair-testing and may-testing capture the right notions of liveness
and safety and gave numerous examples to build useful intuitions. We devel-
oped a sound and complete characterization of liveness preservation in terms of
clean tree failures, extending our earlier work on clean traces. This characteriza-
tion is simpler than the characterization of liveness preservation in CCS, made
possible by the additional distinguishing power added by transactions. We also
gave a coinductive proof technique for liveness preservation based on weak clean
trace bisimulation, which we proved to be sound but incomplete. We used the
characterization and the bisimulation in example proofs of liveness preservation.

Further study of weak bisimulation and other proof techniques is future work.
For instance, it is unclear at present whether bisimilarity preserves all contexts
and what its characterization is. We also plan to extend TransCCS to the π-
calculus. Finally, we intend to investigate the usefulness of the construct of com-
municating transactions in a more realistic programming language.

16 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

References

1. Acciai, L., Boreale, M., Zilio, S.D.: A concurrent calculus with atomic transactions.
In: ESOP. LNCS, vol. 4421, pp. 48–63. Springer (2007)

2. Black, A.P., Cremet, V., Guerraoui, R., Odersky, M.: An equational theory for
transactions. In: FSTTCS. LNCS, vol. 2914, pp. 38–49. Springer (2003)

3. Bocchi, L.: Compositional nested long running transactions. In: FASE. LNCS, vol.
2984, pp. 194–208. Springer (2004)

4. Bruni, R., Laneve, C., Montanari, U.: Orchestrating transactions in join calculus*.
In: CONCUR. LNCS, vol. 2421, pp. 531–544. Springer (2002)

5. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: POPL. pp. 209–220. ACM (2005)

6. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: ex-
tending Join. In: IFIP-TCS. pp. 569–582. Kluwer Academic Publishers (2004)

7. Buscemi, M.G., Melgratti, H.: Transactional service level agreement. In: TGC. pp.
124–139 (2008)

8. Cacciagrano, D., Corradini, F., Palamidessi, C.: Explicit fairness in testing seman-
tics. Logical Methods in Computer Science 5(2) (2009)

9. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: TGC. LNCS, vol. 5474, pp. 87–103 (2008)

10. Danos, V., Krivine, J.: Transactions in RCCS. In: CONCUR. LNCS, vol. 3653, pp.
398–412. Springer-Verlag (2005)

11. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical
Computer Science 34(1–2), 83–133 (1984)

12. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL. pp.
2–15 (2009)

13. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally
consistent distributed state in unreliable environments. In: POPL. pp. 195–208
(2005)

14. van Glabbeek, R.: The linear time–branching time spectrum after 20 years (2009),
Celebration of 20 years of CONCUR

15. Gorrieri, R., Marchetti, S., Montanari, U.: A2CCS: atomic actions for CCS. Theor.
Comp. Sci. 72(2-3), 203–223 (1990)

16. Guerraoui, R., Kapalka, M.: How Live Can a Transactional Memory Be? Tech.
rep., EPFL (2009)

17. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP. pp. 48–60. ACM (2005)

18. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977)

19. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM
Trans. Program. Lang. Syst. 4(3), 455–495 (1982)

20. Pedone, F., Guerraoui, R.: On transaction liveness in replicated databases. In:
PRFTS. p. 104 (1997)

21. Rensink, A., Vogler, W.: Fair testing. Inf. and Comp. 205(2), 125–198 (2007)
22. de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions. In: CON-

CUR (2010), To appear
23. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions—technical

appendix (April 2010), available at http://www.scss.tcd.ie/Edsko.de.Vries

